首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study was designed to address the effects of traumatic brain injury (TBI) on plasticity and reorganization in the juvenile brain. Given that two of the major pathological sequelae of TBI involve a generalized neuroexcitation insult and diffuse axonal injury, we have employed models of these pathologies, delivered either independently or in combination, to examine their effects on injury-induced synaptic reorganization of the dentate gyrus in the developing rat. Postnatal day 28 rats received either sham, central fluid percussion traumatic brain injury (TBI), unilateral entorhinal cortical lesion (UEC), or TBI+UEC (TUEC) injury. Cognitive performance was assessed in the Morris water maze (MWM) between 11 and 15 days post-injury and the brains were processed for synaptophysin immunohistochemistry and routine electron microscopy. The MWM results revealed that TBI or UEC lesions delivered independently do not produce significant morbidity in P28 rats. However, when these injuries are combined, they reveal significant deficits in the MWM, accompanied by measurable changes in the distribution of presynaptic synaptophysin immunoreactivity over the deafferented dentate molecular layer. These observations are further supported by qualitative ultrastructural alterations in synaptic architecture in the same subregions of the dentate neuropil. The present findings show that the resilience of the immature brain following TBI is reduced when neuroexcitatory insult is combined with deafferentation. Moreover, when deafferented tissue is assessed morphologically, evidence exists for aberrant plasticity and abnormal synaptic reorganization in the juvenile brain.  相似文献   

2.
The combination of central fluid percussion traumatic brain injury (TBI) followed 24 h later by a bilateral entorhinal cortical deafferentation (BEC) produces profound cognitive morbidity. We recently showed that MK-801 given prior to TBI in this insult improved spatial memory for up to 15 days. In the present study we examine whether MK-801 treatment of the BEC component in the combined insult model affects cognitive recovery. Two strategies for drug treatment were tested. Fifteen minutes prior to the BEC lesion in the combined insult, rats were given i.p. doses of either 3 mg/kg (acute group) or 1 mg/kg (chronic group) MK-801. The acute group received no further injections, whereas the chronic group received 1 mg/kg MK-801 i.p. twice a day for 2 days post-BEC lesion. Two additional groups of animals received BEC lesion alone and either acute or chronic MK-801 treatment identical with the combined insult cases. Each group was then assessed for spatial memory deficits with the Morris water maze at days 11–15 and 60–64 postinjury. Both acute and chronic MK-801 treatment in the combined insult group significantly reduced spatial memory deficits at 15 days postinjury relative to untreated injured cases (P < .01). This reduction appeared more robust at 15 days and persisted for up to 64 days in the chronically treated group (P < .05). By contrast, neither acute nor chronic MK-801 treatment affected memory performance with the BEC insult alone. Immunocytochemical localization of parvalbumin showed that chronic administration of MK-801 in the combined insult cases attenuated the injury-induced dendritic atrophy of inhibitory neurons in the dentate gyrus and area CA1. Synaptophysin immunobinding revealed that chronic MK-801 treatment of the BEC component of the combined insult normalized the distribution of presynaptic terminals within the dentate gyrus. These results suggest that cognitive deficits produced by head trauma involving both neuroexcitation and deafferentation can be attenuated with chronic application of glutamatergic antagonists during the period of deafferentation injury and that this attenuation is correlated with axo-dendritic integrity. Hippocampus 1998;8:390–401. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.  相似文献   

