首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD), diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws.

Materials and Methods:

Sixty fresh human cadaveric vertebrae (D10–L2) were harvested. Dual-energy X-ray absorptiometry (DEXA) scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm) were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a) standard pedicle screw (no cortical perforation); b) screw with medial cortical perforation; and c) screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine.

Results:

Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra (P = 0.105), but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD (P = 0.901).

Conclusion:

The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.  相似文献   

2.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

3.
Objective:To identify the biomechanical feasibility of the thoracic extrapedicular approach to the placement of screws. Methods:Five fresh adult cadaveric thoracic spine from T1 to T8 were harvested. The screw was inserted either by pedicular approach or extrapedicular approach. The result was observed and the pullout strength by pedicular screw approach and extrapedicular screw approach via sagittal axis of the vertebrale was measured and compared statistically. Results:In thoracic pedicular approach, the pullout strength of pedicle screw was 1001.23 N±220 N (288.2-1561.7 N) and that of thoracic extrapedicular screw approach was 827.01 N±260 N when screw was inserted into the vertebrae through transverse process,and 954.25 N±254 N when screw was inserted into the vertebrae through the lateral cortex of the pedicle. Compared with pedicular group, the pullout strength in extrapedicular group was decreased by 4.7% inserted through transverse process (P>0.05) and by 17.3% inserted through the lateral cortex (P<0.05). The mean pullout strength by extrapedicular approach was decreased by 11.04% as compared with pedicular approach (P<0.05). Conclusions:It is feasible biomechanically to use extrapedicular screw technique to insert pedicular screws in the thoracic spine when it is hard to insert by pedicular approach.  相似文献   

4.
OBJECTIVE: The goal of this cadaver study was to compare the stability of pedicle screws after implantation in soft or cured kyphoplasty cement. METHODS: Pedicle screws were inserted in a total of 30 thoracolumbar vertebrae of 10 different human specimens: 10 screws were implanted in nonaugmented vertebrae (group 1), each 10 screws were placed in soft (group 2) and cured (group 3) cement. Pedicle screws were than evaluated for biomechanical axial pullout resistance. RESULTS: Mean axial pullout strength was 232 N (range 60-600 N) in group 1, 452 N (range 60-1125 N) in group 2 and 367 N (range 112-840 N) in group 3. The paired Student t-test demonstrated a significant difference between pullout strength of groups 1 and 2 (P = 0.0300). Between pullout strength of groups 1 and 3 and between groups 2 and 3 no significant difference was seen. CONCLUSION: We achieved a 1.9 times higher pullout strength with kyphoplasty augmentation of osteoporotic vertebrae compared with the pullout strength of nonaugmented vertebrae. Implantation of pedicle screws in cured cement is a sufficient method. With this method we found a 1.6 times higher pullout strength then in nonaugmented vertebrae.  相似文献   

5.
《The spine journal》2021,21(9):1580-1586
OBJECTIVESTo evaluate the differences in the pullout strength and displacement of pedicle screws in cadaveric thoracolumbar vertebrae with or without artificial demineralization.METHODSFive human lumbar and five thoracic vertebrae from one cadaver were divided into two hemivertebrae. The left-side specimens were included in the simulated osteopenic model group and the right-side bones in a control group. In the model group, we immersed each specimen in HCl (1 N) solution for 40 minutes. We measured bone mineral density (BMD) using dual-energy X-ray absorptiometry and quantitative computerized tomography. We inserted polyaxial pedicle screws into the 20 pedicles of the cadaveric lumbar and thoracic spine after measuring the BMD of the 2 hemivertebrae of each specimen. We measured the pullout strength and displacement of the screws before failure in each specimen using an Instron system.RESULTSThe average pullout strength of the simulated osteopenic model group was 76% that of the control group. In the control and model groups, the pullout strength was 1678.87±358.96 N and 1283.83±341.97 N, respectively, and the displacement was 2.07±0.34 mm and 2.65±0.50 mm, respectively (p<.05). We detected positive correlations between pullout strength and BMD in the control group and observed a negative correlation between displacement and BMD in the model group.CONCLUSIONSBy providing an anatomically symmetric counterpart, the human cadaveric model with or without demineralization can be used as a test bed for pullout tests of the spine. In the simulated osteopenic model group, pullout strength was significantly decreased compared with the untreated control group.CLINICAL SIGNIFICANCEDecreased bone mineral density may significantly reduce the pullout strength of a pedicle screw, even though the range is osteopenic rather than osoteoporotic.  相似文献   

