首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-(1-3)-D-mannose- and alpha-(1-6)-D-mannose-specific agglutinins (lectins) from Galanthus nivalis, Hippeastrum hybrid, Narcissus pseudonarcissus, and Listera ovata inhibited infection of MT-4 cells by human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus at concentrations comparable to the concentrations at which dextran sulfate (molecular weight, 5,000 [DS-5000]) inhibits these viruses (50% effective concentration, 0.2 to 0.6 microgram/ml). Unlike DS-5000, however, the plant lectins did not inhibit the replication of other enveloped viruses, except for human cytomegalovirus (50% effective concentration, 0.9 to 1.6 microgram/ml). The plant lectins suppressed syncytium formation between persistently HIV-1- or HIV-2-infected HUT-78 cells and uninfected MOLT-4 (clone 8) cells at concentrations that were 5- to 10-fold lower than that required for DS-5000. Unlike DS-5000, however, the plant lectins did not inhibit HIV-1 binding to CD4+ cells. Combination of the plant lectins with DS-5000 led to a potent synergistic inhibition of HIV-1-induced cytopathogenicity in MT-4 cells and syncytium formation between HIV-infected HUT-78 cells and MOLT-4 cells. Our data suggest that alpha-(1-3)-D- and alpha-(1-6)-D-mannose-specific plant lectins interfere with an event in the HIV replicative cycle that is subsequent to the attachment of the virions to the cells (i.e., the fusion process).  相似文献   

2.
Two new phorbol esters, NPB-11 (12-O-methoxymethylphorbol-13-decanoate) and NPB-15 (12-O-benzyloxymethylphorbol-13-decanoate) were synthesized. The compounds exhibited potent anti-HIV-1 activity and low cytotoxicity in MT-4 cells by MTT assay even at a high concentration [50% cytotoxic concentrations (CC50) were 8.32 and 4.39 microg/ml, respectively]. Two inhibitors strongly suppressed HIV-1 (IIIB strain) replication in MT-4 cells with a 50% effective concentration (EC50) of 1.3 and 0.27 ng/ml, respectively. NPB-11 efficiently blocked replication of both X4 and R5 HIV-1 in PHA-activated peripheral blood mononuclear cells and MT-4 cells as revealed by p24 assay. The antiviral activity appeared to be mediated, at least partially, by the down-regulation of the expression of CD4 and the HIV-1 co-receptors, CXCR4 and CCR5. The compounds were also capable of selectively up-regulating HIV-1 expression in a variety of latently infected cell lines and inducing cell death in HIV-1 infected cells. The effect of NPBs on the induction of HIV-1 was specifically blocked by nontoxic doses of a protein kinase C blocker, staurosporine. NPB-11 blocked the spread of HIV-1 released from latently infected ACH-2 cells to MT-4 cells in a co-culture system. When combined with AZT, NPB-11 synergistically inhibited HIV-1 replication in MTT assay using MT-4 cells. These data suggest that these agents might be useful in reducing persistent viral reservoirs in patients and as adjuvant therapy in patients treated with HAART.  相似文献   

3.
4.
A series of 2',3'-dideoxy (D2) and 2',3'-didehydro-2',3'-dideoxy (D4) 5-fluorocytosine nucleosides modified with substituted benzoyl, heteroaromatic carbonyl, cycloalkylcarbonyl and alkanoyl at the N4-position were synthesized and evaluated for anti-human immunodeficiency virus type 1 (HIV-1) and anti-hepatitis B virus (HBV) activity in vitro. For most D2-nucleosides, N4-substitutions improved the anti-HIV-1 activity markedly without increasing the cytotoxicity. In the D4-nucleosides series, some of the substituents at the N4-position enhanced the anti-HIV-1 activity with a modest increase in the cytotoxicity. The most potent and selective N4-modified nucleoside for the D2-series was N4-p-iodobenzoyl-D2FC, which had a 46-fold increase in anti-HIV-1 potency in MT-2 cells compared to the parent nucleoside D-D2FC. In the D4-series, N4-p-bromobenzoyl-D4FC was 12-fold more potent in MT-2 cells compared to the parent nucleoside D-D4FC. All eight N4-p-halobenzoyl-substituted D2- and D4-nucleosides evaluated against HBV in HepAD38 cells demonstrated equal or greater potency than the two parental compounds, D-D2FC and D-D4FC. The N4-modification especially in the D2-nucleoside series containing the N4-nicotinoyl, o-nitrobenzoyl and n-butyryl showed a significant reduction in mitochondrial toxicity relative to the parent nucleoside analogue. Although the 5'-triphosphate of the parent compound (D-D4FC-TP) was formed from the N4-acyl-D4FC analogues in different cells, the levels of the 5'-triphosphate nucleotide did not correlate with the cell-derived 90% effective antiviral concentrations (EC90), suggesting that a direct interaction of the triphosphates of these N4-acyl nucleosides was involved in the antiviral activity.  相似文献   

