首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning electron microscopy of permanent tooth buds of the monkey confirmed that mineralizing interrod enamel surrounds Tomes' processes on three sides, forming pits that restrict enamel rod formation. The forming face of the enamel rod, which is the floor of the pit, angled toward the tooth surface at the apical edge of the pit, the side nearest the cervical region of the tooth. Consequently, the apical edge of each pit was the only site where both rod and interrod enamel were formed at the nascent tooth surface. The ameloblasts had two secretory surfaces. One was the microvillous surface of the short Tomes' process abutting the forming face of the enamel rod. The other surface, closer to the ameloblast, was between Tomes' processes, abutting the crests of interrod enamel which formed the pits. At each site forming enamel crystallites had specific orientations. Due to the angle of the forming face of the rod and the short Tomes' process, crystallites with both rod and interrod orientation form at the same time and the same plane within the apical (cervical) margin of each rod. It is hypothesized that indistinct boundaries between rod and interrod enamel at the apical margin of each rod are due to both secretory surfaces of ameloblasts secreting at the same time and at the same site.  相似文献   

2.
Scanning electron microscopy of permanent tooth buds of the monkey confirmed that mineralizing interrod enamel surrounds Tomes' processes on three sides, forming pits that restrict enamel rod formation. The forming face of the enamel rod, which is the floor of the pit, angled toward the tooth surface at the apical edge of the pit, the side nearest the cervical region of the tooth. Consequently, the apical edge of each pit was the only site where both rod and interrod enamel were formed at the nascent tooth surface. The ameloblasts had two secretory surfaces. One was the microvillous surface of the short Tomes' process abutting the forming face of the enamel rod. The other surface, closer to the ameloblast, was between Tomes' processes, abutting the crests of interrod enamel which formed the pits. At each site forming enamel crystallites had specific orientations. Due to the angle of the forming face of the rod and the short Tomes' process, crystallites with both rod and interrod orientation form at the same time and the same plane within the apical (cervical) margin of each rod. It is hypothesized that indistinct boundaries between rod and interrod enamel at the apical margin of each rod are due to both secretory surfaces of ameloblasts secreting at the same time and at the same site.  相似文献   

3.
We have used synchrotron X-ray diffraction to study the texture and the change in lattice parameter as a function of position in a cross section of human dental enamel. Our study is the first to map changes in preferred orientation and lattice parameter as a function of position within enamel across a whole tooth section with such high resolution. Synchrotron X-ray diffraction with a micro-focused beam spot was used to collect two-dimensional (2D) diffraction images at 150 microm spatial resolution over the entire tooth crown. Contour maps of the texture and lattice parameter distribution of the hydroxyapatite phase were produced from Rietveld refinement of diffraction patterns generated by azimuthally sectioning and integrating the 2D images. The 002 Debye ring showed the largest variation in intensity. This variation is indicative of preferred orientation. Areas of high crystallite alignment on the tooth cusps match the expected biting surfaces. Additionally we found a large variation in lattice parameter when travelling from the enamel surface to the enamel-dentine junction. We believe this to be due to a change in the chemical composition within the tooth. The results provide a new insight on the texture and lattice parameter profiles within enamel.  相似文献   

4.
Crystalline hydroxyapatite (HA) powder was coated on titanium substrate by radio frequency (RF) magnetron sputtering. The coating was homogeneous thin film and the thickness was 1microm. Crystallinity of the HA coating was low and Ca/P ratio was high as 3.0. Particle sizes were 40 to approximately 100 nm, and the crystallite size was calculated by 30 to approximately 50 nm using an X-ray diffractometry (XRD) and a transmission electron microscopy (TEM). When the coating was heated at 800 degrees C for 1 h, the low crystalline HA grew up crystalline HA, and a diffraction pattern of CaO appeared. When the coating was immersed in pH 7.4 of bovine serum for 1 week, c-axis of HA increased.  相似文献   

5.
6.
A 351-nm laser excitation source was used to perform autofluorescence microscopy of dentin, enamel, and the dentin-enamel junction (DEJ) to obtain information regarding their morphology and spectral characteristics. The emission spectra of these calcified dental tissues were different from one another, and this enabled the DEJ to be imaged and dimensionalized. The DEJ displayed sharp and clearly delineated borders at both its enamel and dentin margins. The dentinal tubules and the enamel prisms appeared to terminate abruptly at the DEJ. The median DEJ width was 10 microm, ranging from 7 to 15 microm, and it did not appear to depend on intratooth position.  相似文献   