6.
Objective: To evaluate the accuracy of computer-assisted pedicle screw installation and its clinical benefit as compared with conventional pedicle screw installation techniques.
Methods: Total 176 thoracic pedicle screws placed in 42 thoracic fracture patients were involved in the study randomly, 20 patients under conventional fluoroscopic control (84 screws) and 22 patients had screw insertion under three dimensional (3D) computer-assisted navigation (92 screws). The 2 groups were compared for accuracy of screw placement, time for screw insertion by postoperative thincut CT scans and statistical analysis by χ^2 test. The cortical perforations were then graded by 2-mm increments: Grade Ⅰ (good, no cortical perforation), Grade Ⅱ (screw outside the pedicle 〈2 mm), Grade Ⅲ (screw outside the pedicle 〉2 mm).
Results: In computer assisted group, 88 (95.65%) were Grade Ⅰ (good), 4 (4.35%) were Grade Ⅱ (〈2mm), no Grade Ⅲ (〉2 mm) violations. In conventional group, there were 14 cortical violations (16.67%), 70 (83.33%) were Grade Ⅰ (good), Ⅱ (13.1%) were Grade Ⅱ (〈2 mm), and 3 (3,57%) were Grade Ⅲ (〉2 mm) violations (P〈0.001). The number (19.57%) of upper thoracic pedicle screws ( T1-T4 ) inserted under 3D computer-assisted navigation was significantly higher than that (3.57%) by conventional fluoroscopic control (P〈0.001). Average screw insertion time in conventional group was (4.56 ±1.03) min and (2.54 ± 0.63) min in computer assisted group (P〈0.001). In the conventional group, one patient had pleura injury and one had a minor dura violation.
Conclusions: This study provides further evidence that 3D computer-assisted navigation placement ofpedicle screws can increase accuracy, reduce surgical time, and be performed safely and effectively at all levels of the thoracic spine, particularly upper thoracic spine.  相似文献   

7.
Improving the pullout strength of pedicle screws by screw coupling   总被引:5,自引:0,他引:5  
The objective of this study was to determine the effect of pedicle screw coupling on the pullout strength of pedicle screws in the osteoporotic spine. The vertebral bone mineral density (BMD) of 33 cadaveric lumbar vertebrae were measured by quantitative computed tomography. Pedicle screws were inserted into each pedicle. The pullout strength and displacement of the screws, without coupling and with single or double couplers, were studied, and the relationship between pullout strength and BMD was analyzed. The average pullout strength of the pedicle screws without screw coupling was 909.3 +/- 188.6 N (n = 9), that coupled with a single coupler was 1,409.0 +/- 469.1 N (n = 9), and that with double couplers was 1,494.0 +/- 691.6 N (n = 9). The pullout strength of the screws coupled with single or double couplers was significantly greater than that of screws without couplers (p < 0.01); however, there was no significant difference between the groups of single and double couplers. The improvement of pullout strength by screw coupling was significant in a test group with BMD of more than 90 mg/ml (p < 0.01), but was not in the group with BMD less than 90 mg/ml (p = 0.55). These results suggest that the coupling of pedicle screws improves pullout strength; however, the effect tends to be less significant in severely osteoporotic spines.  相似文献   

8.
AIM: Goal of the current study was to compare radiation dose and fluoroscopy time of fluoroscopic computer assisted pedicle screw implantation versus the conventional technique. METHOD: For each of 10 specimens two pedicle screws were placed using conventional technique (group 1) and two screws were inserted with fluoroscopic navigation system (group 2) contralateraly. RESULTS: For implantation of two pedicle screws the mean radiation dose was 0.041 mSv in group 1 and 0.029 mSv in group 2. Fluoroscopy time was 34 seconds in group 1 and 25 seconds in group 2. The differences of radiation dose and fluoroscopy time for group 1 and 2 were statistically significant (radiation dose p = 0.00044, fluoroscopy time p = 0.00039). CONCLUSION: We achieved significantly lower radiation dose and fluoroscopy time with fluoroscopic computer assisted pedicle screw implantation compared with the conventional technique. Concerning exposure to radiation for patients and personnel fluoroscopic navigated screw insertion is to favour.  相似文献   

