首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we showed that alternative pathway (AP) amplification was responsible for more than 80% of specific classical pathway-induced terminal pathway activation under physiological conditions. The present study aimed to design a system for specific lectin pathway (LP) activation applicable at low serum dilutions with a fully functional AP. Comparison between activation of normal human serum (NHS), a mannose-binding lectin (MBL) homozygous D/D-deficient serum, and sera deficient in C1q and C2, all diluted 1 : 2, was essential to document optimal conditions for LP specificity. Mannan on the solid phase of enzyme-linked immunosorbent assay (ELISA) plates was used for activation, showing 0.5 microg mannan/well to give optimal conditions because at this concentration a good signal was preserved for C4 and TCC deposition in NHS, whereas the C3 deposition observed in C2-deficient serum at higher mannan concentrations reached nadir at 0.5 microg/well, indicating a lack of direct AP activation under these conditions. Pooled NHS and C1q-deficient serum gave the same degree of C4 and terminal complement complex (TCC) deposition, whereas deposition of these products was not obtained with MBL-deficient serum. Reconstitution with purified MBL, however, restored the depositions. A blocking anti-MBL monoclonal antibody (mAb) completely abolished the complement deposition, in contrast to a non-inhibiting anti-MBL mAb. Activation of C2-deficient serum induced C4 deposition similar to NHS, but negligible deposition of C3 and TCC, confirming the lack of direct activation of AP. Thus, this assay is unique in being LP-specific at low serum dilution and thus particularly suitable to study LP activation mechanisms and the role of AP amplification under physiological conditions.  相似文献   

2.
The complement system plays an important role in mediating tissue injury after oxidative stress. The role of mannose-binding lectin (MBL) and the lectin complement pathway (LCP) in mediating complement activation after endothelial oxidative stress was investigated. iC3b deposition on hypoxic (24 hours; 1% O(2))/reoxygenated (3 hours; 21% O(2)) human endothelial cells was attenuated by N-acetyl-D-glucosamine or D-mannose, but not L-mannose, in a dose-dependent manner. Endothelial iC3b deposition after oxidative stress was also attenuated in MBL-deficient serum. Novel, functionally inhibitory, anti-human MBL monoclonal antibodies attenuated MBL-dependent C3 deposition on mannan-coated plates in a dose-dependent manner. Treatment of human serum with anti-MBL monoclonal antibodies inhibited MBL and C3 deposition after endothelial oxidative stress. Consistent with our in vitro findings, C3 and MBL immunostaining throughout the ischemic area at risk increased during rat myocardial reperfusion in vivo. These data suggest that the LCP mediates complement activation after tissue oxidative stress. Inhibition of MBL may represent a novel therapeutic strategy for ischemia/reperfusion injury and other complement-mediated disease states.  相似文献   

3.
Recent evidence has implicated a role for the MBL-dependent lectin pathway in gastrointestinal and myocardial ischemia/reperfusion (I/R)-induced injury. However, previous studies have implicated IgM and the classical pathway as initiators of complement activation following I/R. Thus, we investigated the potential interaction between MBL and IgM leading to complement activation. Using surface plasmon resonance, we demonstrate that MBL does bind human IgM. Subsequently, functional complement activation was demonstrated in vitro following sensitization of human RBCs with mouse anti-human CD59 IgM and more lysis was observed with MBL sufficient sera compared to MBL deficient (KO) sera. Similarly, treatment of human endothelial cells with mouse anti-human CD59 IgM, MBL and MASP-2 activated and deposited C4. These data suggest that the presence of both IgM and MBL can activate the lectin pathway in vitro. Serum ALT levels increased significantly in sIgM/MBL-A/C KO mice reconstituted with WT plasma compared to sIgM/MBL-A/C KO mice reconstituted with MBL-A/C KO plasma following gastrointestinal (G) I/R. Similarly, intestinal C3 deposition was greater in sIgM/MBL-A/C KO mice reconstituted with WT plasma compared to sIgM/MBL-A/C KO mice treated with MBL-A/C KO plasma. These data indicate for the first time that both IgM and MBL-A/C are required for GI/R-induced complement activation and subsequent injury.  相似文献   