4.
The interaction between extracellular matrix (ECM) and regulatory matrix metalloproteinases (MMPs) is important in establishing and maintaining synaptic connectivity. By using fluid percussion traumatic brain injury (TBI) and combined TBI and bilateral entorhinal cortical lesion (TBI + BEC), we previously demonstrated that hippocampal stromelysin-1 (MMP-3) expression and activity increased during synaptic plasticity. We now report a temporal analysis of MMP-3 protein and mRNA response to TBI during both degenerative (2 day) and regenerative (7, 15 day) phases of reactive synaptogenesis. MMP-3 expression during successful synaptic reorganization (following unilateral entorhinal cortical lesion; UEC) was compared with MMP-3 expression when normal synaptogenesis fails (after combined TBI + BEC insult). Increased expression of MMP-3 protein and message was observed in both models at 2 days postinjury, and immuohistochemical (IHC) colocalization suggested that reactive astrocytes contribute to that increase. By 7 days postinjury, model differences in MMP-3 were observed. UEC MMP-3 mRNA was equivalent to control, and MMP-3 protein was reduced within the deafferented region. In contrast, enzyme mRNA remained elevated in the maladaptive TBI + BEC model, accompanied by persistent cellular labeling of MMP-3 protein. At 15 days survival, MMP-3 mRNA was normalized in each model, but enzyme protein remained higher than paired controls. When TBI + BEC recovery was enhanced by the N-methyl-D-aspartate antagonist MK-801, 7-day MMP-3 mRNA was significantly reduced. Similarly, MMP inhibition with FN-439 reduced the persistent spatial learning deficits associated with TBI + BEC insult. These results suggest that MMP-3 might differentially affect the sequential phases of reactive synaptogenesis and exhibit an altered pattern when recovery is perturbed.  相似文献   

5.
6.
The rat model of combined central fluid percussion traumatic brain injury (TBI) and bilateral entorhinal cortical lesion (BEC) produces profound, persistent cognitive deficits, sequelae associated with human TBI. In contrast to percussive TBI alone, this combined injury induces maladaptive hippocampal plasticity. Recent reports suggest a potential role for dopamine in CNS plasticity after trauma. We have examined the effect of the dopamine enhancer l-deprenyl on cognitive function and neuroplasticity following TBI. Rats received fluid percussion TBI, BEC alone, or combined TBI + BEC lesion and were treated once daily for 7 days with l-deprenyl, beginning 24 h after TBI alone and 15 min after BEC or TBI + BEC. Postinjury motor assessment showed no effect of l-deprenyl treatment. Cognitive performance was assessed on days 11-15 postinjury and brains from the same cases examined for dopamine beta-hydroxylase immunoreactivity (DBH-IR) and acetylcholinesterase (AChE) histochemistry. Significant cognitive improvement relative to untreated injured cases was observed in both TBI groups following l-deprenyl treatment; however, no drug effects were seen with BEC alone. l-Deprenyl attenuated injury-induced loss in DBH-IR over CA1 and CA3 after TBI alone. However, after combined TBI + BEC, l-deprenyl was only effective in protecting CA1 DBH-IR. AChE histostaining in CA3 was significantly elevated with l-deprenyl in both injury models. After TBI + BEC, l-deprenyl also increased AChE in the dentate molecular layer relative to untreated injured cases. These results suggest that dopaminergic/noradrenergic enhancement facilitates cognitive recovery after brain injury and that noradrenergic fiber integrity is correlated with enhanced synaptic plasticity in the injured hippocampus.  相似文献   

7.
The hippocampus is critical for several aspects of learning and memory and is unique among other cortical regions in structure, function and the potential for plasticity. This remarkable region recapitulates development throughout the lifespan with enduring neurogenesis and well-characterized plasticity. The structure and traits of the hippocampus that distinguish it from other brain regions, however, may be the same reasons that this important brain region is particularly vulnerable to insult and injury. The immune system within the brain responds to insult and injury, and the hippocampus and the immune system are extensively interconnected. Immune signaling molecules, cytokines and chemokines (chemotactic cytokines), are well known for their functions during insult or injury. They are also increasingly implicated in normal hippocampal neurogenesis (e.g., CXCR4 on newborn neurons), cellular plasticity (e.g., interleukin-6 in LTP maintenance), and learning and memory (e.g., interleukin-1β in fear conditioning). We provide evidence from the small but growing literature that neuroimmune interactions and immune signaling molecules, especially chemokines, may be a primary underlying mechanism for the coexistence of plasticity and vulnerability within the hippocampus. We also highlight the evidence that the hippocampus exhibits a remarkable resilience in response to diverse environmental events (e.g., enrichment, exercise), which all may converge onto common neuroimmune mechanisms.  相似文献   

