首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the possible role of excitatory amino acids (EAAs) in the mechanisms of morphine tolerance, rats were treated either with the wide-spectrum EAA antagonist, kynurenic acid (150 mg/kg), or the specific N-methyl-D-aspartic acid (NMDA) receptor antagonist. MK-801 (0.05 mg/kg), during a four-day induction period of morphine tolerance. Morphine was given once daily at a dose of 15 mg kg. On the fifth day rats were injected only with morphine (15 mg/kg), and analgesia was assessed using the hot-plate test. Morphine tolerance was significantly reduced by both EAA antagonists. Control experiments showed that at the same doses neither acute nor chronic administration of these antagonists affected morphine analgesia itself in a manner that can explain these findings. The possible involvement of EAAs in the mechanisms of morphine tolerance is discussed.  相似文献   

2.
Lin JA  Lee MS  Wu CT  Yeh CC  Lin SL  Wen ZH  Wong CS 《Brain research》2005,1054(2):167-173
This study was designed to investigate the effect of acute and chronic intrathecal (i.t.) injection of gabapentin (GBP) on the antinociceptive effect of morphine and tolerance development using a tail-flick latency test. Levels of excitatory amino acids (EAA) in i.t. CSF dialysates were also measured by high performance liquid chromatography. Male Wistar rats were implanted with either one or two i.t. catheters for drug injection or pump infusion and with a microdialysis probe for CSF dialysate collection. The effect of acute GBP (10 microg i.t.) injection on the morphine dose response was examined in both na?ve rats and rats made tolerant by continuous infusion of morphine (15 microg/h i.t.) for 5 days. At such a low dose (10 microg i.t.), GBP did not enhance morphine's antinociception in na?ve rats. In morphine-tolerant rats, however, acute GBP (10 microg i.t.) injection potentiated morphine's antinociception and yielded a 14.6-fold shift in morphine's dose-response curve. When GBP (10 microg/h i.t.) was co-infused with morphine (15 microg/h i.t.) to examine its effect on the development of morphine tolerance, GBP attenuated the development of morphine tolerance. The effect of GBP and morphine on CSF glutamate and aspartate levels was examined in na?ve rats, and the effect of morphine challenge on CSF glutamate and aspartate levels was examined in rats previously infused for 5 days with morphine alone or morphine plus GBP. Acute injection of GBP (10 microg i.t.), morphine (50 microg i.t.), or GBP (10 microg i.t.) followed by morphine (50 microg i.t.) 30 min later had no significant effect on CSF EAA concentration in na?ve rats; however, in tolerant rats, morphine challenge (50 microg i.t.) increased aspartate and glutamate levels to 221 +/- 22% and 296 +/- 43%, respectively, of those before morphine challenge, and this phenomenon was inhibited by GBP co-infusion. Our results show that GBP, at a dose without enhanced effect on morphine's antinociception in na?ve rats, not only potentiates morphine's antinociceptive effect in morphine-tolerant rats but also attenuates the development of morphine tolerance. The mechanism of the effect of GBP on morphine tolerance might be via suppression of the EAA concentration in spinal CSF dialysate.  相似文献   