4.
Circulating mannan (or mannose)-binding lectin (MBL) is genetically determined. Low MBL concentrations are associated with certain point mutations in the human MBL2 gene. Here we report the full MBL2 genotypes of 1800 Polish neonates and relate individual genotypes to serum MBL and MBL-dependent activity of the lectin pathway of complement activation. The seven acknowledged common haplotypes were found, plus the uncommon LYPD haplotype, combining to form 33 genotypes in this population. As expected, a strong correlation existed between genotypes and serum MBL or lectin pathway activity, and the latter two entities correlated strongly with each other. However, serum MBL values varied up to greater than 90-fold within genotypes. Unexpectedly, higher lectin pathway activity was found in association with the P allele relative to the Q allele. These data from a large cohort of neonates, representing an ethnically homogenous population, suggest that the current knowledge of the genetics of MBL2 is inadequate to predict serum MBL concentration and MBL-dependent lectin pathway activity in individual subjects.  相似文献   

5.
Deficiency of mannose-binding lectin (MBL), a recognition molecule of the lectin pathway of complement, is associated with increased susceptibility to infections. The high frequency of MBL deficiency suggests that defective MBL-mediated innate immunity can be compensated by alternative defense strategies. To examine this hypothesis, complement activation by MBL-binding ligands was studied. The results show that the prototypic MBL ligand mannan can induce complement activation via both the lectin pathway and the classical pathway. Furthermore, antibody binding to mannan restored complement activation in MBL-deficient serum in a C1q-dependent manner. Cooperation between the classical pathway and the lectin pathway was also observed for complement activation by protein 60 from Listeria monocytogenes. MBL pathway analysis at the levels of C4 and C5b-9 in the presence of classical pathway inhibition revealed a large variation of MBL pathway activity, depending on mbl2 gene polymorphisms. MBL pathway dysfunction in variant allele carriers is associated with reduced MBL ligand binding and a relative increase of low-molecular-mass MBL. These findings indicate that antibody-mediated classical pathway activation can compensate for impaired target opsonization via the MBL pathway in MBL-deficient individuals, and imply that MBL deficiency may become clinically relevant in absence of a concomitant adaptive immune response.  相似文献   

6.

Background/aims

Lupus nephritis (LN) is one of the most serious manifestations of SLE occurring in 66–90% of these patients. The complement system is part of the innate immunity and modulator of inflammation and the adaptative immune response. Mannan-binding lectin (MBL) and Ficolin-2 (FCN-2) are important members of the lectin pathway of complement activation. Despite the significant participation of complement in the pathogenesis of the LN, there are few reports demonstrating “in situ” deposition of complement components in renal biopsy specimens in this disorder. The present study investigated the deposition of complement components in kidney specimens of LN patients.

Methods

Renal biopsies of 11 patients with SLE and LN were evaluated for immunofluorescence staining for IgG, IgA, IgM, C3, and C1q. Additionally, MBL, FCN-2 and C5b-9 were researched using monoclonal antibodies.

Results

All the biopsies were positive for IgG, C3, and C1q, eight were positive IgM and five had IgA deposition in glomerular tissue. The terminal complex of complement C5b9 was positive in all cases, MBL in nine (82%) cases; seven (63.6%) of them presenting concomitantly FCN-2 deposition. Patients presenting MBL deposition had higher mean of urinary proteins (9.0 g/day) than patients with negative MBL deposition (mean of 2.3 g/day).

Conclusions

In this study, we demonstrated in situ the participation of complement in the renal injury, including MBL and FCN-2 of the lectin pathway; also the strong role of C5b-9 in the pathogenesis of LN.  相似文献   

7.
The possibility of simultaneous measurement of the classical pathway (CP), mannan-binding lectin (MBL)--lectin pathway (LP) and alternative pathway (AP) of complement activation by the recently developed Wielisa method allowed us to investigate the in vivo significance of the C1-inhibitor (C1INH) in three complement activation pathways. Functional activity of the CP, LP and AP were measured in the sera of 68 adult patients with hereditary angioedema (HAE) and 64 healthy controls. In addition, the level of C1q, MBL, MBL-associated serine protease-2 (MASP-2), C4-, C3- and C1INH was measured by standard laboratory methods. MBL-2 genotypes were determined by polymerase chain reaction. Besides the complement alterations (low CP and C1INH activity, low C4-, C1INH concentrations), which characterize HAE, the level of MASP-2 was also lower (P = 0.0001) in patients compared with controls. Depressed LP activity was found in patients compared with controls (P = 0.0008) in homozygous carriers of the normal MBL genotype (A/A), but not in carriers of variant genotypes (A/O, O/O). Activity of CP correlated with LP in patients (Spearman's r = 0.64; P < 0.0001), but no significant correlation was found in the control group and no correlation with AP was observed. In contrast, the activity of CP and AP correlated (Spearman's r = 0.47; P < 0.0001) in healthy controls, but there was no significant correlation in the HAE patients. We conclude that the activation of LP might also occur in subjects with C1INH deficiency, which is reflected by the low MASP-2 and C4 levels.  相似文献   

