首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ATP and its metabolite adenosine activate membrane receptors, termed P2 and P1, respectively. In the present study, the modulation of the mesolimbic neuronal circuit by ATPergic and adenosinergic mechanisms was investigated by microdialysis in the nucleus accumbens (NAc) and by telemetrically recorded EEG from both the NAc and the ventral tegmental area (VTA) of freely moving rats. The basal extracellular dopamine concentration was enhanced after accumbal perfusion with the ATP analog 2-methylthio ATP (2-MeSATP; 100 microM); by contrast, adenosine (100 microM) caused a reduction of extracellular dopamine. When given alone, the P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 20 microM) decreased the concentration of dopamine, whereas the P1 receptor antagonist 8-(p-sulfophenyl)theophylline (8-SPT; 100 microM) increased it. In the same animals, P2 receptor stimulation by 2-MeSATP caused neuronal activation, indicated by an elevation of the absolute power in the EEG of the NAc mainly by enhancement of the relative power in the alpha band (8-13 Hz) of the EEG spectrum. By contrast, adenosine led to a depression of the absolute power in the VTA accompanied by an elevation of the delta-band power (0.4-6 Hz) in the NAc corresponding to a slowing of neuronal activity. When given alone, PPADS reduced the absolute EEG power in the NAc accompanied by a decrease in the high-frequency power, but had no effects on the VTA. 8-SPT on its own enhanced the total power in both the NAc and the VTA, reflected by an enhancement in the slow and the high-frequency bands. Whereas the 8-SPT-evoked changes of EEG pattern as well as of dopamine concentration in the NAc were abolished by the co-application of PPADS, the 8-SPT-induced EEG changes in the VTA persisted under these conditions. In conclusion, the accumbal neuronal output, reflected by both dopamine release and neuronal electrical activity, is modulated in a functionally antagonistic manner by P2 and P1 receptor stimulation. It is suggested that an inhibitory GABAergic feedback projection to the VTA is stimulated by adenosine, either directly or indirectly via glutamate release.  相似文献   

4.
The basolateral amygdala (BLA), ventral tegmental area and nucleus accumbens (NAc) form a functionally connected neural circuit involved in the processing of opiate-related reward and memory. Dopamine (DA) projections from the ventral tegmental area to the BLA modulate associative plasticity mechanisms within the BLA. However, the role of DA receptor signaling in the BLA and its functional outputs to the NAc during opiate reward processing is not currently understood. Using an unbiased place conditioning procedure, we measured the rewarding effects of morphine following intra-BLA microinfusions of specific DA D1 or D2 receptor agonists in either opiate-naive or opiate-dependent/withdrawn rats. Activation of intra-BLA D1 receptors strongly potentiated the behaviorally rewarding effects of opiates, only in the opiate-naive state. However, once opiate dependence and withdrawal occurred, the intra-BLA DA-mediated potentiation of opiate reward salience switched to a D2 receptor-dependent substrate. We next performed single-unit, in-vivo extracellular neuronal recordings in the NAc shell (NA shell), to determine if intra-BLA D1/D2 receptor activation may modulate the NA shell neuronal response patterns to morphine. Consistent with our behavioral results, intra-BLA D1 or D2 receptor activation potentiated NAc 'shell' (NA shell) neuronal responses to sub-reward threshold opiate administration, following the same functional boundary between the opiate-naive and opiate-dependent/withdrawn states. Finally, blockade of N-methyl-d-aspartate transmission within the NA shell blocked intra-BLA DA D1 or D2 receptor-mediated opiate reward potentiation. Our findings demonstrate a novel and functional DA D1/D2 receptor-mediated opiate reward memory switch within the BLA→NA shell circuit that controls opiate reward magnitude as a function of opiate exposure state.  相似文献   

5.
Systemic treatment with morphine has been shown to facilitate intracranial electrical self-stimulation reward elicited from the ventral tegmental area (VTA) as was determined using a response rate-insensitive threshold measurement. In the present experiment graded doses of morphine were microinjected into the mesolimbic system to determine the site of this morphine action. Morphine injected into the nucleus accumbens did not affect the threshold and response rate of self-stimulation by electrodes in the VTA, while relatively high doses of morphine injected into the VTA produced a long-lasting decrease of the threshold of self-stimulation by electrodes in the nucleus accumbens. It is concluded that morphine can facilitate self-stimulation when injected into the VTA, and that a concerted action of morphine on multiple brain sites may be involved in the interaction of the drug with brain reward.  相似文献   