8.
Damage to the hippocampus can occur through many causes including head trauma, ischemia, stroke, status epilepticus, and Alzheimer's disease. Certain changes such as increased levels of neurogenesis and elevated concentrations of multiple neurotrophic factors that ensue in the acute phase after injury seem beneficial for restraining hippocampal dysfunction. However, many alterations that arise in the intermediate to chronic phase after injury such as abnormal migration of newly born neurons, aberrant synaptic reorganization, progressive loss of inhibitory gamma-amino butyric acid positive interneurons including those expressing reelin, greatly declined neurogenesis, and sustained inflammation are detrimental. Consequently, the net effect of postinjury plasticity in the hippocampus remains inadequate for promoting significant functional recovery. Hence, ideal therapeutic interventions ought to be efficient for restraining these detrimental changes in order to block the propensity of most hippocampal injuries to evolve into learning deficits, memory dysfunction, depression, and temporal lobe epilepsy. Neural stem cell (NSC) grafting into the hippocampus early after injury appears alluring from this perspective because several recent studies have demonstrated the therapeutic value of this intervention, especially for preventing/easing memory dysfunction, depression, and temporal lobe epilepsy development in the chronic phase after injury. These beneficial effects of NSC grafting appeared to be mediated through considerable modulation of aberrant hippocampal postinjury plasticity with additions of new inhibitory gamma-amino butyric acid positive interneurons and astrocytes secreting a variety of neurotrophic factors and anticonvulsant proteins. This review presents advancements made in NSC grafting therapy for treating hippocampal injury in animal models of excitotoxic injury, traumatic brain injury, Alzheimer's disease, and status epilepticus; potential mechanisms of functional recovery mediated by NSC grafts placed early after hippocampal injury; and issues that need to be resolved prior to considering clinical application of NSC grafting for hippocampal injury.This article is part of a Special Issue entitled “NEWroscience 2013”.  相似文献   

9.
In refractory temporal lobe epilepsy, seizures often arise from a shrunken hippocampus exhibiting a pattern of selective neuron loss called “classic hippocampal sclerosis.” No single experimental injury has reproduced this specific pathology, suggesting that hippocampal atrophy might be a progressive “endstage” pathology resulting from years of spontaneous seizures. We posed the alternative hypothesis that classic hippocampal sclerosis results from a single excitatory event that has never been successfully modeled experimentally because convulsive status epilepticus, the insult most commonly used to produce epileptogenic brain injury, is too severe and necessarily terminated before the hippocampus receives the needed duration of excitation. We tested this hypothesis by producing prolonged hippocampal excitation in awake rats without causing convulsive status epilepticus. Two daily 30‐minute episodes of perforant pathway stimulation in Sprague–Dawley rats increased granule cell paired‐pulse inhibition, decreased epileptiform afterdischarge durations during 8 hours of subsequent stimulation, and prevented convulsive status epilepticus. Similarly, one 8‐hour episode of reduced‐intensity stimulation in Long–Evans rats, which are relatively resistant to developing status epilepticus, produced hippocampal discharges without causing status epilepticus. Both paradigms immediately produced the extensive neuronal injury that defines classic hippocampal sclerosis, without giving any clinical indication during the insult that an injury was being inflicted. Spontaneous hippocampal‐onset seizures began 16–25 days postinjury, before hippocampal atrophy developed, as demonstrated by sequential magnetic resonance imaging. These results indicate that classic hippocampal sclerosis is uniquely produced by a single episode of clinically “cryptic” excitation. Epileptogenic insults may often involve prolonged excitation that goes undetected at the time of injury. J. Comp. Neurol. 518:3381–3407, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Traumatic brain injury (TBI) can occur from physical trauma from a wide spectrum of insults ranging from explosions to falls. The biomechanics of the trauma can vary in key features, including the rate and magnitude of the insult. Although the effect of peak injury pressure on neurological outcome has been examined in the fluid percussion injury (FPI) model, it is unknown whether differences in rate of rise of the injury waveform modify cellular and physiological changes after TBI. Using a programmable FPI device, we examined juvenile rats subjected to a constant peak pressure at two rates of injury: a standard FPI rate of rise and a faster rate of rise to the same peak pressure. Immediate postinjury assessment identified fewer seizures and relatively brief loss of consciousness after fast‐rise injuries than after standard‐rise injuries at similar peak pressures. Compared with rats injured at standard rise, fewer silver‐stained injured neuronal profiles and degenerating hilar neurons were observed 4–6 hr after fast‐rise FPI. However, 1 week postinjury, both fast‐ and standard‐rise FPI resulted in hilar cell loss and enhanced perforant path‐evoked granule cell field excitability compared with sham controls. Notably, the extent of neuronal loss and increase in dentate excitability were not different between rats injured at fast and standard rates of rise to peak pressure. Our data indicate that reduced cellular damage and improved immediate neurological outcome after fast rising primary concussive injuries mask the severity of the subsequent cellular and neurophysiological pathology and may be unreliable as a predictor of prognosis. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.  相似文献   