8.
An assay for the mannan-binding lectin pathway of complement activation.   总被引:12,自引:0,他引:12  
The mannan-binding lectin (MBL) pathway of complement activation has been established as the third pathway of complement activation. MBL is a carbohydrate-binding serum protein, which circulates in complex with serine proteases known as mannan-binding lectin associated serine proteases (MASPs). When bound to microorganisms, the MBL complex activates the complement components C4 and C2, thereby generating the C3 convertase and leading to opsonisation by the deposition of C4b and C3b fragments. This C4/C2 cleaving activity is shared with the C1 complex of the classical pathway of complement activation. Therefore, in a generally applicable complement activation assay specific for the MBL pathway, the activity of the classical pathway must be inhibited. This can be accomplished by exploiting the finding that high ionic strength buffers inhibit the binding of C1q to immune complexes and disrupt the C1 complex, whereas the carbohydrate-binding activity of MBL and the integrity of the MBL complex is maintained under hypertonic conditions. In the assay described here, the specific C4b-depositing capacity of the MBL pathway was determined by incubating serum diluted in buffer containing 1 M NaCl in mannan-coated microtiter wells before the addition of purified C4. The interassay coefficient of variation in the ELISA version was 7.3%. As expected no activity was found in MBL-deficient serum. When 100 normal serum samples were analysed we found that the MBL level correlated with the amount of C4b deposited on the mannan-coated surface. However, we also found a threefold variation in C4b-depositing capacity between individuals with similar MBL concentrations. The assay permits for the determination of MBL complex activity in serum and plasma samples and may thus be used to evaluate the clinical implications of complement activation via this pathway.  相似文献   

9.
Human genetic studies have demonstrated that polymorphisms in different complement proteins can increase the risk for developing AMD. There are three pathways of complement activation, classical (CP), alternative (AP), and lectin (LP), which all activate a final common pathway. Proteins encoded by the AMD risk genes participate in the AP (CFB), CP/LP (C2), or in the AP and final common pathway (C3). Here we tested which pathway is essential in mouse laser-induced CNV. CNV was analyzed using single complement pathway knockouts (i.e., eliminating one complement pathway at a time), followed by a double knockout in which only the AP is present, and the CP and LP are disabled, using molecular, histological and electrophysiological outcomes. First, single-gene knockouts were analyzed and compared to wild type mice; C1q(-/-) (no CP), MBL(-/-) (no LP), and CFB(-/-) (no AP). Six days after the laser-induced lesion, mice without a functional AP had reduced CNV progression (P<0.001) and preserved ERG amplitudes, whereas those without a functional CP or LP were indistinguishable from the wild type controls (P>0.3). Second, AP-only mice (C1q(-/-)MBL(-/-)) were as protected from developing CNV as the CFB(-/-) mice. The degree of pathology in each strain correlated with protein levels of the angiogenic and anti-angiogenic protein VEGF and PEDF, respectively, as well as levels of terminal pathway activation product C5a, and C9. The analysis of complement activation pathways in mouse laser-induced CNV allows for the following conclusions. Comparing the single pathway knockouts with those having only a functional AP showed: (1) that AP activation is necessary, but not alone sufficient for injury; and (2) that initial complement activation proceeds via both the LP and CP. Thus, these data indicate an important role for the AP in the generation of complement-dependent injury in the RPE and choroid via amplification of CP- and LP-initiated complement activation. Improving our understanding of the local regulation of this pathway in the eye is essential for developing improved treatment approaches for AMD.  相似文献   