6.
Neuropeptide FF (NPFF), a morphine modulatory peptide, is localized within discrete autonomic regions including the brainstem nucleus tractus solitarius (NTS) and the parabrachial nucleus (PBN). We investigated the activation of NPFF neurons in the NTS of rats induced by cardiovascular challenge and centrally generated opiate withdrawal. For hypotensive stimulation, we used systemic infusions of sodium nitroprusside (NP) or hemorrhage (HEM), and hypertension was achieved by intravenous phenylephrine (PHENYL) or angiotensin II (AII). In rats that received continuous intracerebroventricular injections of morphine, intraperitoneal injections of naloxone precipitated behavioural signs of opioid withdrawal. Activated NTS neurons were identified by using a combined immunohistochemistry for Fos and NPFF, and neurons projecting to the PBN were determined with a retrograde tracer. HEM, administration of vasoactive drugs, and opiate withdrawal produced a very robust activation of NTS neurons. In NP and HEM groups, 25.6 ± 3.2% and 7.6 ± 1.3 % of NPFF neurons were activated, respectively. Lesser numbers of NPFF neurons were activated in the PHENYL (4.6 ± 1.6%) and AII (2.4 ± 0.8%) groups. However, following opiate withdrawal, virtually no Fos expression was observed in NPFF neurons. NPFF neurons activated during NP infusion constituted the largest number of cells projecting to the PBN. This study shows that NPFF neurons in NTS that project to the PBN respond selectively to NP as opposed to other cardiovascular challenges or opiate withdrawal. These data support an emerging and important role for NPFF in the context of central cardiovascular regulation. J. Comp. Neurol. 402:210–221, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Morphine withdrawal-induced morphological changes in the nucleus accumbens   总被引:2,自引:0,他引:2  
Morphine withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment (from 20 to 140 mg/kg of morphine twice a day over 14 days at escalating doses) rats were withdrawn from chronic morphine spontaneously and pharmacologically. In these two distinct conditions we studied the effects of withdrawal on the morphology of MSN of the core and shell of the nucleus accumbens (Nacc). MSN were stained with the Golgi-Cox procedure and analysed by a confocal laser-scanning microscope (CLSM). Our analysis shows that, shell and core MSN differed significantly for perikarya size and spine density, and the various morphine treatments did not affect the perikarya morphometry. Both spontaneous and naloxone-induced withdrawal produced a similar reduction in spine density in MS shell neurons, as compared with MS core neurons. This effect is selectively localized at the level of second order dendritic trunks where afferents converge. By contrast, spine density counts of accumbens MSN from rats chronically treated with morphine, did not reveal any change. Collectively, the results of the present study are twofold: (i) spontaneous and pharmacologically precipitated withdrawal, but not chronic morphine per se, affects spine density of target structures of a reduced mesolimbic dopamine transmission, and (ii) the reduction of spine density in second order dendritic trunks is selectively segregated in the MSN of the shell of the Nacc. In conclusion, morphine withdrawal dramatically alters spine density, selectively in second order dendritic trunks of Nacc shell MSN, thereby further impoverishing the already abated dopamine (DA) transmission. This is in line with recent views suggesting the hypodopaminergic state as a cardinal feature of opioid dependence.  相似文献   

8.
The central extended amygdala, a forebrain macrostructure, may represent a common substrate for acute drug reward and the dysphoric effects of drug withdrawal. To test its involvement during opiate withdrawal, we studied the distribution of c-Fos immunoreactive neurons, in relation to their neuropeptide content, in brain sections from morphine-dependent or naive rats, killed 90 min after naloxone or saline intraperitoneal injection. Naloxone treatment in naive rats induced a slight increase in c-Fos immunoreactivity in the central amygdaloid nucleus, the lateral bed nucleus of the stria terminalis and the interstitial nucleus of the posterior limb of the anterior commissure. In morphine-dependent rats, naloxone injection significantly increased the number of c-Fos-positive neurons in these structures as well as in the majority of the other central extended amygdala components. Double immunocytochemistry was used to determine the neurochemical nature of c-Fos-positive neurons in the central extended amygdala. Corticotropin-releasing factor- and methionine-enkephakin-immunoreactive neurons displayed c-Fos immunoreactivity in naive rats after naloxone injection, whereas only enkephalinergic neurons were found to be c-Fos positive in morphine-dependent rats after naloxone injection. The possible involvement of the corticotropin-releasing factor system during withdrawal is discussed. These results suggest that the whole central extended amygdala is activated during opiate withdrawal, with a lateral to medial decreasing gradient, and emphasize the role of peptidergic systems in this morphofunctional continuum.  相似文献   