7.
The crystallographic alterations of the hydroxyapatite under the laser irradiation were evaluated by the x-ray diffraction pattern analysis and scanning electron microscopic observation. Recrystallization may occur in fused and resolidified dental enamel by the pulsed Nd: YAG laser irradiation. Two different grades of energy densities such as 400 pulses and 800 pulses were given to the powdered enamel. The irradiation was performed at a peak power of 500W with a pulse width of 10 msec.; the average output of 10W, spot size of 3mm and two pulses were given in every second. After the 800 pulses of Nd:YAG laser irradiation to the human dental enamel the x-ray diffraction pattern demonstrated both alpha-tricalcium phosphate and hydroxyapatite peaks. With the lower level of energy at 400 pulses, no significant differences were seen in the diffraction patterns between lased and unlased enamel. In scanning electron microscopic findings, there were no significant changes between lased and unlased enamel. When the unlased and lased enamel were exposed to acid solution, unlased enamel showed a honeycomb pattern, while the lased enamel showed preferentially removed prism core material.  相似文献   

8.
External resorption of teeth by odontoclasts is a common condition of unknown origin affecting domestic cats. Odontoclastic resorptive lesions involve the enamel cementum junction (ECJ, cervix) and root surface, leading to extensive loss of enamel, dentine and cementum. This study was undertaken in order to determine whether features of the surface anatomy and mineralization of feline teeth could explain why odontoclastic resorptive lesions are so prevalent in this species. Backscattered electron scanning electron microscopy was used to study enamel, cementum and dentine in non-resorbed, undemineralized teeth from adult cats. Analysis of the ECJ revealed thin enamel and cementum and exposed dentine at this site. Furthermore, enamel mineralization decreased from the crown tip to the ECJ, and dentine mineralization was lowest at the ECJ and cervical root. Analysis of cementum revealed variations in the organization and composition of fibres between the cervical, mid- and apical root although no significant differences in mineralization of cementum were detected between different regions of the root. Reparative patches associated with resorption of cementum by odontoclasts and repair by cementoblasts were present on the root surface. In conclusion, results suggest that the ECJ and cervical dentine could be at a greater risk of destruction by odontoclasts compared with other regions of the tooth. The relationship of these features to the development and progression of resorption now requires further examination.  相似文献   

9.
The maxillary canines of Smilodon californicus Bovard, 1907 have a deeply curved cementoenamel junction. The gingiva of modern cats is attached to the tooth at the cementoenamel junction and provides tactile and other dental information to the animal. The presence of cementum at the cervix of the maxillary canines, also called sabers, would indicate that the gingiva in Smilodon was attached in this region. Such an attachment would be advantageous, providing stability and sensory input for the large tooth. Also, gingiva at the cervix would impact the manner in which the teeth were used. Previous study using scanning electron microscopy of dental casts was indirect. The purpose of this study was to confirm by direct methods the presence of cementum at the cervix of Smilodon californicus sabers. Parts of three Smilodon californicus sabers were sectioned and examined with light and scanning electron microscopy (EDS). In addition, percent weight of calcium and phosphorus was measured in enamel, dentin, and cementum using electron dispersive spectroscopy. Cementum was identified in the cervical region of each saber. Spectroscopy confirmed that the tissue is calcified and the mineral is hydroxyapatite. Percent calcium and percent phosphorus of individual tissues were highly variable between specimens. However, the ratios of calcium to phosphorus were not significantly different from the hydroxyapatite standard. In the future, bite models will have to take the presence of soft tissues into account.  相似文献   