10.
Enhancement of lectin pathway haemolysis by immunoglobulins.   总被引:3,自引:0,他引:3  
We recently reported that indicator sheep erythrocytes (E) coated with mannan and sensitized with mannan-binding lectin (MBL) (E-M-MBL) are lysed by human serum in the absence of calcium via the lectin pathway of complement activation by a process which requires alternative pathway amplification and is associated with increased binding of and control by complement regulatory proteins C4 bp and factor H. In the present study, we investigated the effect of immunoglobulin (Ig) on this haemolysis. Co-sensitization of indicator E with anti-E haemolysin led to threefold enhancement of lectin pathway haemolysis in the absence of calcium, associated with increased binding of C3 and C5. Lysis was enhanced approximately twofold when E-M-MBL were chemically or immunologically coated with IgM or IgA, and fourfold when coated with IgG, prior to lysis in human serum-Mg-ethyleneglycol tetraacetic acid. The presence of haemolysin did not reduce the binding or inhibitory activity of C4 bp, and the enhancing activity of haemolysin was retained in serum depleted of C4 bp. By contrast, binding of factor H was greatly reduced in the presence of haemolysin, which had no enhancing effect in serum depleted of factor H. These experiments demonstrate the ability of IgG, IgM and IgA to enhance lectin pathway cytolysis, and that this enhancement occurs by neutralization of the inhibitory activity of factor H. Immunoglobulin enhancement of lectin pathway cytolysis represents another interaction between the innate and adaptive systems of immunity.  相似文献   

11.
The lectin pathway (LP) of complement has a protective function against invading pathogens. Recent studies have also shown that the LP plays an important role in ischemia/reperfusion (I/R)‐injury. MBL‐associated serine protease (MASP)‐2 appears to be crucial in this process. The serpin C1‐inhibitor is the major inhibitor of MASP‐2. In addition, aprotinin, a Kunitz‐type inhibitor, was shown to inhibit MASP‐2 activity in vitro. In this study we investigated whether the Kunitz‐type inhibitor tissue factor pathway inhibitor (TFPI) is also able to inhibit MASP‐2. Ex vivo LP was induced and detected by C4‐deposition on mannan‐coated plates. The MASP‐2 activity was measured in a fluid‐phase chromogenic assay. rTFPI in the absence or presence of specific monoclonal antibodies was used to investigate which TFPI‐domains contribute to MASP‐2 inhibition. Here, we identify TFPI as a novel selective inhibitor of MASP‐2, without affecting MASP‐1 or the classical pathway proteases C1s and C1r. Kunitz‐2 domain of TFPI is required for the inhibition of MASP‐2. Considering the role of MASP‐2 in complement‐mediated I/R‐injury, the inhibition of this protease by TFPI could be an interesting therapeutic approach to limit the tissue damage in conditions such as cerebral stroke, myocardial infarction or solid organ transplantation.  相似文献   

12.
Oxidative stress increases endothelial mannose-binding lectin (MBL) binding and activates the lectin complement pathway (LCP). However, the molecular mechanism of MBL binding to the endothelium after oxidative stress is unknown. Intermediate filaments have been previously reported to activate the classical complement pathway in an antibody-independent manner. We investigated whether oxidative stress increases human umbilical vein endothelial cell (HUVEC) cytokeratin 1 (CK1) expression and activates the LCP via MBL binding to CK1. Reoxygenation (3 hours, 21% O(2)) of hypoxic HUVECs (24 hours, 1% O(2)) significantly increased CK1 mRNA (in situ hybridization) and membrane protein expression [enzyme-linked immunosorbent assay (ELISA)/confocal microscopy]. Incubating human serum (HS) with N-acetyl-D-glucosamine or anti-human MBL monoclonal antibody attenuated MBL and C3 deposition on purified CK1 (ELISA). CK1 and MBL were co-immunoprecipitated from hypoxic HUVECs reoxygenated in HS. Treatment with anti-human cytokeratin Fab fragments attenuated endothelial MBL and C3 deposition after oxidative stress (ELISA/confocal microscopy). We conclude that: 1) endothelial oxidative stress increases CK1 expression, MBL binding, and C3 deposition; 2) inhibition of MBL attenuates purified CK1-induced complement activation; and 3) anti-human cytokeratin Fab fragments attenuate endothelial MBL and C3 deposition after oxidative stress. These results suggest that MBL binding to endothelial cytokeratins may mediate LCP activation after oxidative stress.  相似文献   

