首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
背景:生物材料已广泛应用于创伤骨科的治疗,应用于临床治疗的生物材料必须具有良好的生物相容性,满足一定的力学特性和抗磨损、耐腐蚀、抗老化等特性。 目的:对骨科生物医学材料进行分类,对Web of Science数据库的相关文献进行多层次分析。 方法:以电子检索方式对Web of Science数据库2002至2011年收录骨科生物医学材料研究的文献进行分析,采用检索词为“骨科;生物材料”。按骨科生物材料的性质、功能、来源、部位等进行分类,分析各种材料的特点和适应证。 结果与结论:Web of Science数据库2002至2011年收录骨科生物医学材料研究的文献共3 834篇。中国在骨科生物医学材料研究领域具有一定地位,中国科学院和四川大学发表文献数量在国际排名较靠前,《生物材料》杂志是骨科生物医学材料研究的经典期刊。骨科生物医学材料按材料的性质分为金属材料、非金属材料、高分子材料和生物复合材料等,各种材料在机械强度、抗疲劳性、耐腐蚀性和生物安全性方面都具有各自的特点,组织工程的出现对生物材料研究提出新的挑战,可以通过研制复合材料、材料改性、表面修饰等方法来弥补不足,骨科生物医学材料研究的趋势将向复合型、杂化型、功能型和智能型生物材料的方向发展。  相似文献   

2.
《中国组织工程研究》2020,(13):I0001-I0001
1期刊关注来自组织工程研究中的多种生物材料:组织工程骨材料,组织工程软骨材料,组织工程血管材料,组织工程神经材料,药物控释材料,纳米生物材料,膜生物材料,复合支架材料,可降解吸收材料,细胞外基质材料,抗菌抗病毒材料……2期刊关注组织工程研究中更多生物材料的最新研究进展:再生医学材料,心血管材料,骨修复材料,医用金属材料,纳米生物材料,生物材料先进制造,神经修复材料,生物陶瓷材料,材料生物学评价,生物复合材料,海洋生物材料,生物医用高分子材料,材料生物力学评价,影像材料与技术,颅颌面整形外科材料,智能仿生材料,材料表界面工程,材料力学及表面改性,生物材料模型构建……  相似文献   

3.
机体组织具有复杂的三维动态结构,且受到多种形式的作用力。细胞从细胞外基质(extracellular matrix, ECM)中感受力学刺激,ECM构建的力学微环境调控细胞不同生物学功能。制备可模拟机体组织ECM力学微环境的生物材料是生物力学领域研究的热点和难点之一。生物材料的不同理化性质赋予材料特定的力学性能,进而影响细胞行为和功能。本文结合2021年材料生物力学领域的最新文献,特别关注新型材料生物力学对细胞生物学行为的调控和在组织工程中的应用,并探讨材料生物力学研究领域的未来发展方向。  相似文献   

4.
背景:组织工程心脏瓣膜是应用工程学和生命科学的原理和方法构建具有生理功能和生物活性的瓣膜替代物,但仍处于动物实验阶段。 目的:总结常用的组织工程心脏瓣膜,对不同类型生物材料的心脏瓣膜应用的安全性进行评价。 方法:以“生物材料,心脏瓣膜,支架材料,综述文献,组织工程”为中文关键词,采用计算机检索2000-01/2010-12相关文章。纳入与生物材料与组织工程心脏瓣膜研究相关的文章;排除重复研究或Meta分析类文章。 结果与结论:共纳入生物材料与组织工程心脏瓣膜研究相关文献20篇。天然支架材料因其优越的生物相容性和三维空间构象,具有其他材料不可比拟的仿生性。合成可降解高分子材料具有良好的可控性和力学性能也备受研究者青睐,而将天然材料和高分子材料融合一体构建的复合支架材料为组织工程心脏瓣膜的研究提供了新的策略和方向,具有广阔的应用前景。  相似文献   