10.
Most marsupials and some placental mammals possess enamel characterized by the presence of tubules, and the cellular origin of these structures has been the subject of a number of previous studies (See, for example, Lester, 1970; Azevedo and Goldberg, 1987). In the present report, tooth germs of the American opossum were examined to determine the structure and composition of enamel tubules during development and to analyze the enamel matrix relative to that of placental mammals with atubular enamel. For this purpose, tissues prepared by aqueous (decalcified and undecalcified) and anhydrous (undecalcified) methods were investigated by conventional transmission (TEM) and high voltage electron microscopy (HVEM), as well as by electron probe x-ray microanalysis (EPMA), selected-area electron diffraction (SAED), and electron spectroscopic imaging (ESI). Results indicate that most enamel tubules in the opossum begin as cytoplasmic remnants of Tomes' processes of ameloblasts. During development of the matrix, some of the tubules do not appear to be continuous throughout the prismatic layer. Sulfur is detectable around the lumen of the tubule in decalcified sections by EPMA and in and around the tubule by ESI. Calcium/phosphorus (Ca/P) molar ratios of the mineralizing matrix are generally higher than those found in enamel of other mammals and appear to decrease rather than increase with enamel maturation. The summary of data indicates the presence of sulfated glycoproteins or proteoglycans in this tissue, specifically around enamel tubules. Calcium and phosphorus are also present within the tubules, with the sulfated groups possibly binding calcium to prevent mineralization of the enamel tubules themselves. © 1992 Wiley-Liss, Inc.  相似文献   

11.
Most marsupials and some placental mammals possess enamel characterized by the presence of tubules, and the cellular origin of these structures has been the subject of a number of previous studies (See, for example, Lester, 1970; Azevedo and Goldberg, 1987). In the present report, tooth germs of the American opossum were examined to determine the structure and composition of enamel tubules during development and to analyze the enamel matrix relative to that of placental mammals with atubular enamel. For this purpose, tissues prepared by aqueous (decalcified and undecalcified) and anhydrous (undecalcified) methods were investigated by conventional transmission (TEM) and high voltage electron microscopy (HVEM), as well as by electron probe x-ray microanalysis (EPMA), selected-area electron diffraction (SAED), and electron spectroscopic imaging (ESI). Results indicate that most enamel tubules in the opossum begin as cytoplasmic remnants of Tomes' processes of ameloblasts. During development of the matrix, some of the tubules do not appear to be continuous throughout the prismatic layer. Sulfur is detectable around the lumen of the tubule in decalcified sections by EPMA and in and around the tubule by ESI. Calcium/phosphorus (Ca/P) molar ratios of the mineralizing matrix are generally higher than those found in enamel of other mammals and appear to decrease rather than increase with enamel maturation. The summary of data indicates the presence of sulfated glycoproteins or proteoglycans in this tissue, specifically around enamel tubules. Calcium and phosphorus are also present within the tubules, with the sulfated groups possibly binding calcium to prevent mineralization of the enamel tubules themselves.  相似文献   

12.
Diekwisch TG 《Connective tissue research》1998,38(1-4):101-11; discussion 139-45
Three quarters of the micro-environment of early secretory stage enamel consist of protein and water. The physical arrangement of this enamel matrix is closely related to enamel crystal growth and habit. In the present study, structural components of developing enamel were analyzed using atomic force microscopy, transmission electron microscopy, immuno-ultracryotomy, and electron diffraction. Atomic force images revealed spherical subunits measuring between 108 nm and 124 nm in diameter. Transmission electron micrographs indicated that developing crystals were surrounded by an electron dense coat which may be rich in proteins. Transmission electron micrographs and electron diffraction studies supported a concept in which initial enamel crystals consist of amorphous calcium phosphate and later fuse to hydroxyapatite. Cryo-immuno electron microscopy demonstrated homogeneous distribution of amelogenin epitopes within the entire enamel matrix. The current study suggests an intricate role of protein aggregation phenomena involved in initial enamel crystal growth and habit.  相似文献   

13.
Dispersion and polar surface free energies of human enamel   总被引:1,自引:0,他引:1  
In this study, the dispersion (gamma ds) and polar (gamma ps) surface free energies of human enamel with and without an acquired enamel pellicle and of crystalline hydroxyapatite were determined from contact angle measurements. The results show that gamma ps is strongly influenced by the presence of a pellicle; the total surface free energy (gamma s) is considerably smaller for enamel with an acquired pellicle than for enamel without an acquired pellicle. Enamel without an acquired enamel pellicle shows surface free energies comparable with those of crystalline hydroxyapatite.  相似文献   

14.
The origin and development of the Michaelis-Guttmann body are presentedin a case of malakoplakia of the skin from which coagulase positive Staphylococcus aureus was cultured. Electron microscopic observations indicate an orderly sequence of events that results in the formation of Michaelis-Guttmann bodies within single membrane limited cytosomes in the cytoplasm of histiocytes. The well developed Michaelis-Guttmann bodies are composed of closely packed, generally radially oriented, needle shaped, crystalline deposits with lengths varying from 400 to 1450 A and widths from 60 to 120 A. Selected area electron diffraction studies of the Michaelis-Guttmann bodies show a diffraction pattern consistent with the x-ray powder diffraction pattern for hydroxyapatite.  相似文献   