13.
Mannose binding lectin (MBL) is a pattern recognition molecule that plays a pivotal role in innate immunity. This liver derived, circulating plasma protein binds organisms displaying high-density carbohydrate structures and flags them for destruction via opsonisation and initiation of the lectin pathway of the complement cascade. The present study reveals native, oligomeric forms of human MBL in plasma from healthy blood donors of differing genotypes and correlates the relative abundance of observed molecular weight species with mannan binding activity and C4 deposition in vitro. Wild type (A/A) individuals demonstrate predominately high molecular weight MBL that correlated with high mannan binding capacity and C4 deposition. A/C individuals demonstrated predominantly low molecular weight MBL with decreased mannan binding and C4 deposition activity. A/D individuals demonstrated both high molecular weight and low molecular weight MBL with reduced mannan binding and C4 deposition predominantly seen in combination with LX promoter. We identified A/B individuals as a unique group with large variation in MBL level, mannan binding activity and C4 deposition and propose a model for C4 deposition based on differential binding of MASP.  相似文献   

14.
The humoral response to invading pathogens is mediated by a repertoire of innate immune molecules and receptors able to recognize pathogen-associated molecular patterns. Mannose binding lectin (MBL) and ficolins are initiation molecules of the lectin complement pathway (LCP) that bridge innate and adaptive immunity. Activation of the MBL-dependent lectin pathway, to the level of C3 cleavage, requires functional MASP-2, C2, C4 and C3, all of which have been identified with genetic polymorphisms that can affect protein concentration and function. Current assays for MBL and MASP-2 lack the ability to assess activation of all components to the level of C3 cleavage in a single assay platform. We developed a novel, low volume, fluorochrome linked immunoassay (FLISA) that quantitatively assesses the functional status of MBL, MASP-2 and C3 convertase in a single well. The assay can be used with plasma or serum. Multiple freeze/thaw cycles of serum do not significantly alter the assay, making it ideal for high throughput of large sample databases with minimal volume use. The FLISA can be used potentially to identify specific human disease correlations between these components and clinical outcomes in already established databases.  相似文献   

15.
The aim of the present study was to elucidate the correlation between complement pathways and clinicopathological findings in post-streptococcal acute glomerulonephritis (PSAGN). Immunohistological staining was performed on renal specimens obtained from 18 patients with PSAGN and 20 controls, using antibodies against IgG, IgA, IgM, C1q, C3c, C4, fibrinogen, factor B, C4-binding protein (C4-bp), C5b-9, CD59, mannose-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1). Controls showed no deposition of any antibody. In seven patients, glomerular deposits of C3c, C4, factor B, C4-bp, C5b-9, CD59, MBL and MASP-1 were found. In the remaining 11 patients, glomerular deposits of neither C4 nor MBL/MASP-1 were found, and glomerular deposits of C3c, factor B, C5b-9 and CD59 were evident. C4-bp was detected in seven of these 11 patients. Glomerular deposits of fibrinogen were detected in five of seven patients with MBL/MASP-1 deposits and in only two of 11 patients without MBL/MASP-1 deposits. Hematuria was prolonged in three of seven patients with MBL/MASP-1 deposits through follow up, whereas urinalysis was normal in all patients without MBL/MASP-1 deposits. However, the histological indicators were not different between the two groups. To the authors' knowledge this is the first report to show that complement activation through both the alternative and lectin pathways is evident in some patients with PSAGN. Complement activation is promoted in situ in the glomerulus.  相似文献   

16.
Degn SE  Thiel S  Jensenius JC 《Immunobiology》2007,212(4-5):301-311
The complement system is an important part of the innate immune system, mediating several major effector functions and modulating adaptive immune responses. Three complement activation pathways exist: the classical pathway (CP), the alternative pathway (AP), and the lectin pathway (LP). The LP is the most recently discovered, and least characterized. The CP and the LP are generally viewed as working through the generation of the C3 convertase, C4bC2b, and are here referred to as the "standard" pathways. In addition to the standard CP and LP, so-called bypass pathways have also been reported, allowing C3 activation in the absence of components otherwise believed critical. The classical bypass pathways are dependent on C1 and components of the AP. A recent study has shown the existence also of a lectin bypass pathway dependent on mannan-binding lectin (MBL) and AP components. The emerging picture of the complement system is more that of a small "scale-free" network where C3 acts as the main hub, than that of three linear pathways converging in a common terminal pathway.  相似文献   