9.
BACKGROUND CONTEXT: Extrapedicular screws are placed more laterally than intrapedicular screws and pass through the transverse process or rib head before entering the vertebral body. These screws are sometimes placed to salvage failed pedicle screws, but the change in pullout resistance of extrapedicular screws after salvage has not been quantified. PURPOSE: To quantify the pullout resistance of thoracic extrapedicular screws compared with intrapedicular screws and the pullout resistance of newly inserted screws compared with extrapedicular screws used as salvage for failed intrapedicular screws. STUDY DESIGN: In vitro paired comparison of screw pullout resistance in isolated thoracic vertebrae. METHODS: Tapered monoaxial pedicle screws were inserted in the left or right pedicle of 11 human cadaveric thoracic vertebrae. An extrapedicular screw was inserted on the contralateral side. Both screws were pulled out axially at 0.5 mm/s using a servohydraulic test frame while applied load was recorded. Then a fresh extrapedicular screw was inserted as a salvage screw on the intrapedicular screw side and pulled out. RESULTS: In uncompromised vertebrae, the pullout strength of extrapedicular screws was 80+/-32% of that of intrapedicular screws (p=.073, repeated-measures one-way analysis of variance/Tukey). Salvage screws restored pullout strength to 65+/-30% of that of intrapedicular screws (p=.003). CONCLUSIONS: Extrapedicular screws provided comparable but slightly lower pullout resistance to intrapedicular screws in uncompromised vertebrae. They are therefore a feasible salvage technique when a compromised pedicle precludes reinsertion of an intrapedicular screw, but the salvage screw is significantly weaker than the original screw.  相似文献   

10.
AIM: Aim of the study was to compare stability of pedicle screws and ventral implanted screws after insertion in soft or cured kyphoplasty cement. METHODS: Pedicle screws were inserted in a total of 40 thoracolumbar vertebrae of 10 different formalin-fixed human specimens: each 10 pedicle screws were implanted in soft (group 1) and cured cement (group 2), each 10 ventral screws were placed in soft (group 3) and cured (group 4) cement. Pedicle screws were then evaluated for biomechanical axial pullout resistance. RESULTS: Mean pull-out force was 452 N (range 60-1 125 N) in group 1, 367 N (range 112-840 N) in group 2, 364 N (range 65-875 N) in group 3 and 271 N (range 35-625 N) in group 4. CONCLUSION: Implantation of pedicle screws and ventral implanted screws in soft and cured kyphoplasty cement is a sufficient method. We achieved more stability with pedicle screws compared with ventral implanted screws in soft and cured cement. No significant difference was seen.  相似文献   

11.
The goal of this study was to evaluate the accuracy of CT-based computer-assisted pedicle screw insertion in the thoracic spine in patients with fractures, metastases, and spondylodiscitis compared to a conventional technique. A total of 324 pedicle screws were inserted in the thoracic spines of 85 patients: 211 screws were placed using a CT-based optoelectronic navigation system assisted by an image intensifier and 113 screws were placed with a conventional technique. Screw positions were evaluated with postoperative CT scans by an independent radiologist. In the computer-assisted group, 174 (82.5%) screws were found completely within their pedicles compared with 77 (68.1%) correctly placed screws in the conventional group ( p<0.003). Despite use of the navigation system, 1.9% of the computer-assisted screws perforated the pedicle wall by more than 4 mm. The additional use of the image intensifier helped to identify the correct vertebral body and avoided cranial or caudal pedicle wall perforations.  相似文献   

12.
[目的]分析O-arm计算机辅助导航技术在脊柱椎弓根螺钉置入的准确性。[方法]回顾性分析2017年1月~2018年9月本院椎弓根螺钉置入患者575例,根据椎弓根螺钉置入方式不同,分为两组。导航组采用O-arm计算机辅助导航技术系统置入椎弓根螺钉233例,传统组采用传统徒手法置入椎弓根螺钉342例。行CT检查,依据Neo分型评估置钉准确性。[结果]导航组共置入1459枚椎弓根螺钉,其中C1~7置入222枚,T1~12置入535枚,L1~5置入652枚,S1置入50枚。每名患者置钉数量1~24枚,平均(6.26±3.77)枚。传统组共置入1724枚椎弓根螺钉,其中C1~7置入269枚,T1~12置入601枚,L1~5置入785枚,S1置入87枚。每名患者置钉数量1~20枚,平均(5.67±4.11)枚。导航组全部病例顺利完成手术,术中无血管、神经损伤等并发症,置钉安全率为100%,传统组有4例发生血管、神经损伤等并发症。所有患者术后进行12~24个月随访,随访过程均未发生不良事件。依据CT影像Neo分级标准,导航0型及1型椎弓根螺钉的成功置入率达98.01%,而传统组0型及1型椎弓根螺钉的成功置入率91.85%;两组间置入螺钉准确性的差异具有统计学意义(P<0.05)。[结论]与传统C臂X线机等徒手置钉方式相比,O-arm计算机辅助导航技术可提高脊柱椎弓根螺钉置入准确性,同时降低神经、血管等并发症的发生。  相似文献   