3.
Selective antagonists of N-methyl-D-aspartate (NMDA) excitatory amino acid (EAA) receptors have been shown to protect against dynorphin-A (DYN)-induced paralysis and neurotoxicity in the spinal cord. To test the hypothesis that either DYN-induced paralysis or neurotoxicity involves an enhanced release of EAAs, we used microdialysis to monitor aspartate (Asp) and glutamate (Glu) release in both the lumbar spinal cord extracellular fluid (ECF) and the spinal cord cerebral spinal fluid (CSF) of conscious rats in response to DYN (1-13). Injection of 5 nmol of DYN produced temporary paralysis in 8 of 10 animals, but did not significantly change Asp or Glu release in either the ECF or the CSF. Injection of 20 nmol of DYN caused permanent paralysis and neuronal cell loss in all animals tested as well as a significant increase of Asp and Glu in both the ECF and the CSF, and a decrease in glutamine (Gln) release only in the ECF. Pretreatment with 1 mg/kg of the NMDA antagonist MK-801 blocked both paralysis and amino acid changes in the ECF. Pretreatment of animals with 5 mg/kg naloxone inhibited glutamate release in the ECF, but did not block paralysis, Asp release or inhibition of Gln release. As MK-801 sensitive paralysis by DYN was not mediated through enhanced EAA release, we examined whether DYN could act through postsynaptic facilitation of NMDA receptors by testing the ability of DYN to alter the magnitude of a behavioral response produced by intrathecal injection of NMDA in mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To investigate the possible involvement of enduring or delayed changes at the N-methyl-D-aspartic acid (NMDA) receptor in the mechanisms of morphine tolerance, rats were treated with the specific NMDA receptor antagonist, MK-801 (0.15 mg/kg) 2 h after morphine injection (20 mg/kg) during a 4-day induction period of tolerance. On the fifth day rats were injected only with morphine (15 mg/kg), and analgesia was assessed using the hot-plate test. Morphine tolerance was significantly reduced by MK-801. These findings suggest that long-lasting or delayed changes at the NMDA receptor underlie the development of morphine tolerance. Moreover, because MK-801 was delivered 2 h after morphine and therefore could not serve as a cue for morphine administration, these findings indicate that the attenuating effect of MK-801 on the development of morphine tolerance is not attributable to state-dependent learning.  相似文献   

5.
Evidence for opiate-activated NMDA processes masking opiate analgesia in rats   总被引:19,自引:0,他引:19  
The acute interaction between opioid receptors and N-methyl-D-aspartate (NMDA) receptors on nociception was examined in rats using tail-flick and paw-pressure vocalisation tests. When injected at various times (1 to 6 h) after morphine (5 to 20 mg/kg, i.v.) or fentanyl (4x40 microgram/kg, i.v.), the opioid receptor antagonist naloxone (1 mg/kg, s.c.) not only abolished the opiate-induced increase in nociceptive threshold, but also reduced it below the basal value (hyperalgesia). The noncompetitive NMDA receptor antagonist MK-801 (0.15 or 0.30 mg/kg, s.c.) prevented the naloxone-precipitated hyperalgesia and enhanced the antinociceptive effects of morphine (7.5 mg/kg, i.v.) and fentanyl (4x40 microgram/kg, i.v.). These results indicate that the antinociceptive effects of morphine and fentanyl, two opiate analgesics widely used in humans in the management of pain, are blunted by concomitant NMDA-dependent opposing effects which are only revealed when the predominant antinociceptive effect is sharply blocked by naloxone. This study provides new rationale for beneficial adjunction of NMDA receptor antagonists with opiates for relieving pain by preventing pain facilitatory processes triggered by opiate treatment per se.  相似文献   

6.
Chung KM  Song DK  Huh SO  Kim YH  Choi MR  Suh HW 《Neuropeptides》2000,34(3-4):158-166
Our previous studies have demonstrated that supraspinal glutamate receptors are differentially involved in the antinociception induced by morphine and beta-endorphin given intracerebroventricularly (i.c.v.) in the tail-flick and hot-plate tests. The formalin pain test was used in the present study. Injection of mice with formalin solution (2%, 10 microl) into the hindpaw intraplantarly produced the first (0-5 min) and second (20-40 min) phases of formalin responses. The formalin responses in the both phases were attenuated dose-dependently by morphine (0.125-1 microg) or beta-endorphin (0.125-1 microg) administered i.c.v. 5 min before. The antinociceptive effect of morphine was slightly more potent in the second phase whereas the effect of beta-endorphin was more pronounced in the first phase. MK-801 (0.1-1 microg), a non-competitive NMDA receptor antagonist, and CNQX (0.05-0.5 microg), a non-NMDA antagonist, given i.c.v., produced antinociceptive effect in the both phases, but only in a partial manner. Both MK-801 (0.05 microg) and CNQX (0.01 microg), at the dose which had no intrinsic effect, reversed the antinociceptive effect of beta-endorphin (1 microg) observed during the second, but not the first, phase partially but significantly. However, the antinociceptive effect of morphine (1 microg) was not affected by the same dose of MK-801 or CNQX given i.c.v. Our results indicate that, at the supraspinal level, both NMDA and non-NMDA receptors are involved in the production of antinociception induced by supraspinally administered beta-endorphin, but not morphine, in the formalin pain model.  相似文献   