5.
背景:生物可降解植入物不仅可重建骨缺损部位,而且随着材料的逐步降解,新生骨组织可完全替代移植材料,填充骨缺损处。目的:总结生物降解材料复合成骨因子在骨科的研究进展。方法:以“可降解材料,成骨因子,细胞活性因子,骨组织工程;Biodegradable materials,factors,cell active factor,bone tissue engineering”为检索词,应用计算机检索PubMed、万方、CNKI数据库2000至2015年的相关文献。结果与结论:生物可降解医用高分子材料可分为天然高分子材料和人工合成可降解材料。天然高分子材料具有良好的生物相容性,但其机械强度较差;人工合成可降解材料械强度较天然高分子材料高,但容易造成局部酸性物质堆积,产生局部炎症反应。将生物可降解医用高分子材料与成骨因子复合,可提高材料的力学强度与骨诱导能力,但将其作为骨修复材料应用于临床还有很多问题需要解决。  中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

6.
背景:聚吡咯因其特殊的电学性质被广泛应用于生物医学工程领域。近20年来,在组织工程领域有越来越多的关于其作为施电细胞组织培养基底用于组织和细胞再生方面的研究。目的:全面了解聚吡咯类生物材料在不同类组织工程中的应用,为今后该类材料在组织工程方面的进一步研究以及新型医学生物材料的研发提供思路。方法:以"polypyrrole"为检索词,应用计算机检索Pubmed数据库,中国生物医学文献数据库1990/2010发表的相关文章。纳入与聚吡咯组织工程应用密切相关的文献,排除重复性研究。结果与结论:共检索到762篇文献,排除无关重复的文献,保留51篇文献进行综述。目前聚吡咯类生物材料主要用于神经组织工程、心血管组织工程、骨及肌肉组织工程、皮肤组织工程等方面。这类生物材料由于其多功能性以及良好的生物相容性,对于未来新型组织工程材料的研发以及组织工程的进一步研究具有重大的价值。  相似文献   

7.
文题释义:热塑性弹性体:一类兼具橡胶和塑料性能的材料,其交联网络结构由纳米水平的软段(弹性)和硬段(结晶型或无定型)通过热力学驱动的相分离形成,为常温下具有橡胶弹性、高温下可塑化成型的一类弹性体。 背景:聚异丁烯嵌段共聚物及其交联产物是一类新型的热塑性弹性体,具有独特性质和优异的生物相容性,有望作为医用生物材料得到广泛应用。 目的:综述聚异丁烯及其热塑性弹性体的研究进展及应用,讨论聚异丁烯类材料作为可植入医疗器材的应用前景。 方法:应用计算机检索1958至2019年PubMed数据库、Web of science数据库、中国知网和万方平台收录的与聚异丁烯生物材料相关的文献。英文检索词为“polyisobutylene and block copolymer, polyisobutylene and thermoplastic elastomer,polyisobutylene and biomaterials,polyisobutylene and modification,polyisobutylene and medical application”,中文检索词为“聚异丁烯,嵌段共聚物;聚异丁烯,热塑性弹性体;聚异丁烯,生物材料;聚异丁烯,修饰;聚异丁烯,医学应用”,按纳入、排除标准最后共纳入文献65篇进行综述。 结果与结论:聚异丁烯嵌段共聚物及其交联产物具有良好的生物相容性和稳定性。在充分利用聚异丁烯类材料自身优势的基础上,通过与不同材料的结合,利用新技术对其进行改性和修饰,未来在诸如眼科植入材料、软生物材料和药物控释载体等医用植入材料方面将展现出更强的竞争力。 ORCID: 0000-0003-4383-4964(姜力) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

8.
董喆  奚廷斐 《国际生物医学工程杂志》2010,34(6):62-64,后插1-后插3
生物材料与组织的相互作用是生物材料学科多年关注的焦点,是生物相容性学科的基础.生物材料研究通过对生物相容现象的探讨为生物型医疗器械的使用提供了更好的依据.分析过去50年无源医疗器械的使用情况,在大多数情况下,材料不损伤组织是长期使用医疗器械生物相容性的惟一要求.目前只有少数具有活性的生物材料可成功应用于临床.就生物材料在组织工程、复杂细胞、药物和基因传递系统以及生物技术方面的应用进行综述,并说明生物材料和组织之间的相互作用.  相似文献   