5.
6.
The novel 6-substituted acyclouridine derivatives 1-[(2-hydroxyethoxy)methyl]-6-phenylthiothymine (HEPT), 1-[(2-hydroxyethoxy)methyl]-6-(3-methylphenylthio)thymine (HEPT-M), 6-cyclohexylthio-1-[(2-hydroxyethoxy) methyl]thymine (HEPT-H), and 1-[(2-hydroxyethoxy)methyl]-6-phenylthio-2- thiothymine (HEPT-S) have proved to be potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) replication in a variety of cell systems, including peripheral blood lymphocytes. They are not inhibitory to the replication of HIV-2. HEPT-S emerged as the most active congener, with a 50% inhibitory concentration of 1.6 microM for HIV-1 (human T-cell lymphotropic virus type IIIB) in MT-4 cells. We also examined the pharmacokinetics of the compounds following oral administration to rats. The pharmacokinetic profile varied considerably from one compound to another. The highest concentration in plasma (7.4 micrograms/ml, or 22.8 microM) was achieved by HEPT-S within 30 min after administration of an oral dose of 20 mg/kg of body weight. HEPT-S can be considered a promising candidate for the treatment of HIV-1 infections.  相似文献   

7.
8.
9.
10.
A novel 6-substituted acyclouridine derivative, 5-ethyl-1-ethoxymethyl-6-(phenylthio)uracil (E-EPU), has recently proved to be a highly potent and selective inhibitor of human immunodeficiency virus type 1 (HIV-1) in vitro. Combinations of 3'-azido-2',3'-dideoxythymidine (AZT) and E-EPU synergistically inhibit the replication of HIV-1 in MT-4 cells, whereas the cytotoxic effects of AZT and E-EPU on mock-infected MT-4 cells are not enhanced by the drug combination. Synergistic inhibition of HIV-1 replication has also been observed in peripheral blood lymphocytes. These results indicate that the combination of AZT and E-EPU should be further pursued in the treatment of AIDS.  相似文献   

11.
We established a human immunodeficiency virus type 1 (HIV-1) envelope (Env)-mediated membrane fusion assay and examined the small-molecule CCR5 antagonist TAK-779 and its derivatives for their inhibitory effects on HIV-1 Env-mediated membrane fusion and viral replication. The membrane fusion assay is based on HIV-1 long terminal repeat-directed beta-D-galactosidase reporter gene expression in CD4- and CCR5-expressed HeLa (MAGI-CCR5) cells after cocultivation with effector 293T cells expressing HIV-1 Env. Inhibition of HIV-1 replication was also determined in MAGI-CCR5 cells infected with the corresponding cell-free HIV-1. TAK-779 effectively suppressed R5 HIV-1 (strain JR-FL) Env-mediated membrane fusion as well as viral replication. Its 50% inhibitory concentrations (IC(50)s) for membrane fusion and viral replication were 0.87 +/- 0.11 and 1.4 +/- 0.1 nM, respectively. These values corresponded well to the IC(50) for (125)I-RANTES (regulated on activation, T cell expressed, and secreted) binding to CCR5 (1.4 nM). The inhibitory effects of 18 TAK-779 derivatives on membrane fusion differed from one compound to another. However, there was a close correlation among their inhibitory effects on membrane fusion, viral replication, and RANTES binding. The correlation coefficient between their IC(50)s for membrane fusion and viral replication was 0.881. Furthermore, since this assay depends on Env expressed in the effector cells, it is also applicable to the evaluation of CXCR4 antagonists. These results indicate that the HIV-1 Env-mediated membrane fusion assay is a useful tool for the evaluation of entry inhibitors.  相似文献   

12.
We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC(50)], approximately 0.003 micro M; IC(90), approximately 0.009 micro M) with minimal cytotoxicity (50% cytotoxic concentration for CD4(+) MT-2 cells, 74 micro M). UIC-94017 blocked the infectivity and replication of each of HIV-1(NL4-3) variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 micro M (IC(50)s, 0.003 to 0.029 micro M), although it was less active against HIV-1(NL4-3) variants selected for resistance to amprenavir (IC(50), 0.22 micro M). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.  相似文献   

13.
Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.  相似文献   

14.
15.
16.
CCR5 is the chemokine co-receptor for R5-tropic human immunodeficiency virus type 1 (HIV-1) isolates most often associated with primary infection. We have developed an HIV-1 self-inactivating vector, CAD-R5, containing a CCR5 single-chain antibody (intrabody) gene, which when expressed in T-cell lines and primary CD4+ T cells disrupts CCR5 cell surface expression and provides protection from R5-tropic isolate exposure. Furthermore, CAD-R5 intrabody expression in primary CD4+ T cells supports significant growth and enrichment over time during HIV-1-pulsed dendritic cell-T-cell interactions. These results indicate that CCR5 intrabody-expressing CD4+ T cells are refractory against this highly efficient primary route of infection. CD34+ cells transduced with the CAD-R5 vector gave rise to CD4+ and CD8+ thymocytes in non-obese diabetic (NOD)/ severely combined-immunodeficient (SCID)-human thymus/liver (hu thy/liv) mice, suggesting that CCR5 intrabody expression can be maintained throughout differentiation without obvious cellular effects. CD4+ T cells isolated from NOD/SCID-hu thy/liv mice were resistant to R5-tropic HIV-1 challenge demonstrating the maintenance of protection. Our findings demonstrate delivery of anti-HIV-1 activity through CCR5 intrabodies in primary CD4+ T cells and CD34+ cell-derived T-cell progeny. Thus, gene delivery strategies that provide a selective survival and growth advantage for T effector cells may provide a therapeutic benefit for HIV-1-infected individuals who have failed conventional therapies.  相似文献   