9.
The dorsolateral striatum, and the core and shell of the nucleus accumbens are three major anatomical regions of the striatal complex. The shell is considered as a part of the extended amygdala, and is involved in the control of motivation and reward. The core and the striatum are considered central to sensory motor integration. In this study we compared the responses of these three regions to mild stress and drugs of abuse by measuring extracellular dopamine (DA) concentrations and Fos-like immunoreactivity (Fos-LI). The results are summarrized as follows. (i) In unchallenged conditions, extracellular DA concentrations were highest in the dorsolateral striatum and lowest in the core, whereas Fos-LI was highest in the shell and lowest in the dorsolateral striatum. (ii) After challenges that increase DA by depolarizing DAergic neurons (injection stress or 2 mg/kg morphine), the shell presented the largest increase in DA levels and Fos-LI. (iii) After the administration of a DA-uptake blocker (15 mg/kg cocaine), the percentage increase in DA was still largest in the shell. However, the absolute increase in DA and Fos-LI in the shell and the dorsolateral striatum were similar. (iv) After a full D1 agonist (SKF82958), Fos-LI was highest in the shell and lowest in the dorsolateral striatum. In conclusion, the nucleus accumbens shell seems to be the area of the striatal complex most functionally reactive to stress and drugs of abuse. However, the dorsolateral striatum and the core appear functionally distinct, as for most of the parameters studied these two regions differed.  相似文献   

10.
Bupropion, a dopamine reuptake inhibitor, is an effective therapy for smoking cessation, but the behavioral and neurochemical mechanisms mediating its antismoking properties are relatively unknown. To explore the hypothesis that bupropion ameliorates nicotine withdrawal partly by a dopamine-dependent mechanism, we investigated the effects of chronic bupropion on potassium-stimulated dopamine overflow in the nucleus accumbens shell in nicotine-withdrawing rats. We also assessed the effects of chronic bupropion on behavioral aspects of nicotine withdrawal measured by elevations in brain reward thresholds and somatic signs of withdrawal. Rats were treated with nicotine or saline for 7 days and then coadministration of bupropion or saline was initiated. After 14 days of coadministration of bupropion/saline and nicotine/saline, nicotine/saline administration was terminated, whereas bupropion/saline administration continued. These conditions mimic bupropion administration in human smokers. Cessation of nicotine administration in non-bupropion-treated rats elevated reward thresholds reflecting a reward deficit, increased somatic signs and diminished potassium-evoked dopamine overflow in the nucleus accumbens shell. Chronic bupropion lowered reward thresholds and increased potassium-evoked dopamine release regardless of previous nicotine exposure, possibly by inhibition of dopamine reuptake, and thus attenuated the anhedonic and neurochemical effects of nicotine withdrawal. Chronic bupropion blocked withdrawal-associated increased somatic signs. Finally, acute experimenter-administered nicotine enhanced brain reward function equally in all groups, indicating that bupropion does not alter the reward-facilitating effects of experimenter-administered nicotine. In conclusion, the bupropion-induced increase in extracellular dopamine in the nucleus accumbens shell may ameliorate the anhedonia associated with nicotine withdrawal, which in turn may facilitate smoking cessation.  相似文献   

11.
The contribution of the mesolimbic dopamine pathway to feeding behavior was investigated in rats in which feeding responses were elicited by electrical stimulation of the medial forebrain bundle at the level of the lateral hypothalamus. Injections of spiroperidol, a dopamine antagonist, into the nucleus accumbens ipsilateral to the stimulating electrode significantly attenuated the elicited feeding responses whereas injecting spiroperidol into the contralateral nucleus accumbens had no effect. The spontaneous discharge rates of neurons of the ventral tegmental area, identified by their electrophysiological characteristics as dopaminergic, were both increased and decreased in response to single pulse stimulation of sites in the medial forebrain bundle from which feeding responses had been elicited. These observations suggest that mesolimbic dopaminergic neurons may have a role in feeding behavior and indicate the need for chronic electrophysiological recording experiments to see whether or not the activity of these neurons is correlated with the initiation of elicited and spontaneous feeding responses.  相似文献   