9.
背景:阐述组织工程人工材料在韧带修复过程中生物相容性的必要性与重要性。方法:由第一作者应用计算机检索PubMed数据库与CNKI数据库中与韧带急性损伤治疗手段、材料学特点、生物相容性及其应用效果相关的文章。结果:韧带急性损伤后的修复手段中传统疗法较为保守,大多以物理疗法为主,在损伤不太严重的情况下修复效果较好,但对较为严重的韧带断裂或撕裂很难起到良好的修复效果。运用组织工程人工材料对严重的韧带断裂或撕裂进行韧带重建会起到很好的修复效果。在运用组织工程人工材料重建韧带过程中,理想生物材料的选择必须重视其良好的生物相容性,其生物相容性的好坏直接决定着韧带修复的效果,可以说良好的生物相容性应是组织工程治疗手段过程中生物材料选择的基础和必要条件。结论:随着组织工程人工材料研究的进步,在多样化的生物材料中,保证生物材料良好的生物相容性是选择理想材料的基础。  相似文献   

10.
现代医学的进步与生物材料的发展密不可分,而生物医用材料发展与进步的根本源动力是生命健康的需要.组织工程与再生医学材料、纳米生物材料、生物矿化材料和仿生材料等,是当前生物医用材料研究中的重点和难点,在相当长的一段时间内,仍将是该领域的研究热点.  相似文献   

11.
Biological scaffold materials derived from the extracellular matrix (ECM) of intact mammalian tissues have been successfully used in a variety of tissue engineering/regenerative medicine applications both in preclinical studies and in clinical applications. Although it is recognized that the materials have constructive remodeling properties, the mechanisms by which functional tissue restoration is achieved are not well understood. There is evidence to support essential roles for both the structural and functional characteristics of the biological scaffold materials. This paper provides an overview of the composition and structure of selected ECM scaffold materials, the effects of manufacturing methods upon the structural properties and resulting mechanical behavior of the scaffold materials, and the in vivo degradation and remodeling of ECM scaffolds with an emphasis on tissue function.  相似文献   

12.
基于组织工程学的组织工程技术和干细胞研究在克服组织器官损伤、修复组织器官功能缺失及减少手术并发症等问题上现已取得很大进展。以往传统方法是利用生物替代材料修复组织,而组织工程技术注重将种子细胞与生物材料结合,形成与自身组织结构和功能相同的生物组织来修复组织缺损,优势在于通过组织工程技术可克服供体材料获取的局限性,并能有效减少并发症。组织工程技术的研究目的便是找到最终能很好替代原有组织生物学功能的合适的种子细胞、生物材料,构建适合的体内微环境。本文主要描述目前泌尿外科学中各领域组织工程的发展现状,探讨组织工程技术应用于治疗复杂泌尿系统疾病的未来趋势。本文研究结果显示,尽管目前临床试验还相对较少,但现有研究在动物模型上取得的良好结果揭示了组织工程技术今后用于治疗各种泌尿系统疾病的光明前景。  相似文献   

13.
Abstract

Biodegradable polymers have met with an increasing demand in medical usage over the last decades. One of such polymers is poly(ε-caprolactone) (PCL), which is a polyester that has been widely used in tissue engineering field for its availability, relatively inexpensive price and suitability for modification. Its chemical and biological properties, physicochemical state, degradability and mechanical strength can be adjusted, and therefore, it can be used under harsh mechanical, physical and chemical conditions without significant loss of its properties. Degradation time of PCL is quite long, thus it is used mainly in the replacement of hard tissues in the body where healing also takes an extended period of time. It is also used at load-bearing tissues of the body by enhancing its stiffness. However, due to its tailorability, use of PCL is not restricted to one type of tissue and it can be extended to engineering of soft tissues by decreasing its molecular weight and degradation time. This review outlines the basic properties of PCL, its composites, blends and copolymers. We report on various techniques for the production of different forms, and provide examples of medical applications such as tissue engineering and drug delivery systems covering the studies performed in the last decades.  相似文献   