7.
The present studies were designed to study the interrelationships between GABAergic, serotoninergic and excitatory amino acids systems (EAAs) in the control of gonadotropin secretion in prepubertal female rats. For this purpose we determined the effects of N-methyl-d-aspartate (NMDA), an exogenous agonist of EAAs receptors, on LH and FSH secretion in 16-day-old female rats in which the GABA-A and GABA-B receptors were blocked by bicuculline and baclofen or serotonin (5-HT) depleted by p-choloroamphetamine (PCA). In addition the effects of the GABAergic and serotoninergic systems on LH and FSH secretion were evaluated in animals treated with dibenzocycloalkenimine (diocilpine MK-801), an antagonist of NMDA neurotransmission. While muscimol, a GABA- A agonist, induced a significant increase in LH and FSH levels (P<0.01), baclofen, a GABA-B agonist, had an inhibitory effect on these hormones (P<0.01). MK 801, a NMDA receptor antagonist, not only suppressed the stimulatory effect of NMDA on LH and FSH but also blocked the stimulatory effect of muscimol without modifying the inhibitory action of baclofen on both gonadotropins. Bicuculline, a GABA-A receptor antagonist, did not modify the release effect of NMDA on LH and FSH. 5-HTP, a precursor of 5-HT that increases the levels of this neurotransmitter in the central nervous system significantly increased (P<0.01) the plasma levels of LH and FSH, and this effect was blocked by the NMDA receptor antagonist MK-801. We conclude that the stimulatory effects of GABAergic and serotoninergic systems in prepubertal female rats are connected with the activation of EAA neurotransmission, while the stimulatory effects of NMDA appear to be independent of serotoninergic and GABAergic actions on LH and FSH secretion. Since both GABA and serotonin systems change their effects on LH and FSH during sexual maturation from a stimulatory action in prepubertal to an inhibitory action in adult rats and since NMDA neurotransmission has a stimulatory effect on gonadotropin secretion both in prepubertal and adult rats, it is clear that the interrelationships between GABAergic and serotoninergic systems with EAAs in the gonadotropin control are different in prepubertal and in adult rats.  相似文献   

8.
Acute administration of morphine (10 mg/kg) to rats elicited an increase in locomotion that became sensitized upon repeated treatment over 14 days. Administration of the noncompetitive N-methyl-D-aspartate receptor (NMDA) antagonist MK-801 (0.1 or 0.25 mg/kg) prior to each morphine injection prevented the development of behavioral sensitization to morphine, an effect that persisted even after a 7-day withdrawal from repeated treatment. Sensitization was also prevented by coadministration of the competitive NMDA receptor antagonist CGS 19755 (10 mg/kg). In contrast, acute pretreatment with MK-801 did not alter the response of sensitized rats to morphine challenge, indicating that MK-801 does not prevent the expression of sensitization. When administered alone, MK-801 produced stereotyped movements at moderate doses (0.25 rng/kg) and horizontal locomotion at higher- doses, (0.5 mg/kg). Repeated administration of 0.25 mg/kg MK-801 elicited sensitization to its own locomotor stimulatory effects, such that this dose became capable of eliciting horizontal locomotion. Sensitization was not seen during repeated administration of 0.1 mg/kg MK-801 or 10 mg/kg CGS 19755, although both of these pretreatments did produce a sensitized response to subsequent challenge with 0.25 mg/kg MK-801. This effect was enhanced by coadministration of morphine, even though repeated administration of morphine alone failed to sensitize rats to MK-801 challenge. These results suggest a complex interplay between NMDA and opioid receptors, such that NMDA antagonists prevent morphine sensitization while morphine enhances the ability of NMDA antagonists to elicit sensitization to their own locomotor stimulatory effects. © 1994 Wiley-Liss, Inc.  相似文献   