12.
We have previously shown in non-deprived rats that feeding of an unfamiliar palatable food (Fonzies(R)) phasically stimulates in vivo dopamine (DA) transmission in the medial nucleus accumbens (NAc) and this effect undergoes habituation after a previous (24 h) Fonzies meal (Bassareo & Di Chiara 1997, J. Neurosci., 17, 851-861). The present study shows that an unfamiliar food (Kinder(R)) with a taste and composition (milk chocolate) different from that of Fonzies, also induces a release of DA in the NAc subjected to one-trial habituation. Habituation was taste specific as no cross-habituation was observed between Fonzies and Kinder. In undeprived rats, a 40-min exposure to an intrinsic appetitive stimulus (food smell arising from a Fonzies-filled plastic box) also prevented the increase in dialysate DA associated with Fonzies feeding, and this effect was partially reversed by food deprivation. Food deprivation also prevented habituation of Fonzies-induced increase of dialysate DA in the NAc. Predictive association of an empty plastic box to Fonzies feeding resulted in the acquisition of appetitive properties by the box and in facilitation (rather than inhibition) of the phasic responsiveness of DA transmission to Fonzies feeding. A 10-min pre-exposure to appetitive olfactory stimuli intrinsic to Fonzies still prevented, like a 40-min pre-exposure, the NAc DA response to Fonzies feeding; however, a 5-min pre-exposure to these appetitive stimuli did not prevent the DA response in the NAc. These results show that the phasic responsiveness of NAc DA transmission to an unfamiliar palatable food is under strong modulatory control by primary (consummatory) and secondary (appetitive) stimuli, and that the sign and extent of this control depends on the nature of the appetitive stimulus, delay of reward and motivational state (deprivation).  相似文献   

13.
The opponent-process theory posits that the aversive state of acute opiate withdrawal is a consequence of, and depends on, the previous rewarding state evoked by acute morphine reward. Although the brainstem tegmental pedunculopontine nucleus (TPP) is crucial for the rewarding component of morphine, the source of the later aversive component is not known. It is possible that (i) the second aversive process takes place within the TPP itself or (ii) morphine reward in the TPP activates an unconditioned opponent motivational process in another region of the brain. The effects of reversible inactivation of the TPP on the motivational properties of acute morphine and its spontaneous withdrawal effects in non-drug-dependent rats were examined using a place-conditioning paradigm. Reversible inactivation of the TPP with lidocaine or bupivacaine immediately before the morphine injection blocked the rewarding properties of morphine in non-dependent rats. Blocking the rewarding effects of morphine also blocked the opponent aversive effects of acute morphine withdrawal. In contrast, reversible inactivation of the TPP during the acute morphine withdrawal did not block this opponent aversive process. Our results confirm that the TPP is a critical neural substrate underlying the acute rewarding effects of morphine in non-dependent rats. Furthermore, the opponent aversive process of acute morphine withdrawal is induced by the acute rewarding effects of morphine. However, the TPP does not directly mediate the spontaneous withdrawal aversion (the opponent process), suggesting that a different system, triggered by the changes in the TPP after the primary drug response, produces the aversion itself.  相似文献   

14.
Anhedonia and lack of motivation are core symptoms of depression. In contrast, hyper-motivation and euphoria characterize intoxicated states. In order to explore the relationship between these two behavioral states we examined cocaine self-administration tasks in an animal model of depression [Flinders Sensitive Line (FSL) rats]. We found that FSL rats exhibit sub-sensitivity in their cocaine-seeking behavior, which was normalized following a chronic treatment with the antidepressant desipramine. However, when the cocaine dosage was increased, FSL rats demonstrated a similar cocaine-seeking behavior to that of controls. In light of dopamine's central role in modulating cocaine reinforcement, we examined dopaminergic neurotransmission in the nucleus accumbens, a brain region implicated in the rewarding and hedonic effects of substances of misuse. FSL rats exhibited low but dose-dependent increases in extracellular levels of dopamine in the nucleus accumbens after acute intravenous cocaine injection. Furthermore, by using the dopamine transporter blocker GBR-12909 we were able to demonstrate that the low extracellular dopamine levels, observed in FSL rats, were a consequence of low dopamine release in the nucleus accumbens, as opposed to the possibility of increased uptake. Treatment of FSL rats with the antidepressant desipramine raised cocaine- and GBR-12909-induced dopamine release to the level of controls. This treatment also resulted in increased cocaine-seeking behavior.  相似文献   