14.
The development of polymer/bioactive glass has been recognized as a strategy to improve the mechanical behavior of bioactive glass-based materials. Several studies have reported systems based on bioactive glass/biopolymer composites. In this study, we developed a composite system based on bioactive glass nanoparticles (BGNP), obtained by a modified St?ber method. We also developed a new chemical route to obtain aqueous dispersive biodegradable polyurethane. The production of polyurethane/BGNP scaffolds intending to combine biocompatibility, mechanical, and physical properties in a material designed for tissue engineering applications. The composites obtained were characterized by structural, biological, and mechanical tests. The films presented 350% of deformation and the foams presented pore structure and mechanical properties adequate to support cell growth and proliferation. The materials presented good cell viability and hydroxyapatite layer formation upon immersion in simulated body fluid.  相似文献   

15.
心血管系统对整个生物体起着至关重要的作用。它执行许多重要功能,如为器官和组织提供营养、激素、向细胞输送氧气和维持生理温度。长期以来,准确识别机体血管壁的体内非线性、各向异性的力学特性一直被认为是心血管生物力学领域的关键挑战之一,因为这些特性是整个心脏功能的关键决定因素。目前,机械力和组织力学特性在动脉瘤、动脉粥样硬化等心血管疾病中的作用仍然是基础与临床研究的热点。本综述总结了2022年心血管生物力学与力学生物学领域的最新研究进展。在心血管生物力学方面,研究者关注心血管系统的结构、功能和病理生理学,并利用力学模型等方法来研究这些问题;主要包括动脉粥样硬化、动脉瘤和心肌梗死等疾病的生物力学特性研究,以及基于心血管系统动力学的治疗方法的开发和测试。在力学生物学方面,研究者探索了心血管细胞的力学特性和细胞外基质力学特性等;主要包括基于机器学习的细胞力学性质预测、生物材料力学性能研究以及力学特性在心血管细胞表型变化中的作用。这些研究成果为心血管疾病的诊断和治疗提供新的思路和方法,并为生物力学和力学生物学领域的研究提供新的启示。  相似文献   

16.
BACKGROUND: Intelligent hydrogel as a new material is widely used in biological medicine, tissue engineering, memory element switch, biological enzyme immobilization and other related fields, and exhibits good biological characteristics. Intelligent hydrogels provide a new approach for regeneration and repair of bone and other hard tissues.  OBJECTIVE: To summarize the latest developments of intelligent hydrogel in the biological medicine and tissue engineering in order to find out new methods for regeneration and repair of bone and other hard tissues. METHODS: A computer-based research of CNKI, PubMed and EBSCO-MEDLINE databases was performed to retrieve relevant literatures about the application of intelligent hydrogel in regeneration and repair of bone and other hard tissues published from 2000 to 2015. The keywords were “hydrogel, bone tissue engineering, bone defect, regeneration, repair” in Chinese and English, respectively. RESULTS AND CONCLUSION: Intelligent hydrogels are classified into pH-sensitive, temperature-sensitive, light-sensitive, multiple-sensitive and other sensitive hydrogels. In order to improve the mineralization ability of the hydrogel and construct the three-dimensional polymer scaffold of hydrogel, the main structure of the hydrogel materials can be mixed with various signal factors, thus achieving the multi-utility and multi-function of the material system, which will become the development trend of tissue engineering construction.   相似文献   

17.
改造天然生物组织为血管支架材料的预处理方法   总被引:17,自引:0,他引:17  
目前 ,临床对血管替代物的需求量越来越大 ,传统的来源已不能满足需要。组织工程化血管的出现使得这一问题有望得到解决。构建组织工程化血管就必然涉及血管支架的预制。生物支架材料是血管支架中的一大类 ,它在细胞黏附及促细胞生长等方面优于人工合成的支架材料。由于生物性材料自活体取出后即开始降解 ,同时不同材料间也存在着种群差异 ,不宜保存和直接应用 ,故需采用一些预处理方法来解决这些问题 ,预处理目的就是在移植生物性材料前 ,降低其抗原性、提高其抗酶降解能力 ,并较长时间地保持其良好的力学性能和组织结构。这些处理方法包括运用戊二醛、多聚环氧化合物、碳化二亚胺、京尼平及原花色素等化学试剂进行交联的化学方法和应用光氧化等进行交联的物理方法。本文详细地叙述了各种预处理方法的机理及相应各种材料处理前后免疫原性、生物稳定性、力学性能、细胞毒性、抗钙化能力等特性的变化 ,并对各种方法的优缺点做一简要的评述。总之 ,生物性材料预处理的发展趋势是继续深入研究和开发细胞毒性小的天然交联剂 ,完善并拓宽光氧化交联的应用  相似文献   