15.
Isolated enamel defects are commonly seen in first permanent molar teeth but there has been little work on the physical and morphological composition of affected molars. The aim of this study was to determine the mechanical and morphological properties of hypomineralised first permanent molar teeth, utilising the Ultra-Micro-Indentation System (UMIS) and scanning electron microscope, respectively. Further investigations using Energy Dispersive X-ray Spectrometery (EDS), Back Scatter Electron (BSE) Imaging, and X-ray diffraction were employed to attempt to determine the chemical composition, mineral content and crystalline structure of the hypomineralised tissue, respectively, of eight first permanent molars with severe enamel hypomineralisation. The hardness and modulus of elasticity were found to be statistically significantly lower (0.53+/-0.31 and 14.49+/-7.56 GPa, respectively) than normal enamel (3.66+/-0.75 and 75.57+/-9.98 GPa, respectively). Although the fractured surface of the hypomineralised enamel was significantly more disorganised and the relative mineral content was reduced by approximately 5% in comparison to sound enamel, the mineral phase and Ca/P ratio was similar in hypomineralised and sound enamel. The dramatic reduction in the mechanical properties of first permanent molar teeth has ramifications when clinicians are choosing restorative materials to restore the defects. The reason for the dramatic reduction in mechanical properties of hypomineralised first permanent molar teeth is at present unknown.  相似文献   

16.
背景:在钛基体表面涂覆羟基磷灰石涂层能改善钛表面生物活性,诱导骨生长,但纯羟基磷灰石力学性能较差,易在生理环境中降解,影响种植体的稳定性。 目的:研究掺镧羟基磷灰石涂层的合成方法及其性能表征。 方法:采用溶胶-凝胶法制备纯羟基磷灰石和掺镧质量分数10%,20%,30%的掺镧羟基磷灰石,通过浸渍-提拉法在钛基体上制备纯羟基磷灰石涂层与掺镧羟基磷灰石涂层。扫描电镜观察掺镧羟基磷灰石涂层的形貌和晶粒微观结构,X射线衍射和傅里叶红外光谱分析其基团结构,原子吸收光谱测定Ca2+浓度来分析涂层的降解性能。 结果与结论:随着掺镧量的增加,羟基磷灰石衍射峰更强,结晶度更高,但对羟基磷灰石的整体结构影响较小,可维持晶体结构的稳定和电荷平衡。掺镧羟基磷灰石涂层均匀致密,与钛基底结合紧密,两者之间虽有可见的界面,但没有明显缝隙和裂纹,提示涂层具有较好的结合强度。通过模拟生物环境测定释放的钙离子得出掺镧羟基磷灰石抗酸性更强。中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程全文链接:  相似文献   

17.
Expression,structure, and function of enamel proteinases   总被引:4,自引:0,他引:4  
Proteinases serve two important functions during dental enamel formation: They (a) process and (b) degrade enamel proteins. Different enzymes carry out these functions. Enamelysin (MMP-20) is the foremost enamel matrix-processing enzyme. Its expression initiates prior to the onset of dentin mineralization and continues throughout the secretory stage of amelogenesis. In vitro, enamelysin catalyzes all of the amelogenin cleavages that are known to occur during the secretory stage in vivo, and it is probably the enzyme responsible for the processing of all enamel proteins. There is evidence suggesting that enamelysin activity is critical for proper enamel formation. Uncleaved and processed enamel proteins often segregate into different compartments within the developing enamel layer, suggesting that they may have different functions. Intact ameloblastin and its C-terminal cleavage products localize in the superficial rod and interrod enamel, while its N-terminal cleavage products congregate in the sheath space. Intact enamelin is only present at the mineralization front within a micrometer of the enamel surface, while its cleavage products concentrate in the rod and interrod enamel. Processed enamel proteins accumulate during the secretory stage, but disappear early in the maturation stage. Enamel matrix serine proteinase 1 (EMSP1), now officially designated kallikrein 4 (KLK4), is believed to be the predominant degradative enzyme that clears enamel proteins from the matrix during maturation. KLK4 expression initiates during the transition stage and continues throughout maturation. KLK4 concentrates at the enamel surface when the enamel matrix disappears, and aggressively degrades amelogenin in vitro. During tooth development, proteinases are secreted by ameloblasts into the extracellular space, where they cleave enamel proteins by catalyzing the hydrolysis of peptide bonds. Enamel proteinases are present in low abundance and are not likely to participate directly in the mineralization process. Two major enamel proteinases have been identified: enamelysin (MMP20) and kallikrein 4 (KLK4). These proteinases are expressed at different times and have different functions. Their roles are to modify and/or to eliminate enamel matrix proteins, which affects the way enamel proteins interact with each other and with the developing enamel crystallites. A brief review of dental enamel formation is presented, followed by a more detailed analysis of enamelysin and KLK4 expression, structure, and function.  相似文献   