11.
OBJECTIVES: The goal is to review the plasticity and vulnerability of the hippocampus, a brain structure involved in episodic, declarative, contextual and spatial learning and memory, as well as its being a component in the control of autonomic and vegetative functions such as ACTH secretion. It discusses its possible role in the regulation of glucose homeostasis, and the need of hippocampal neurons for glucose because of their high metabolic activity. The hippocampus is also vulnerable to damage by stroke and head trauma and susceptible to damage during aging and repeated stress, and is sensitive to the effects of diabetes. METHODS: A summary of recent work in the author's laboratory and related work in the field using citations of literature based, in part, on Medline searches. CONCLUSIONS: In addition to its vulnerability, the hippocampus is also a plastic and adaptable brain region that is capable of considerable structural reorganization, including remodeling of dendrites and neurogenesis of dentate gyrus granule neurons in response to repeated stress. Animal models of Type 1 diabetes show accelerated remodeling of dendrites, and Type 2 diabetes remains to be studied in this regard. This is relevant to major depressive illness, in which a progressive atrophy of the hippocampal formation is reported and is accompanied by impairment of cognitive function in those subjects with hippocampal shrinkage. Therefore, hippocampal atrophy in depression, as well as in diabetes, may reflect either damage or plasticity involving structural reorganization that is potentially treatable.  相似文献   

12.
We have used an animal model of traumatic brain injury (TBI) that incorporates both the neurotransmitter toxicity of fluid percussion TBI and deafferentation of bilateral entorhinal cortical (BEC) lesion to explore whether administration of muscarinic cholinergic or N-methyl-D-aspartate glutamatergic antagonists prior to injury ameliorates cognitive morbidity. Fifteen minutes prior to moderate central fluid percussion TBI, rats were given intraperitoneal injections of either scopolamine (1.0 mg/kg) or MK-801 (0.3 mg/kg) and 24 hr later underwent BEC lesion. Body weight was followed for 5 days postinjury, as was beam balance and beam walk performance to assure motor recovery prior to spatial memory testing. Each group was assessed for spatial memory deficits with the Morris water maze at short term (days 11–15) and long-term (60–64 days) postinjury intervals and then compared with untreated combined insult and sham-injured controls. Results showed that each drug significantly elevated body weight relative to untreated injured cases. Both scopolamine and MK-801 reduced beam balance deficits, whereas neither drug had a significant effect on beam walk deficits. Interestingly, short-term cognitive deficits assessed on days 11–15 were differentially affected by the two drugs: MK-801 pretreatment enhanced the recovery of spatial memory performance, whereas scopolamine pretreatment did not. Long-term (days 60–64) deficits in spatial memory were not altered by pretreatment with either drug. Our results suggest that, unlike fluid percussion TBI alone, behavioral impairment may require more select intervention when deafferentation is part of the head trauma pathology. J. Neurosci. Res. 49:197–206, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Neurofilaments (NF), the intermediate filaments of the neuronal cytoskeleton, provide mechanical stability to the cell. High-molecular-weight NF (NFH) comprises a heavily phosphorylated carboxyl terminal ("sidearm") domain which helps determine interfilament spacing distances. Experimental evidence suggests that dephosphorylation greatly increases the rate and extent of proteolysis of NFH. Because NF proteolysis has been implicated as one pathogenic mechanism underlying cell death following traumatic brain injury (TBI), we analyzed the patterns of acute NFH damage in relation to phosphorylation state following focal, concussive, controlled cortical impact (CCI) brain injury in mice. Brains from C57BL/6 male mice (n = 4 injured and n = 1 sham per time point) were evaluated 5 min, 15 min, 90 min, 4 h, and 24 h following CCI injury (1 mm depth, 5 m/s). Immunohistochemistry was performed using antibodies that recognize epitopes on either dephosphorylated (d-NFH) or phosphorylated (p-NFH) sidearms or on the core (c-NFH) domain. As early as 5-15 min postinjury, immunoreactivity for d-, p-, and c-NFH decreased in the ipsilateral cortex, and hippocampal CA3, CA1, and dentate areas. This marked decrease of NFH labeling occurred in the absence of notable cell loss. Furthermore, partial recovery of NFH labeling was observed as early as 90 min postinjury in the cortex and by 24 h postinjury in hippocampal CA3 and dentate. The results of this study suggest that both phosphorylated and dephosphorylated NFH are vulnerable almost immediately following focal brain injury in mice, but that injured neurons may have an adaptive capability to partially restore this important cytoskeletal protein.  相似文献   