18.
Synthetic implant materials often lack of the anisotropic mechanical properties and cell-interactive surface which are shown by natural tissues. For example, engineered vascular grafts need to be developed to address the mechanical and biological problems associated with the graft materials. This study has demonstrated a double-electrospinning fabrication process to produce a poly(ε-caprolactone)-fibroin multilayer composite which shows well-integrated nanofibrous structure, endothelial-conducive surface and anisotropic mechanical property, suitable as engineered vascular constructs. Electrospinning parameters such as voltage, solution concentration, feed rate, and relative humidity were optimized to obtain defect-free, uniform nanofibers. To mimic the different mechanical properties of natural vessels in the circumferential and longitudinal directions, a rotating cylinder was used as collector, resulting in the production of constructs with anisotropic properties. The combination of the collector shape and the collector rotation allows us to produce a tubular structure with tunable anisotropic mechanical properties. Fourier transform infrared spectroscopy, differential scanning calorimetry, and uniaxial tensile tests were used to characterize the electrospun constructs. Cell cultures with primary endothelial cells demonstrated that cells showed spread morphology and strong adhesion on fibroin richer surfaces. The platform for producing robust multilayer scaffolds with intermixing nanofiber structure, tunable anisotropy ratio, and surface with specific compositions may hold great potential in tissue engineering applications.  相似文献   

19.
Schmidt CE  Baier JM 《Biomaterials》2000,21(22):2215-2231
Various research groups around the world are actively investigating cardiovascular prostheses of biological origin. This review article discusses the need for such bioprosthetics and the potential role for natural tissues in cardiovascular applications such as cardiac valves and vascular grafts. Upon implantation, unmodified natural materials are subject to chemical and enzymatic degradation, seriously decreasing the life of the prosthesis. Therefore, methods such as glutaraldehyde and polyepoxide crosslinking treatments and dye-mediated photooxidation have been developed to stabilize the tissue while attempting to maintain its natural mechanical properties. Also, residual cellular components in a bioprosthetic material have been associated with undesired effects, such as calcification and immunological recognition, and thus have been the motivation for various decellularization processes. The effects of these stabilization and decellularization treatments on mechanical, biological and chemical properties of treated tissues have been investigated, specifically with regard to calcification, immunogenicity, and cytotoxicity concerns. Despite significant advances in the area of cardiovascular prostheses, there has yet to be developed a completely biocompatible, long-lasting implant. However, with the recent advent of tissue engineering, the possibility of applying selective cell seeding to naturally derived bioprosthetics moves us closer to a living tissue replacement.  相似文献   

20.
《Acta biomaterialia》2014,10(4):1601-1611
Resilin is an elastomeric protein found in insect cuticles and is remarkable for its high strain, low stiffness, and high resilience. Since the first resilin sequence was identified in Drosophilia melanogaster (fruit fly), researchers have utilized molecular cloning techniques to construct resilin-based proteins for a number of different applications. In addition to exhibiting the superior mechanical properties of resilin, resilin-based proteins are autofluorescent, display self-assembly properties, and undergo phase transitions in response to temperature. These properties have potential application in designing biosensors or environmentally responsive materials for use in tissue engineering or drug delivery. Furthermore, the capability of resilin-based biomaterials has been expanded by designing proteins that include both resilin-based sequences and bioactive domains such as cell-adhesion or matrix metalloproteinase sequences. These new materials maintain the superior mechanical and physical properties of resilin and also have the added benefit of controlling cell response. Because the mechanical and biological properties can be tuned through protein engineering, a wide range of properties can be achieved for tissue engineering applications including muscles, vocal folds, cardiovascular tissues, and cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号