13.
Background contextAchieving solid implant fixation to osteoporotic bone presents a clinical challenge. New techniques and devices are being designed to increase screw–bone purchase of pedicle screws in the lumbar spine via a novel cortical bone trajectory that may improve holding screw strength and minimize loosening. Preliminary clinical evidence suggests that this new trajectory provides screw interference that is equivalent to the more traditionally directed trajectory for lumbar pedicle screws. However, a biomechanical study has not been performed to substantiate the early clinical results.PurposeEvaluate the mechanical competence of lumbar pedicle screws using a more medial-to-lateral path (ie, “cortical bone trajectory”) than the traditionally used path.Study designHuman cadaveric biomechanical study.MethodsEach vertebral level (L1–L5) was dual-energy X-ray absorptiometry (DXA) scanned and had two pedicle screws inserted. On one side, the traditional medially directed trajectory was drilled and tapped. On the contralateral side, the newly proposed cortical bone trajectory was drilled and tapped. After qCT scanning, screws were inserted into their respective trajectories and pullout and toggle testing ensued. In uniaxial pullout, the pedicle screw was withdrawn vertically from the constrained bone until failure occurred. The contralateral side was tested in the same manner. In screw toggle testing, the vertebral body was rigidly constrained and a longitudinal rod was attached to each screw head. The rod was grasped using a hydraulic grip and a quasi-static, upward displacement was implemented until construct failure. The contralateral pedicle screw was tested in the same manner. Yield pullout (N) and stiffness (N/mm) as well as failure moment (N-m) were compared and bone mineral content and bone density data were correlated with the yield pullout force.ResultsNew cortical trajectory screws demonstrated a 30% increase in uniaxial yield pullout load relative to the traditional pedicle screws (p=0.080), although mixed loading demonstrated equivalency between the two trajectories. No significant difference in construct stiffness was noted between the two screw trajectories in either biomechanical test or were differences in failure moments (p=0.354). Pedicle screw fixation did not appear to depend on bone quality (DXA) yet positive correlations were demonstrated between trajectory and bone density scans (qCT) and pullout force for both pedicle screws.ConclusionsThe current study demonstrated that the new cortical trajectory and screw design have equivalent pullout and toggle characteristics compared with the traditional trajectory pedicle screw, thus confirming preliminary clinical evidence. The 30% increase in failure load of the cortical trajectory screw in uniaxial pullout and its juxtaposition to higher quality bone justify its use in patients with poor trabecular bone quality.  相似文献   

14.
[目的]通过尸体标本实验的方法探讨个体化导航模板辅助胸椎椎弓根螺钉置入的准确性及可行性.[方法]对6具胸椎尸体标本进行CT扫描,根据CT扫描资料,利用逆向工程原理及快速成型技术设计制造出个体化导航模板,利用个体化导航模板在尸体标本上辅助置入胸椎椎弓根螺钉,所有螺钉的置入由同一位具有腰椎椎弓根螺钉置钉经验但无胸椎椎弓根螺钉置钉经验的骨科医师进行操作,随后采用大体解剖的方法肉眼观察置钉的准确性;并根据螺钉是否穿破椎弓根、穿出距离及穿破方向进行分级.[结果]共设计制作了72个个体化导航模板辅助置入胸椎椎弓根螺钉144枚,132枚(91.7%)螺钉完全在椎弓根内;12(8.3%)枚螺钉穿破椎弓根,其中2枚螺钉穿破椎弓根内侧壁(穿破距离分别为0.6、0.8 mm),10枚螺钉穿破椎弓根外侧壁(9枚螺钉穿出距离<2 mm,1枚螺钉穿出距离为2.5 mm);没有椎弓根上方、下方及椎体前方穿破的螺钉.所有穿破椎弓根壁的螺钉均在安全可接受的范围内.[结论]快速成型个体化导航模板辅助胸椎椎弓根螺钉置入准确率高,对术者无特别的经验要求,手术操作简单、安全,可避免术中放射性损伤,为胸椎椎弓根螺钉的置入提供了一种新的可行方法,尤其适用于初学者.  相似文献   