9.
In rodents, noncompetitive and competitive NMDA receptor antagonists have been shown to attenuate and, in some cases, reverse tolerance to the analgesic effects of morphine. However, the ability of these same excitatory amino acid (EAA) receptor antagonists to modulate morphine dependence is controversial, and very little is known about the role of AMPA receptors in morphine dependence. LY293558, a novel, systemically active, competitive AMPA receptor antagonist and the NMDA receptor antagonists, MK-801 and/or LY235959, were evaluated in tolerant or dependent CD-1 mice. In mice rendered tolerant by morphine injection or pellet implantation, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or MK-801 (1 mg/kg per 24 h) attenuated the development of tolerance. Neither LY293558 nor MK-801 produced analgesia or altered the ED50 value of morphine. Continuous s.c. infusion of LY293558 (60 mg/kg per 24 h), MK-801 (1 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) attenuated the development of acute (3 h) morphine dependence (i.e., decreased naloxone-precipitated withdrawal jumping). In contrast, continuous s.c. infusion of LY293558 (60 mg/kg per 24 h) or LY235959 (12 mg/kg per 24 h) did not significantly attenuate the development of chronic dependence produced by morphine pellet implantation. These data indicate that the development of morphine tolerance is more sensitive to modulation by EAA receptor antagonists than is the development of morphine dependence as assessed by naloxone-precipitated withdrawal jumping.  相似文献   

10.
The co-administration of morphine at spinal (i.th.) and supraspinal (i.c.v.) sites to the same rat produces antinociceptive synergy, a phenomenon which may underlie the clinical analgesic utility of this drug. In animals with peripheral nerve injury, however, the antinociceptive potency and efficacy of i.th. morphine is significantly decreased. Here, the possible loss of spinal/supraspinal morphine antinociceptive synergy and relationship to elevation of spinal dynorphin content was studied. Ligation of lumbar spinal nerves resulted in elevated dynorphin in the ipsilateral lumbar and sacral spinal cord. In sham-operated rats supraspinal/spinal co-administration of morphine produced synergistic antinociception which was unaffected by i.th. MK-801 or dynorphin A((1-17)) antiserum. In nerve-injured rats, i.th. morphine was inactive against tactile allodynia and showed diminished in potency against acute nociception without supraspinal/spinal antinociceptive synergy. Antiserum to dynorphin A((1-17)) or the non-competitive NMDA antagonist MK-801 increased the antinociceptive potency of i.th. morphine, restored supraspinal/spinal morphine antinociceptive synergy and elicited a dose-related i.th. morphine antiallodynic action. These agents did not demonstrate antinociceptive or antiallodynic activity alone and did not alter morphine actions in sham-operated animals. The loss of spinal/supraspinal antinociceptive synergy and lack of antiallodynic activity of spinal morphine appear to be due to the elevation across multiple spinal segments of dynorphin following nerve injury. Pathological actions of elevated dynorphin may directly or indirectly modulate the NMDA receptor, result in a loss of supraspinal/spinal morphine synergy and may thus account for the decreased clinical analgesic efficacy of morphine in peripheral neuropathies.  相似文献   

