首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨骨髓限量调强放疗(BMS-IMRT)对宫颈癌患者急性骨髓抑制的影响。 方法:将在重庆医科大学附属第一医院接受同步放化疗的138例宫颈癌患者分为BMS-IMRT组(61例)和普通调强放疗(IMRT)组(77例)。BMS-IMRT组放疗计划设计时给予骨盆单独限量:骨盆V10≤90%,V20≤70%。IMRT组骨盆不给予单独限定剂量。比较两组患者危及器官放疗毒副反应差异。 结果:在剂量学参数方面,BMS-IMRT组骨盆V5~V50及平均剂量较IMRT组显著减少(P<0.05);而两组患者在危及器官剂量体积参数(直肠及膀胱V5~V50及平均剂量)、靶区均匀性和适形度上未见明显差异(P>0.05)。在放疗毒副反应的临床观察中,BMS-IMRT组相比IMRT组2级及以上急性骨髓抑制发生率明显下降,差异具有统计学意义(P=0.029)。而两组2级及以上急性直肠炎及膀胱炎发生率无差异(P=0.788,0.503)。 结论:相较于IMRT,宫颈癌BMS-IMRT技术可在不牺牲靶区及不增加膀胱直肠急性毒副反应的前提下,明显降低患者2级及以上急性骨髓抑制的发生率。  相似文献   

2.
目的:比较调强适形放疗(IMRT)、三维适形放疗(3DCRT)和常规放疗(CRT)在宫颈癌术后放疗中靶区和危及器官(OAR)剂量学差异,观察危及器官毒性。方法:94例宫颈癌术后患者分为3组,调强组31例制定IMRT计划并进行相应放疗、适形组35例制定3DCRT计划并进行相应放疗,常规组28例制定CRT计划并进行相应放疗。结果:3组放疗计划的适形指数间差异有显著性(P<0.001),其中以调强组计划适形度最佳,适形组次之,而常规组最差;在相同的处方剂量(46 Gy),3组计划的PTV最大受照剂量、平均受照剂量及最小受照剂量间比较无统计学差异(P>0.05)。在45Gy和40 Gy水平,调强组计划中直肠及膀胱的照射体积显著低于适形组和常规组计划(P<0.01)。调强组与适形组、常规组比较,急性和毒副反应明显较少,差异有显著性(P<0.01)。结论:宫颈癌术后调强放疗可以使各个靶区得到足够、均匀的剂量分布,周围危及器官得到较好的保护。  相似文献   

3.
目的:通过比较脑转移瘤三维适形放疗(3D-CRT)、调强放疗(IMRT)和简化调强放疗(sIMRT)技术靶区剂量分布均匀性、适形度,危及器官受照体积、剂量,以及实施治疗的机器跳数,对比三者放疗技术的剂量学差异,探讨sIMRT应用于脑转移瘤治疗的可行性。方法:针对10例脑转移瘤患者分别设计3种放疗计划:三维适形放疗、调强放疗和简化调强放疗。保证靶区和危及器官满足临床要求前提下,分别比较3种计划的靶区剂量分布、靶区均匀指数和适形指数、危及器官受照剂量、机器跳数(MU)等,探讨其剂量学差异。结果:3种照射技术均满足临床要求,靶区(PGTV)均匀指数三者没有差异。靶区(PTV)均匀指数sIMRT逊于IMRT,但与3D-CRT无差异。靶区(PGTV、PTV)适形指数sIMRT逊于IMRT而强于3D-CRT。危及器官的保护例如左、右晶体和脑干,sIMRT优于3D-CRT但与IMRT无区别,对左、右视神经和视交叉的保护,IMRT最好,sIMRT和3D-CRT差异不大。机器跳数(MU)以IMRT最多,sIMRT居中,3D-CRT最少,但3D-CRT二程计划增加照射次数,提示实际治疗时间以sIMRT最优。结论:sIMRT可减轻工作人员劳动强度,缩短治疗时间,节省资源,是一种性价比较高的放疗技术,适用于脑转移瘤放疗。  相似文献   