15.
STUDY DESIGN: In this cadaveric study, a computer-assisted image guidance system was tested for accuracy of thoracic pedicle screw placement. OBJECTIVES: Evaluate the system's accuracy for thoracic pedicle screw placement in vitro. SUMMARY OF BACKGROUND DATA: The effective use and reliability of pedicle screw instrumentation in providing short-segment stabilization and correction of deformity is well known in the lumbar spine. Pedicle screw placement in the thoracic spine is difficult because of the small dimensions of the thoracic pedicles and risk to the adjacent spinal cord and neurovascular structures. Investigators have shown the improved accuracy of computer-assisted lumbar pedicle screw placement; but the accuracy of computer-assisted thoracic pedicle screw placement, which is becoming more widely used, has not been shown. METHODS: In five human cadavers, 120 thoracic pedicle screws were placed with computer-assisted image guidance. The largest clinically feasible screw was used based on the cross-sectional dimensions of each pedicle. The accuracy was assessed by postoperative computed tomography and visual inspection. RESULTS: The overall pedicle cortex violation was 23 of 120 pedicles (19.2%). Nine violations (7.5%) were graded as major and 14 (11.7%) as minor. A marked and progressive learning curve was evident with the perforation rates that decreased from 37.5% in the first cadaver to 4.2% in the last two cadavers. CONCLUSIONS: Accurate thoracic pedicle screw placement is feasible with computer-assisted surgery. However, as with any other new surgical technology, the learning curve must be recognized and incorporated into the necessary fundamental knowledge and experience for these procedures.  相似文献   

16.
BACKGROUND CONTEXT: Pedicle screws have been shown to be superior to hooks in the lumbar spine, but few studies have addressed their use in the thoracic spine. PURPOSE: The objective of this study was to biomechanically evaluate the pullout strength of pedicle screws in the thoracic spine and compare them to laminar hooks. STUDY DESING/SETTING: Twelve vertebrae (T1-T12) were harvested from each of five embalmed human cadavers (n=60). The age of the donors averaged 83+8.5 years. After bone mineral density had been measured in the vertebrae (mean=0.47 g/cm(3)), spines were disarticulated. Some pedicles were damaged during disarticulation or preparation for testing, so that 100 out of a possible 120 pullout tests were performed. METHODS: Each vertebra was secured using a custom-made jig, and a posteriorly directed force was applied to either the screw or the claw. Constructs were ramped to failure at 3 mm/min using a Mini Bionix II materials testing machine (MTS, Eden Prairie, MN). RESULTS: Pedicle claws had an average pullout strength of 577 N, whereas the pullout strength of pedicle screws averaged 309 N. Hooks installed using the claw method in the thoracic spine had an overwhelming advantage in pullout strength versus pedicle screws. Even in extremely osteoporotic bone, the claw withstood 88% greater pullout load. CONCLUSION: The results of this study indicate that hooks should be considered when supplemental instrumentation is required in thoracic vertebrae, especially in osteoporotic bone.  相似文献   

17.
Achieving sufficient mechanical purchase of pedicle screws in osteoporotic or previously instrumented bone is technically and biologically challenging. Techniques using different kinds of pedicle screws or methods of cement augmentation have been used to address this challenge, but are associated with difficult revisions and complications. The purpose of this biomechanical trial was to investigate the use of biocompatible textile materials in combination with bone cement to augment pullout strength of pedicle screws while reducing the risk of cement extrusion. Pedicle screws (6/40 mm) were either augmented with standard bone‐cement (Palacos LV + G) in one group (BC, n = 13) or with bone‐cement enforced by Vicryl mesh in another group (BCVM, n = 13) in osteoporosis‐like saw bone blocks. Pullout testing was subsequently performed. In a second experimental phase, similar experiments were performed using human cadaveric lumbar vertebrae (n = 10). In osteoporosis‐like saw bone blocks, a mean screw pullout force of 350 N (±125) was significantly higher with the Bone cement (BC) compared to bone‐cement enforced by Vicryl mesh (BCVM) technique with 240 N (±64) (p = 0.030). In human cadaveric lumbar vertebrae the mean screw pullout force was 784 ± 366 N with BC and not statistically different to BCVM with 757 ± 303 N (p = 0.836). Importantly, cement extrusion was only observed in the BC group (40%) and never with the BCVM technique. In vitro textile reinforcement of bone cement for pedicle screw augmentation successfully reduced cement extrusion compared to conventionally delivered bone cement. The mechanical strength of textile delivered cement constructs was more reproducible than standard cementing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:212–216, 2018.  相似文献   