17.
We have investigated the influence of granulocyte-macrophage CSF (GM-CSF) on the replication of HIV-1 in cells of monocyte/macrophage (M/M) lineage, and its effect on the anti-HIV activity of several 2'3'-dideoxynucleoside congeners of thymidine in these cells in vitro. We found that replication of both HTLV-IIIBa-L (a monocytotropic strain of HIV-1) and HTLV-IIIB (a lymphocytotropic strain) is markedly enhanced in M/M, but not in lymphocytes exposed to GM-CSF in culture. Moreover, GM-CSF reduced the dose of HIV required to obtain productive infection in M/M. Even in the face of this increased infection, GM-CSF also enhanced the net anti-HIV activity of 3'-azido-2'3'-dideoxythymidine (AZT) and several related congeners: 2'3'-dideoxythymidine (ddT), 2'3'-dideoxy-2'3'-didehydrothymidine (D4T), and 3'-azido-2'3'-dideoxyuridine (AZddU). Inhibition of viral replication in GM-CSF-exposed M/M was achieved with concentrations of AZT and related drugs, which were 10-100 times lower than those inhibitory for HIV-1 in monocytes in the absence of GM-CSF. Other dideoxynucleosides not related to AZT showed unchanged or decreased anti-HIV activity in GM-CSF-exposed M/M. To investigate the possible biochemical basis for these effects, we evaluated the metabolism of several drugs in M/M exposed to GM-CSF. We observed in these cells markedly increased levels of both parent and mono-, di-, and triphosphate anabolites of AZT and D4T compared with M/M not exposed to GM-CSF. By contrast, only limited increases of endogenous competing 2'-deoxynucleoside-5'-triphosphate pools were observed after GM-CSF exposure. Thus, the ratio of AZT-5'-triphosphate/2'-deoxythymidine-5'-triphosphate and 2'3'-dideoxy-2'3'-didehydrothymidine-5'-triphosphate/2'-deoxythymi dine- 5'-triphosphate is several-fold higher in GM-CSF-exposed M/M, and this may account for the enhanced activity of such drugs in these cells. Taken together, these findings suggest that GM-CSF increases HIV-1 replication in M/M, while at the same time enhancing the anti-HIV activity of AZT and related congeners in these cells. These results may have implications in exploring new therapeutic strategies in patients with severe HIV infection.  相似文献   

18.
19.
20.
Studies have demonstrated that human immunodeficiency virus type 1 (HIV-1) infection of central nervous system (CNS)-based cells in vivo results in a series of devastating clinical conditions collectively termed acquired immune deficiency syndrome (AIDS) dementia complex (ADC). Gene therapy for these neurovirological disorders necessitates utilization of a vector system that can mediate in vivo delivery and long-term expression of an antiretroviral transgene in nondividing/postmitotic CNS cellular elements. The present studies focus on the transfer of an anti-HIV-1 gene to primary isolated CNS microvascular endothelial cells (MVECs) and neuronal-based cells, for its effects in protecting these cells from HIV-1 infection. By using an HIV-1-based vector system, it was possible to efficiently transduce and maintain expression of a marker transgene, beta-galactosidase (beta-Gal), in human CNS MVECs, human fetal astrocytes, plus immature and mature (differentiated) NT2 cells. Significant transduction of the marker gene, beta-Gal, in CNS-based cells prompted the utilization of this system with an anti-HIV-1 gene therapeutic construct, RevM10, a trans-dominant negative mutant Rev protein. Initially, it was not possible to generate any HIV-1 vector particles with the RevM10 gene in the transducing construct, because of inhibitory effects on the HIV-1 vector by this gene product. However, the vector could be partially rescued by adding an additional construct that supplied wild-type rev, in trans, during a multiple construct transfection in the packaging 293T cells. Thus, it was possible to significantly improve the titer of RevM10-expressing viral particles generated from these cells. Moreover, this RevM10 vector transduced the neuronal precursor cell line NT2, retinoic acid-differentiated human neurons (hNT) from the precursor cells, and primary isolated human brain MVECs with high efficiency. RevM10 generated from the HIV-1-based vector system potently inhibited replication of diverse HIV-1 strains in human CNS MVECs and neuronal cells. The data generated from these studies represent an initial approach for future development of anti-HIV-1 gene therapy in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号