4.
宫颈癌术后盆腔三种放射治疗计划设计方法的剂量学研究   总被引:1,自引:0,他引:1  
目的:比较对骨髓进行单独限量的调强放疗(BMS-IMR)、三维适形放疗(3DCRT)、常规放疗(CRT)方法在宫颈癌靶体积剂量覆盖及危及器官(OAR)保护方面的差异,探讨宫颈癌患者术后盆腔外照射骨髓保护的合理方法。方法:对10例宫颈癌术后患者进行模拟CT增强扫描,在计划系统内勾画临床靶体积(CTV),CTV均匀外扩1.0cm生成计划靶体积(PTV),同时勾画小肠、直肠、膀胱、骨髓作为OAR。进而设计出BMS-IMR、3DCRT、CRT3种治疗计划,处方剂量为45Gy/1.8Gy/25次。所有计划都使95%靶区体积达到处方剂量要求。比较靶区及危及器官的剂量分布、剂量-体积直方图(DVH)中的多个指标。结果:BMS-IMRT计划的靶区剂量均匀性不如3DCRT和CRT,但其适形度明显优于后两者。与3DCRT相比,BMS-IMRT放疗计划降低了骨髓、小肠、膀胱、直肠的受照剂量。与CRT相比,BMS-IMRT降低了30Gy~40Gy范围内骨盆骨髓(PBM)的受照体积,但却增加了5Gy~20Gy范围内PBM的受照体积;另外,BMS-IMRT还降低了小肠、膀胱、直肠在几乎所有剂量范围内的受照体积。结论:与3DCRT相比,BMS-IMRT降低了骨髓的受照体积;而与CRT相比,BMS-IMRT降低了骨髓在高剂量范围内的受照体积。因此,对于宫颈癌术后患者,BMS-IMRT可降低发生急性骨髓抑制的几率,提高病人的生活质量,值得在临床工作中推广应用。  相似文献   

5.
目的:比较III期非小细胞肺癌三维适形放疗(Three Dimensional Conformal Radiotherapy,3D-CRT)和调强放疗计划(Intensity Modulated Radiotherapy,IMRT)在靶区和危及器官上的剂量差异,为临床医生选择合适的放射治疗技术提供可靠的治疗依据。方法:选择16例III期非小细胞肺癌患者,采用Pinnacle V9.2治疗计划系统分别为每例患者设计3DCRT和IMRT两组放疗计划,分析比较两组计划的靶区适形度指标(Conformity Index,CI)和均匀性指数(Homogeneity Index,HI)以及正常组织的剂量分布。结果:IMRT和3D-CRT的靶区CI分别为0.97±0.02和0.91±0.04;HI分别为0.16±0.06和0.20±0.14,且差异具有统计学意义(P0.05)。其余危及器官剂量参数,除肺组织V_5、V_(10)外,IMRT技术较3D-CRT技术均有不同程度的降低。结论:对于III期非小细胞肺癌的放射治疗,IMRT技术能够在提高靶区剂量的均匀性和适形度的同时,有效降低正常组织的受照剂量,从而降低患者放疗后并发症发生的可能性。  相似文献   

6.
目的:比较两种螺旋断层调强放疗(IMRT)计划设计方法(对骨髓进行单独限量的BMS-IMRT,未对骨髓进行单独限量的IMRT)的异同点,探讨宫颈癌患者术后盆腔外照射血液毒性发生几率降低的可行性。方法:对9例宫颈癌术后患者进行模拟CT增强扫描,在ADAC Pinnacle3 V9.2计划系统内勾画临床靶体积(CTV),CTV均匀外扩1.0 cm生成计划靶体积(PTV),同时勾画小肠、直肠、膀胱、骨髓。进而设计出BMS-IMRT和IMRT的2种治疗计划,计划靶区处方剂量为45Gy,单次1.8 Gy,计划要求95%计划靶区体积被处方剂量线包绕。采用Hi Art4.1.1治疗计划系统提供的卷积/迭加算法对两种放疗技术的治疗计划进行剂量计算,比较靶区和危及器官剂量分布、剂量体积直方图参数。结果:两种计划的靶区剂量均匀性和适形性差异无显著性意义,但BMS-IMRT的适形度略优于IMRT计划,骨髓限量计划中的V5、V10、V20等剂量学参数分别较骨髓未限量计划中的相应参数降低0.06%、17.33%、22.19%、13.85%、16.46%,除小肠V30、膀胱V30、V40外,其它危及器官的受量差别不大。结论:对于宫颈癌术后接受TOMO放疗患者,设计治疗计划时对骨髓采取限量措施有可能降低血液毒性发生概率和严重程度,从而提高患者生存质量。  相似文献   