11.
兴奋性氨基酸在缺血性海马神经元损害中的作用的研究   总被引:7,自引:0,他引:7  
采用大鼠全脑缺血模型,研究脑缺血再灌流海马氨基酸含量的动态变化及相应病理改变,观察NMDA(N-甲基-D-门冬氮酸)受体拮抗剂MK-801的疗效,提示兴奋性氨基酸(Glu,Asp)可能参与海马神经元损害,MK-801能有效防止海马CA_1区迟发性神经元坏死。兴奋性氨基酸受体拮抗剂的研究,将为临床缺血性中风治疗提供新的途径。  相似文献   

12.
The effects of intraperitoneal administration of antagonists to morphine, norepinephrine, acetylcholine, dopamine and 5-hydroxytryptamine (5-HT) have been studied on the antinociceptive effect of electrical stimulation of the rat habenular complex (HbC). The antinociceptive effect of agonists microinjected into the HbC was also examined. A 15-s period of 53 microA rms sine-wave stimulation of the HbC significantly increased the latency of the tail-flick reflex to noxious heat for periods of up to 15 min. This effect was significantly attenuated by pretreating rats with naloxone (1 mg/kg) or phenoxybenzamine (5 mg/kg). Methysergide (5 mg/kg), haloperidol (5 mg/kg), atropine (1 mg/kg), and mecamylamine (1 mg/kg) had little effect on the antinociceptive effect of HbC stimulation. L-Glutamate (3.5 and 7.0 micrograms), morphine (1.0 and 5.0 micrograms), and carbachol (0.4 and 0.8 micrograms), but not 5-HT (5 micrograms), dopamine (5 micrograms) or norepinephrine (5 micrograms), induced a dose-dependent increase in the tail-flick latency when microinjected into the HbC. The effect of carbachol was significantly attenuated in rats previously treated with intraperitoneal administration of atropine or mecamylamine and fully depressed in rats previously treated with a combination of these two cholinergic antagonists. It is concluded that antagonists of opiate receptors and alpha-adrenoceptors, but not dopamine or cholinergic receptors, reduce the antinociceptive effects of HbC stimulation. These observations differ from the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray, but resemble the antinociception caused by stimulating the ventrolateral medulla and locus coeruleus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The contribution of excitatory amino acids (EAAs) to the development of central sensitization and persistent nociception in response to tissue injury in rats was examined following the subcutaneous injection of formalin into the hindpaw. Formalin-induced nociceptive behaviors were enhanced by intrathecal pretreatment with the EAAs L-glutamate and L-aspartate. An enhancement of the formalin nociceptive response was also produced by intrathecal pretreatment with the receptor-selective EAA agonists NMDA and trans-(+/- )-1-amino-1,3-cyclopentane dicarboxylic acid (ACPD), but not (R,S)-alpha-amino-3-hydroxy-5-methylisozazole-4-propionic acid hydrobromide (AMPA). The effect of NMDA was enhanced by a combined administration with AMPA or APCD. Formalin nociceptive responses were dose-dependently reduced by intrathecal pretreatment with the NMDA receptor antagonists 2-amino-5-phosphonovaleric acid (APV) and (+)-MK-801 hydrogen maleate, but not the selective AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione or the selective metabotropic EAA receptor antagonist 2-amino-3-phosphonopropionic acid. The results suggest that EAAs acting at the NMDA receptor contribute to central sensitization and persistent nociception following subcutaneous formalin injection.  相似文献   