15.
The midbrain dopamine system has an important role in processing rewards and the stimuli associated with them, and is implicated in various psychiatric disorders. This system is tightly regulated by various G protein-coupled receptors (GPCRs). It is becoming increasingly clear that these receptors are not only activated by (endogenous) agonists but that they also exhibit agonist-independent intrinsic constitutive activity. In this review we highlight the evidence for the physiological role of such constitutive GPCR activity (in particular for cannabinoid 1, serotonin 2C and mu-opioid receptors) in the ventral tegmental area and in its output regions like the nucleus accumbens. We also address the behavioral relevance of constitutive GPCR signaling and discuss the repercussions of its abolition in dopamine-related psychiatric diseases.  相似文献   

16.
17.
Summary. Recently we have shown that the nicotinic receptor (nAChR) antagonist mecamylamine both when administered systemically and locally into the ventral tegmental area (VTA) to chronically nicotine-treated rats reduces dopamine (DA) output in the nucleus accumbens (NAC) and elicits behavioral withdrawal signs. However, the putative contributory role of nAChRs in the NAC in mediating these effects of systemic mecamylamine has not been clarified. Therefore, we here investigated the effect on extracellular levels of DA in the NAC of local intraaccumbal administration of mecamylamine to chronically nicotine-treated rats and its putative behavioral correlates. In these experiments local application of mecamylamine into the NAC, in a concentration that increased NAC DA levels in control rats, did not affect DA output or behavior in the nicotine-treated animals. These results provide further support for the contention that nAChRs in the VTA, but not in the NAC, are of major importance for the mesolimbic DA reduction and associated behavioral signs in nicotine withdrawal. Received December 10, 1999; accepted February 8, 2000  相似文献   

18.
Neuropeptide Y (NPY) was previously shown in our laboratory to attenuate behavioral signs of morphine withdrawal. To further characterize the anti-withdrawal effect of NPY, the present study attempted to identify specific brain regions where NPY inhibits neuronal activity during withdrawal. Morphine dependence was induced in male Wistar rats by two daily subcutaneous injections of morphine at increasing doses, and the withdrawal syndrome was precipitated acutely by intraperitoneal administration of naloxone. Rats were pre-treated with an intracerebroventricular (icv) injection of NPY (12 nmol) or vehicle 30 min before the naloxone challenge. Withdrawal behavior was quantified using a point scoring technique based on motor- and non-motor-related signs. Brain areas involved in the attenuation of morphine withdrawal were delineated by radioactive in situ hybridization for the immediate early gene c-fos, which is a marker for neuronal activity. The present study confirmed the inhibitory effect of NPY on withdrawal behavior. Inhibition of behavioral signs of naloxone-precipitated morphine withdrawal was accompanied by significantly reduced c-fos expression in the locus coeruleus, lateral septal nucleus, ventral part of the periaqueductal grey, cingulate and frontal cortices, and septohippocampal nucleus. Our data suggest that neo- and allo-cortical areas as well as specific brainstem nuclei are involved in the anti-withdrawal effects of NPY.  相似文献   

19.
Previously we showed that coadministration of dextromethorphan (DM) with morphine attenuates morphine-rewarding effect. Here we further investigated if DM is effective in reversing or treating drug-seeking effect when given after subchronic morphine treatment. The conditioned place preference (CPP) test was used to investigate the rewarding and drug-seeking effects of morphine. Rats were injected and conditioned with morphine for 6 days and then withdrawn from morphine for 4 days and treated with saline or DM during this period. Subchronic morphine induced a significant place preference for the drug-paired compartment. DM treatment during the morphine withdrawal period significantly reversed the preference from the drug-paired compartment to saline-paired compartment. Both nucleus accumbens (NAc) and VTA were proven to be the sites involved in the action of DM. Behavioral sensitization occurred in both morphine group and DM treatment group determined by the locomotor activity before and after subchronic morphine treatment. The dopamine (DA) turnover rate in the NAc, dorsal striatum (DS) and medial prefrontal cortex (mPFC) was increased after subchronic morphine treatment. DM treatment reversed the increase of DA turnover rate in the NAc but not in the DS or mPFC. These data suggest that DM might have potential in the treatment of morphine addiction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号