7.
目的:探讨早期乳腺癌保乳术后适形放疗(3D-CRT)与调强放射治疗(IMRT)剂量学分布的优劣及对皮肤损害的影响。方法:70例接受早期乳腺癌保乳术治疗的乳腺癌患者依据术后放疗方式分为3D-CRT组(n=35)和IMRT组(n=35),处方剂量为50 Gy/25次。观察并计算两组靶区剂量学指标,包括均匀性指数(HI)、适形度指数(CI),并考察靶区D_(95)(95%靶区体积所受剂量)、V_(105)(接受105%处方剂量靶区照射体积,其他类推)、V_(110),评估两组危及器官受量,包括心脏、患侧肺、健侧肺及皮肤V_(30)、V_(40)、V_(45)、V_(50)、D_(mean)等,并判定两组放疗后10个月内皮肤损害情况。结果:两组靶区剂量学指标、危及器官受量比较有统计学意义(P0.05),其中IMRT组HI、CI值均更接近1,D_(95)显著高于3D-CRT组,V_(105)、V_(110)显著低于3D-CRT组(P0.05);与3D-CRT组相比,IMRT组心脏、患侧肺、健侧肺照射剂量、平均剂量均明显较低(P0.05);IMRT组皮肤V_(30)、V_(40)、V_(45)、V_(50)、D_(mean)均明显低于3D-CRT组(P0.05)。两组放射性皮肤损伤分布比较有统计学意义(P0.05),IMRT组放射性皮肤损伤0~1级分布例数明显较多,2~4级分布例数明显较少。结论:与3D-CRT比较,早期乳腺癌保乳术后IMRT有较好的靶区覆盖率,靶区的适形度、剂量均匀性更突出,且对皮肤损害程度更轻。  相似文献   

8.
目的:比较基于直接机器参数优化模式(DMPO)下3种不同子野数的宫颈癌调强放疗计划的靶区和危及器官的剂量学差异。方法:选取12例I~Ⅲ期宫颈鳞癌患者,采用Pinnacle~(3)9.10放疗计划系统制定7野调强放疗计划,分别设置子野数目为49、35和21个,比较3种不同计划的剂量体积直方图,分析靶区和危及器官受照剂量的差异。结果:较其他两组,49子野组的靶区平均剂量(D_(mean))、D95较高,靶区最大剂量降低,差异均有统计学意义(P0.05);49子野组的膀胱V_(50),直肠V_(50)、D_(mean)和股骨头V_(30)、D_(mean)均降低,差异有统计学意义(P0.05)。各组靶区均匀指数和适形指数比较均无统计学意义(P0.05)。结论:在DMPO下,子野数的适当增多能较好地提高靶区剂量,降低危及器官的受照剂量。  相似文献   

9.
目的:通过比较常规放疗(Con-RT)、三维适形放疗(3DCRT)和调强放疗(IMRT)3种放疗计划模式的剂量分布,探讨直肠癌术前放疗的理想计划模式。方法:选取10例直肠癌术前患者,采用三维治疗计划系统对每例患者分别行3野Con-RT、3野三维适形(3DCRT3)、5野三维适形(3DCRT5)、5野调强放疗(IMRT5)和7野调强放疗(IMRT7)计划设计,利用剂量体积直方图(DVH)评价5种照射技术下靶区和危及器官的体积剂量分布,处方剂量为50 Gy。结果:Con-RT计划中肿瘤靶区(GTV)的最小剂量为(4991.5±69.1)c Gy,靶区内有冷点。计划靶区(PTV)的适形指数(CI):IMRT7IMRT53DCRTCon-RT;PTV的剂量不均匀指数(HI):Con-RT3DCRT33DCRT5IMRT5IMRT7。相比3DCRT计划,IMRT计划减少了小肠、膀胱、股骨头的V40、V50体积(P0.05)。结论:直肠癌术前放疗中Con-RT计划的靶区剂量分布不均,适形度差;相比于3DCRT计划,IMRT计划剂量分布均匀,适形度优,危及器官高剂量照射体积明显减少;在剂量分布和适形度方面,IMRT7计划优于IMRT5计划。  相似文献   

10.
目的:比较精原细胞瘤经腹股沟高位睾丸切除术后基于Monte Carlo算法的两种放疗技术的剂量学差异,探讨两种技术在改善靶区剂量和保护危及器官等方面的优势。方法:针对24例精原细胞瘤术后放疗患者定位图像分别设计三维适形放疗(3DCRT)计划和调强放疗(IMRT)计划,满足90% PTV处方剂量32.4 Gy/1.8 Gy/18 f。对比并分析两组计划的靶区和危及器官剂量学参数、机器跳数等差异。结果:IMRT计划的靶区适形度和均匀性均优于3DCRT计划,IMRT计划的D2、V105%、V_(110%)均远小于3DCRT计划(P0.05),而3DCRT计划中的D_(98)低于IMRT计划(P0.05)。对于危及器官,IMRT计划中脊髓D_(mean)、D_2、V_(20),左肾D_(98)、V_(10)、V_(20),右肾D_(mean)、D_2, D_(98)、V_(10)、V_(20), V_(30),小肠D_(mean)、D_2,膀胱D_(98)、V10,股骨头D_(mean)、D_(98)、V_(10)、V_(20), V_(30)均低于3DCRT计划(P0.05)。3DCRT计划的肝脏D_(mean)、D_2、V_(20), V_(30)以及小肠V_(20)均低于IMRT计划(P0.05)。3DCRT与IMRT计划的机器跳数均值分别为256、947 MU。结论:对于精原细胞瘤术后辅助放疗,3DCRT和IMRT均能满足临床需要,但IMRT技术在靶区剂量分布和对脊髓、肾、膀胱、股骨头的保护方面比3DCRT有更多的优势,而3DCRT技术在对肝脏的保护方面更有优势,且降低了机器损耗减轻了放疗技术员工作负担。  相似文献   