18.
We performed a randomised controlled study to assess the accuracy of computer-assisted pedicle screw insertion versus conventional screw placement under clinical conditions. One hundred patients scheduled for posterior thoracolumbar or lumbosacral pedicle screw instrumentation were randomised into two groups, either for conventional pedicle screw placement or computer-assisted screw application using an optoelectronic navigation system. From the computer-assisted group, nine patients were excluded: one because of an inadequate preoperative computed tomography study, seven because of problems with the specific instruments or the computer system, and one because of an intraoperative anesthesiological complication. Thus, there were 50 patients in the conventional group and 41 in the computer-assisted group, and the number of screws inserted was 277 and 219, respectively. There was no statistical difference between the groups concerning age, gender, diagnosis, type of operation performed, mean operating time, blood loss, or number of screws inserted. The time taken for screw insertion was significantly longer in the computer-assisted group. Postoperatively, screw positions were assessed by an independent radiologist using a sophisticated CT imaging protocol. The pedicle perforation rate was 13.4% in the conventional group and 4.6% in the computer-assisted group (P = 0.006). Pedicle perforations of more than 4 mm were found in 1.4% (4/277) of the screw insertions in the conventional group, and none in the computer-assisted group. Complications not related to pedicle screws were two L5 nerve root lesions, one end plate fracture, one major intraoperative bleeding and one postoperative death in the conventional group, and one deep infection in the computer-assisted group. In conclusion, pedicular screws were inserted more accurately with image-guided computer navigation than with conventional methods. Received: 11 October 1999 Revised: 2 February 2000 Accepted: 15 February 2000  相似文献   

19.
Background contextThe biomechanical fixation strength afforded by pedicle screws has been strongly correlated with bone mineral density. It has been postulated that “hubbing” the head of the pedicle screw against the dorsal laminar cortex provides a load-sharing effect, thereby limiting cephalocaudad toggling and improving the pullout resistance of the pedicle screw.PurposeTo evaluate the pullout strength (POS) of monoaxial hubbed pedicle screws versus standard fixation in the thoracic spine.Study designBiomechanical investigation.MethodsTwenty-two human cadaveric thoracic vertebrae were acquired and dual-energy X-ray absorptiometry scanned. Osteoporotic (n=16) and normal (n=6) specimens were instrumented with a 5.0×35-mm pedicle screw on one side in a standard fashion. In the contralateral pedicle, 5.0×30-mm screw was inserted with hubbing of the screw into the dorsal lamina. A difference in screw length was used to achieve equivalent depth of insertion. After 2,000 cycles of cephalocaudad toggling, screws were pulled out with the tensile force oriented to the midline of the spine and peak POS measured in newtons (N). Four additional specimens were subjected to microcomputed tomography (micro-CT) analysis to evaluate internal pedicle architecture after screw insertion.ResultsHubbed screws resulted in significantly lower POS (290.5±142.4 N) compared with standard pedicle screws (511.5±242.8 N; p=.00). This finding was evident in both normal and osteoporotic vertebrae based on independent subgroup post hoc analyses (p<.05). As a result of hubbing, half of the specimens fractured through the lamina or superior articular facet (SAF). No fractures occurred on the control side. There was no difference in mean POS for hubbed screws with and without fracture; however, further micro-CT analysis revealed the presence of internal fracture propagation for those specimens that did not have any external signs of failure.ConclusionsHubbing pedicle screws results in significantly decreased POS compared with conventional pedicle screws. Hubbing predisposes toward iatrogenic fracture of the dorsal lamina, transverse process, or SAF during insertion.  相似文献   

20.
Previous investigations have suggested that conical and cylindrical pedicle screws have comparable holding strengths. So far, the remaining performance in screws turned back or loose as a result of other reasons has not been determined. Twenty-four cadaveric spines from 6- to 8-week-old calves were examined. After bone mineral density was determined, four pedicle screws (two conical and two cylindrical screws) were inserted. The screws were fully inserted and half of them turned back 180 degrees. Twenty-four axial pullout and 24 cyclic loading tests with subsequent pullout tests were conducted. The pullout strengths of conical screws turned back 180 degrees are significantly smaller (1.8 kN) than those of cylindrical screws (4.3 kN). After cyclic loading, the displacement of conical screws is significantly greater (6.9 mm) than that of cylindrical screws (4.7 mm). Pedicle screws, especially conical ones, need to be placed to a correct depth, and they should not have to be backed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号