14.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy. J. Neurosci. Res. 51:583–592, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Kosten TA  Bombace JC 《Brain research》2000,878(1-2):20-31
Three experiments compared the effects of prior versus delayed applications of dizocilpine (MK-801), a noncompetitive NMDA antagonist, to ethanol, a putative NMDA antagonist, on morphine locomotor activity. In Experiment 1, rats received MK-801 (0.1 mg/kg), ethanol (1 g/kg), or vehicle injections 30 min prior to morphine (0 or 10 mg/kg) injections for 14 days. The expression of morphine (0 or 3 mg/kg) locomotor sensitization was assessed 1 week later. Both MK-801 and ethanol attenuated morphine-induced locomotor activity. Chronic MK-801 with or without morphine eliminated morphine's temporal pattern of activity calling into question the specificity of its effect on sensitization. In contrast, chronic ethanol administration attenuated morphine locomotor sensitization. In Experiment 2, the effects of the agents on the acute biphasic locomotor effects of morphine (hypoactivity followed by hyperactivity) were examined. Agents were administered 30 min prior to or 120 min after morphine (or vehicle). Neither agent at either administration time altered morphine's acute locomotor effects. In Experiment 3, the effects of chronic delayed application of MK-801 or ethanol (120-min post-morphine administration for 14 days) on the expression of morphine locomotor sensitization were assessed. Results were similar to the prior application effects of Experiment 1. These data suggest that the delayed effects of morphine are important in changes seen with chronic administration and these may involve NMDA receptor activation. Further, in conjunction with our previous work, ethanol appears to alter plasticity effects of chronic morphine administration perhaps via its NMDA antagonist effects.  相似文献   

16.
In the present study, the effects of bilateral injections of N-methyl-d-aspartate (NMDA) receptor agonist and/or antagonist into the central amygdala (CeA) on the acquisition and expression of morphine-induced conditioned place preference (CPP) were investigated in male Wistar rats. Animals that received 3 daily subcutaneous (s.c.) injections of morphine (1-9 mg/kg) or saline (1.0 ml/kg) indicated a significant preference for compartment paired with morphine in a dose dependent manner. Intra-CeA administration of the NMDA (0.01, 0.1 or 1 microg/rat) with an ineffective dose of morphine (1 mg/kg, s.c.) elicited a significant CPP. Administration of the non-competitive NMDA receptor antagonist, MK-801 (0.1, 0.3 or 0.5 microg/rat), into the central amygdala dose-dependently inhibited the morphine (6 mg/kg, s.c.)-induced place preference. Furthermore, intra-CeA administration of MK-801 (0.25, 0.5 or 1 microg/rat) reduced the response induced by NMDA (1 microg/rat, intra-CeA) plus morphine (1 mg/kg, s.c.). Neither NMDA nor MK-801 alone produce a significant place preference or place aversion. Moreover, intra-CeA injection of NMDA but not MK-801 before testing significantly increased the expression of morphine (6 mg/kg, s.c.)-induced place preference. NMDA or MK-801 injections into the CeA had no effects on locomotor activity on the testing sessions. These results suggest that the NMDA receptor mechanisms in the central amygdala may be involved in the acquisition and expression of morphine-induced place preference.  相似文献   

17.
This study investigated the effects of the NMDA receptor antagonist MK-801 on the development of morphine dependence in 7-, 14-, and 21-day-old rat pups. For 6.5 days, starting at 1, 8, or 15 days of age, rats were pretreated with MK-801 (0.03 or 0.1 mg/kg, bid) or saline; 15 min later, morphine sulfate (10 mg/kg) or saline was injected to induce opiate dependence. On the afternoon of the seventh day, pups were injected with MK-801 (0.1 mg/kg) or saline and 15 min later with naltrexone (1 mg/kg) to precipitate withdrawal. Pups were then placed in a warm chamber with the litter and their behavior scan-sampled every 15 sec for a total of 15 min. MK-801 failed to inhibit morphine withdrawal in the 7-day-old rat, but did attenuate the development of morphine dependence in both the 14- and 21-day-old rats. These results suggest that the NMDA receptor is not functionally active in opiate withdrawal until around the second to third week of postnatal life in the rat and that there exists a transition period for the NMDA receptor to play a role in the development of opiate dependence and withdrawal.  相似文献   