14.
Spinal cord injury (SCI) leads to a general lack of sensory and motor functions below the level of injury and may promote deafferentation‐induced brain reorganization. Functional magnetic resonance imaging (fMRI) has been established as an essential tool in neuroscience research and can precisely map the spatiotemporal distribution of brain activity. Task‐based fMRI experiments associated with the tongue, upper limbs, or lower limbs have been used as the primary paradigms to study brain reorganization following SCI. A review of the current literature on the subject shows one common trait: while most articles agree that brain networks are usually preserved after SCI, and that is not the case as some articles describe possible alterations in brain activation after the lesion. There is no consensus if those alterations indeed occur. In articles that show alterations, there is no agreement if they are transient or permanent. Besides, there is no consensus on which areas are most prone to activation changes, or on the intensity and direction (increase vs. decrease) of those possible changes. In this article, we present a critical review of the literature and trace possible reasons for those contradictory findings on brain reorganization following SCI. fMRI studies based on the ankle dorsiflexion, upper‐limb, and tongue paradigms are used as case studies for the analyses.  相似文献   

15.
Plasticity in the brain reaches far beyond a mere changing of synaptic strengths. Recent time-lapse imaging in the living brain reveals ongoing structural plasticity by forming or breaking of synapses, motile spines, and re-routing of axonal branches in the developing and adult brain. Some forms of structural plasticity do not follow Hebbian- or anti-Hebbian paradigms of plasticity but rather appear to contribute to the homeostasis of network activity. Four decades of lesion studies have brought up a wealth of data on the mutual interdependence of neuronal activity, neurotransmitter release and neuronal morphogenesis and network formation. Here, we review these former studies on structural plasticity in the context of recent experimental studies. We compare spontaneous and experience-dependent structural plasticity with lesion-induced (reactive) structural plasticity that occurs during development and in the adult brain. Understanding the principles of neural network reorganization on a structural level is relevant for a deeper understanding of long-term memory formation as well as for the treatment of neurological diseases such as stroke.  相似文献   

16.
Brain damage resulting in loss of sensory stimulation can induce reorganization of sensory maps in cerebral cortex. Previous research on recovery from brain damage has focused primarily on adaptive plasticity within the affected modality. Less attention has been paid to maladaptive plasticity that may arise as a result of ectopic innervation from other modalities. Using ferrets in which neonatal midbrain damage results in diversion of retinal projections to the auditory thalamus, we investigated how auditory cortical function is impacted by the resulting ectopic visual activation. We found that, although auditory neurons in cross-modal auditory cortex (XMAC) retained sound frequency tuning, their thresholds were increased, their tuning was broader, and tonotopic order in their frequency maps was disturbed. Multisensory neurons in XMAC also exhibited frequency tuning, but they had longer latencies than normal auditory neurons, suggesting they arise from multisynaptic, non-geniculocortical sources. In a control group of animals with neonatal deafferentation of auditory thalamus but without redirection of retinal axons, tonotopic order and sharp tuning curves were seen, indicating that this aspect of auditory function had developed normally. This result shows that the compromised auditory function in XMAC results from invasion by ectopic visual inputs and not from deafferentation. These findings suggest that the cross-modal plasticity that commonly occurs after loss of sensory input can significantly interfere with recovery from brain damage and that mitigation of maladaptive effects is critical to maximizing the potential for recovery.  相似文献   