11.
12.
13.
14.
15.
Intracoronary radiotherapy for restenosis   总被引:1,自引:0,他引:1  
  相似文献   

16.
In order to prevent accidents in radiotherapy, it is important to learn from accidents that have occurred previously. Lessons learned from a number of accidents are summarised and underlying patterns are looked for in this paper. Accidents can be prevented by applying several safety layers of preventive actions. Categories of these preventive actions are discussed together with specific actions belonging to each category of safety layer.  相似文献   

17.
18.
Image-guided radiotherapy (IGRT) has helped to dramatically reduce safety margins compensating for positioning uncertainties in radiotherapy. A remaining issue posing problems for photon radiotherapy (RT), but even more so for particle RT, is target motion during treatment delivery. This review outlines the various strategies currently being developed or already in clinical use to compensate for organ motion, predominantly breathing-induced motion of liver and lung targets. Several motion compensation strategies have recently been introduced clinically. Among these are optimized margins encompassing the individual range of target motion, treatment under breath hold, gated treatments, and tumor tracking with a dedicated treatment device. A variety of surveillance strategies for gating and tracking, such as indirect tracking with external fiducial markers and surface scanning devices, direct tracking with implanted electromagnetic markers, fiducial markers, and fluoroscopy, and ultrasound-based tracking are already in clinical use or are under development. Tracked treatment with linear accelerators based on tumor-synchronous MLC- or treatment-table adaptation are moving toward clinical use. A multitude of strategies to reduce the impact of intrafractional target motion in RT have been developed and are increasingly being used clinically. The clinical introduction of advanced strategies currently under development is imminent. After IGRT minimized treatment margins for static tumors, the implementation of motion compensation strategies will achieve the same for targets being subject to intrafractional breathing-induced motion.  相似文献   

19.
Recent advances in radiotherapy   总被引:1,自引:0,他引:1  
Radiation therapy has come a long way from treatment planning based on orthogonal radiographs with large margins around tumours. Advances in imaging and radiation planning software have led to three-dimensional conformal radiotherapy and, further, to intensity modulated radiotherapy (IMRT). IMRT permits sparing of normal tissues and hence dose-escalation to tumours. IMRT is the current standard in treatment of head and prostate cancer and is being investigated in other tumour sites. Exquisitely sculpted dose distributions (increased geographical miss) with IMRT, plus tumour motion and anatomical changes during radiotherapy make image guided radiotherapy an essential part of modern radiation delivery. Various hardware and software tools are under investigation for optimal IGRT.  相似文献   

20.
Anatomical imaging for radiotherapy   总被引:1,自引:0,他引:1  
The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of scans is taken on different days. Both allow planning to account for variability intrinsic to the patient. Treatment verification has been carried out using a variety of technologies including: MV portal imaging, kV portal/fluoroscopy, MVCT, conebeam kVCT, ultrasound and optical surface imaging. The various methods have their pros and cons. The four x-ray methods involve an extra radiation dose to normal tissue. The portal methods may not generally be used to visualize soft tissue, consequently they are often used in conjunction with implanted fiducial markers. The two CT-based methods allow measurement of inter-fraction variation only. Ultrasound allows soft-tissue measurement with zero dose but requires skilled interpretation, and there is evidence of systematic differences between ultrasound and other data sources, perhaps due to the effects of the probe pressure. Optical imaging also involves zero dose but requires good correlation between the target and the external measurement and thus is often used in conjunction with an x-ray method. The use of anatomical imaging in radiotherapy allows treatment uncertainties to be determined. These include errors between the mean position at treatment and that at planning (the systematic error) and the day-to-day variation in treatment set-up (the random error). Positional variations may also be categorized in terms of inter- and intra-fraction errors. Various empirical treatment margin formulae and intervention approaches exist to determine the optimum strategies for treatment in the presence of these known errors. Other methods exist to try to minimize error margins drastically including the currently available breath-hold techniques and the tracking methods which are largely in development. This paper will review anatomical imaging techniques in radiotherapy and how they are used to boost the therapeutic benefit of the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号