18.
In the rat, antinociception of supraspinal origin is observed in response to administration of cocaine or an antagonist of the NMDA receptor for glutamate. The current study was conducted to determine if endocannabinoids are involved in the antinociceptive effect of cocaine, or antagonism of NMDA receptor binding. Intraperitoneal (i.p.) administration to male rats of cocaine, or the NMDA receptor antagonist, MK-801, resulted in a significant antinociceptive response of supraspinal origin, as indicated by a significant increase in reaction time in the hot plate test of analgesia (increase in the amount of time before the animal reacted to the hot plate by licking its paws or jumping). Treatment with SR141716A, a specific antagonist of the cannabinoid (CB1) receptor, resulted in a complete reversal of cocaine-induced antinociception when administered at a dose of 5.0mg/kg. Although the 2.5 and 5.0mg/kg doses of SR141716A produced a significant reduction in the antinociceptive effect of MK-801, the effect was incomplete since the reaction time in the hot plate test remained greater than that observed in vehicle-treated controls. These findings suggest that activation of the CB1 receptor participates significantly in antinociception resulting from treatment with cocaine and with the NMDA receptor antagonist, MK-801. The partial reversal of the antinociceptive effect of MK-801 by CB1 receptor antagonism indicates other mediators of nociception, in addition to the endocannabinoids, appear to be active in the antinociceptive response to NMDA receptor antagonism.  相似文献   

19.
The effect of (+/-)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5, 10-imine maleate (MK-801) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) injected intrathecally (i.t.) on the inhibition of the tail-flick response induced by morphine, D-Ala(2)-NmePhe(4)-Gly-ol-enkephalin (DAMGO), beta-endorphin, D-Pen(2,5)-enkephalin (DPDPE), or ?(trans-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl] benzeocetamide)? (U50, 488H) administered i.t. was studied in ICR mice. The i.t. injection of MK-801 (2 microg) or CNQX (1 microg) alone did not affect the basal tail-flick response. Morphine (0.2 microg), DAMGO (0.8 ng), beta-endorphin (0.1 microg), DPDPE (0.5 microg) or U50, 488H (6 microg) caused only slight inhibition of the tail-flick response. CNQX injected i.t., but not MK-801, enhanced the inhibition of the tail-flick response induced by i.t. administered morphine, DAMGO, DPDPE or U50, 488H. However, CNQX or MK-801 injected i.t. was not effective in enhancing the inhibition of the tail-flick response induced by beta-endorphin administered i.t. The potentiating effect of CNQX on tail-flick inhibition induced by morphine, DAMGO, DPDPE or U50, 488H was blocked by naloxone (from 1 to 20 microg), yohimbine (from 1 to 20 microg) or methysergide (from 1 to 20 microg) injected i.t. in a dose-dependent manner. Our results suggest that the blockade of AMPA/kainate receptors located in the spinal cord appears to be involved in enhancing the inhibition of the tail-flick response induced by stimulation of spinal mu-, delta-, and kappa-opioid receptors. Furthermore, this potentiating action may be mediated by spinal noradrenergic and serotonergic receptors. However, N-methyl-D-aspartate receptors may not be involved in modulating the inhibition of the tail-flick response induced by various opioids administered spinally.  相似文献   

20.
The interaction between MK-801 and morphine-induced effects on cortical electroencephalography (EEG) was investigated. Rats were administered one of five MK-801 doses (IP) prior to morphine (IV). MK-801 dose-dependently increased morphine-induced global spectral power, duration of morphine-induced EEG bursts and latency to sleep onset, and decreased morphine-induced mean frequency, mobility, complexity, and edge frequency. MK-801 pretreatment shifted the relative distribution of total power to the left. Significant interaction effects were found for all spectral parameters except peak frequency. A second group of rats was administered MK-801 prior to an increasing cumulative morphine dose. MK-801 increased maximal morphine effects on all spectral parameters except peak frequency. The results are in agreement with those of recent analgesia and in vitro studies in spinal neurons, and support observations of a synergistic interaction between effects of NMDA antagonism and morphine. These data further suggest that the component of cortical EEG that is produced by mu-opioid- and NMDA-receptor interactive effects may be dominated by an inhibitory effect of morphine on NMDA receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号