18.
Enamel is a natural composite, which has much higher toughness than its major component, crystalline hydroxyapatite. In this study, the energy absorption behavior of human sound enamel was investigated with nanoindentation techniques. A UMIS nanoindenter system as well as a Berkovich and two spherical indenters with nominal tip radii of 5 and 20 microm were used to indent enamel at different loading forces in the direction parallel to enamel prisms. Inelastic energy dissipation versus depth of indenter penetration (U%-h(p) curve) as well as a function of indentation strain (U%-epsilon curve) of enamel was determined. Enamel showed much higher energy absorption capacity than a ceramic material with equivalent modulus (fused silica). Even at the lowest forces (1 mN) for the 20 microm indenter, inelastic response was found. Additional tests done at different force loading rates illustrated that load rate has little influence on P-h response of enamel. The top surface of enamel has the plastic work of indentation of approximately 5.2 nJ/microm(3). The energy absorbing ability is influenced by the very small protein rich component that exists between the hydroxyapatite nanocrystals as well as within the sheath structure surrounding the enamel rods.  相似文献   

19.
Ning CQ  Zhou Y 《Biomaterials》2004,25(17):3379-3387
Sintering reactions and fine structures of the biocomposites prepared from powder mixtures of titanium ( alpha -Ti), hydroxyapatite (HA) and bioactive glass (BG) (SiO2-CaO-P2O5-B2O3-MgO-TiO2-CaF2) were investigated by X-ray diffraction and transmission electron microscopy. The results showed that complex reactions among the starting materials mainly depended on the initial Ti/HA ratios as well as the sintering temperatures. And the reaction could be expressed by the following illustrative equation: Ti+Ca10(PO4)6(OH)2-->CaTiO3+CaO+TixPy+(Ti2O)+(Ca4P2O9)+H2O.  相似文献   

20.
The three-dimensional architecture of enamel prisms at early stages of enamel formation and its spatial relationship to the Hunter-Schreger bands were examined in canine tooth germs by light and electron microscopy. In serial semithin sections of demineralized tooth germs tangential to the enamel-dentin junction, a straight row of enamel prisms was depicted along the longitudinal tooth axis at the level of the enamel-dentin junction and then their three-dimensional arrangement was reconstructed using computer software. The spatial arrangement of the groups of enamel rods oriented in specific sideward directions was also reconstructed in deep layers of the enamel. Initially, all enamel prisms were parallel to perpendicular toward the enamel-dentin junction, but at 10μm from the enamel-dentin junction, some small specks, or groups of enamel prisms--tilting to the right or the left--emerged as small islands. In each speck of enamel prism, the inclined prisms were uniformly oriented in a sideward direction and gradually expanded their boundary until merging with the neighboring specks inclined in the same direction. Consequently, at 50μm from the enamel-dentin junction, the group of enamel prisms oriented either to the right or the left formed alternately arranged horizontal belt-like zones, corresponding to the parazone or the diazone of the Hunter-Schreger bands. Reversed images of scanning electron-micrographs of the exposed surfaces of the developing enamel revealed round and bulb-like profiles of Tomes' processes at early amelogenesis and its changes into a characteristic structure combined with flat secretory and enclosing nonsecretory faces that dictated the orientation of corresponding enamel prisms. The results suggest that the groups of enamel prisms oriented in sideward directions first appear as small island-like specks near the enamel-dentin junction, which later merge and form alternating horizontal belt-like zones as a consequence of morphological changes of the Tomes' processes. However, the mechanisms whereby the functional grouping of secretory ameloblasts with similarly oriented Tomes' processes is induced are yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号