17.
Neuroimaging at all stages of a traumatic brain injury (TBI) provides information about gross brain pathology. In this review, post-mortem TBI cases are matched to neuroimaging findings from TBI survivors to demonstrate the close correlation between observable pathology with in vivo neuroimaging to the underlying neuropathology. An emphasis of this review focuses on neuroimaging identification of trauma induced cortical and white matter degeneration along with hydrocephalus ex vacuo expansion of the ventricular system as the injured brain exhibits atrophic changes. The role of hippocampal atrophy and thalamic injury along with the vulnerability of the corpus callosum in TBI are also reviewed. The aim of this review is to provide pathological confirmation of observable neuroimaging abnormalities that relate directly to trauma-induced effects of the injury.  相似文献   

18.
PURPOSE: The immature rat brain is highly susceptible to seizures, but has a resistance to pathological changes induced by seizures as compared to adult rats. However, prolonged seizures during early-life enhance cellular injury and hyperexcitability induced by convulsive insults later in adulthood. The mechanisms underlying these phenomena are not understood. In adult models, the CA1 axons reorganize their projections to subiculum. Seizure induced plasticity in this pathway has not been investigated in immature seizure models, and may contribute to the vulnerability to later seizures. METHODS: On postnatal day 15, rats experienced convulsive status epilepticus with kainic acid (KA). Seizure induced plasticity was examined with Timm histochemistry and iontophoretic injections of sodium selenite, a retrograde tracer. Cellular injury was evaluated with Fluoro-Jade B histochemistry. RESULTS: Retrograde tracing experiments determined a 67% larger dorsoventral extent of retrograde labeling in the CA1 pyramidal region after tracer injections in subiculum. The synaptic reorganization of the CA1 projection to subiculum was noted in the absence of overt neuronal injury in subiculum or CA1. In contrast, mossy fiber sprouting was detected into the stratum oriens of CA3 with limited neuronal injury to CA3 pyramidal neurons. No mossy fiber sprouting into the inner molecular layer of the dentate gyrus, or CA1 sprouting into the stratum moleculare of CA1 were noted. CONCLUSIONS: The results indicate that the developing brain has distinct mechanisms of seizure induced reorganization as compared to the adult brain. Our experiments show that the concept of "resistance of the immature brain to excitotoxicity" is considerably more complicated than generally believed. Morphological plasticity in the immature brain appears more extensive in distal, but not proximal, projections of hippocampal pathways, and across hippocampal lamellae. The abnormal connectivity between hippocampal lamellae might play a role in the increased susceptibility to injury and hyperexcitability associated with later convulsive insults.  相似文献   

19.
Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of “acquired” epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain.  相似文献   

20.
Objective: To review the use of noninvasive brain stimulation (NBS) as a therapeutic tool to enhance neuroplasticity following traumatic brain injury (TBI). Materials and Methods: Based on a literature search, we describe the pathophysiological events following TBI and the rationale for the use of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in this setting. Results: The pathophysiological mechanisms occurring after TBI vary across time and therefore require differential interventions. Theoretically, given the neurophysiological effects of both TMS and tDCS, these tools may: 1) decrease cortical hyperexcitability acutely after TBI; 2) modulate long‐term synaptic plasticity as to avoid maladaptive consequences; and 3) combined with physical and behavioral therapy, facilitate cortical reorganization and consolidation of learning in specific neural networks. All of these interventions may help decrease the burden of disabling sequelae after brain injury. Conclusions: Evidence from animal and human studies reveals the potential benefit of NBS in decreasing the extent of injury and enhancing plastic changes to facilitate learning and recovery of function in lesioned neural tissue. However, this evidence is mainly theoretical at this point. Given safety constraints, studies in TBI patients are necessary to address the role of NBS in this condition as well as to further elucidate its therapeutic effects and define optimal stimulation parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号