17.
The activation of complement components in human serum has been studied using immunoglobulins adsorbed to microtiter plates. The sequential deposition of complement fragments was detected by a series of mono- and polyclonal antibodies in an indirect enzyme-linked immunosorbent assay (ELISA). Antibodies against C1q, C1s, C4b/d, C3b/d, factor B, C5b-9 membrane attack complex (MAC), the regulatory complement proteins C4 binding protein (C4bp) and properdin were reactive. Several lines of evidence suggest that complement activation was via the classical pathway: (1) complement activation was highly isotype-restricted with regard to the adsorbed Igs (human IgG1 and IgG3 as well as mouse IgM, IgG2a and IgG2b isotypes are strong activators in contrast to human IgG2, IgG4, IgA and mouse IgG1); (2) Ca2+ depletion, heat treatment (56 degrees C for 45 min), incubation with 0.5 M KSCN or heat-aggregated immunoglobulins (aggIgG) abrogated serum activity; (3) complement deficient sera (C1q def', C2 def', C6 def' human sera; C2 def', C4 def' guinea pig sera) showed impaired deposition of the complement components that follow the missing component in the cascade of activation. In a clinical study sera from patients with systemic lupus erythematosus (SLE) were investigated in order to measure the effect of hypocomplementemia due to complement consumption. The results obtained suggest that this new and simple assay is well suited for (1) the detection of various inherited complement deficiencies, (2) the semiquantitative evaluation of sera with decreased complement levels, (3) a more detailed study of complement components bound to a solid phase.  相似文献   

18.

Introduction  

There are numerous indications that either mannan-binding lectin (MBL) deficiency or its excessive activity are associated with adverse pregnancy outcomes. High MBL concentrations and corresponding MBL2 genotypes were shown to be associated with microvascular complications in type 1 diabetes. The aim of this study was to evaluate levels of MBL and MBL-dependent activity of the lectin pathway (LP) of complement in the course of pregnancy in diabetic mothers, based on genetic background.  相似文献   

19.
Serological and histological studies were carried out to explore the role of the lectin complement pathway in the pathogenesis of cryoglobulinemic glomerulonephritis. Sixteen patients with mixed cryoglobulinemia type II with glomerulonephritis (GN) were enrolled. All cases had hepatitis C virus (HCV) infection. The serum concentration of mannose-binding lectin (MBL) was significantly higher in the GN patients than in the normal controls according to ELISA (P < 0.01). IgG, IgM, C1q, C4d, HCV envelope antigen, MBL, and MBL-associated serine protease-1 (MASP-1) could be visualized in the cryoprecipitate of the 16 patients by Dot blot assay. Renal biopsy specimens obtained from 3 patients were examined by immunohistochemistry, and the glomeruli strongly stained for IgG, IgM, MBL, MASP-1, C4d, C3c, and C3d in a fringe-like pattern. The pattern of HCV constituent deposition was partially fringe-like. The complement profiles of the 16 cases were distinctive; briefly, the serum levels of C1q, C2, and C3 were reduced, although the levels of circulating regulatory proteins (C1-inhibitor, factor H, and factor I) were in the normal range. The serum C4 level was significantly reduced. These results indicate that immune complex formation involves molecules of the lectin pathway and leads to organ damage in cryoglobulinemic glomerulonephritis.  相似文献   

20.
The complement regulatory protein CD59 controls cell survival by the inhibition of C5b-9 formation on the cell membrane. Loss of CD59 increases the susceptibility of cells to complement-mediated damage and lysis. Deposition of IgM can induce complement activation with subsequent cell death. We have previously demonstrated the presence of CD59 on human NT2-N neurons. In this study, we investigated the functional role of CD59 for NT2-N cell survival after IgM-mediated complement activation. Complement activation was induced on NT2-N neurons with human serum following incubation with the IgM monoclonal antibody A2B5 reacting with a neuronal cell membrane epitope. Deposition of C1q and C5b-9 was detected on the cell membrane and sC5b-9 in the culture supernatant. Specific inhibition of complement was obtained by the C3 inhibitor compstatin, and by anti-C5/C5a MoAb. CD59 was blocked by the MoAb BRIC 229. Membrane damage of propidium iodide-stained NT2-N cells was confirmed by immunofluorescence microscopy and degeneration of neuronal processes was shown with crystal violet staining. A2B5, but not the irrelevant control IgM antibody, induced complement activation on NT2-N neurons after incubation with a human serum, as detected by the deposition of C1q. A marked membrane deposition of C5b-9 on NT2-N neurons with accompanying cell death and axonal degeneration was found after the blocking of CD59 with MoAb BRIC 229 but not with an isotype-matched control antibody. Compstatin and anti-C5 monoclonal antibodies which blocked C5 activation efficiently inhibited complement activation. In conclusion, CD59 is essential for protecting human NT2-N neurons against complement-mediated damage, which is known to occur in a number of clinical conditions including stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号