首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee JY  Park JH  Lee SJ  Park H  Lee YS 《Archiv der Pharmazie》2002,335(6):277-282
Styrylquinazoline derivatives were prepared by Perkin condensation and evaluated for inhibitory activity against HIV-1 integrase. Among them, compound 5c containing a free catechol ring was the most potent (IC(50)=0.8 +/- 1.9 microM)and showed 6-fold more potency than the corresponding styrylquinoline compound (IC(50) = 130.7 +/- 8.6 microM).  相似文献   

2.
A series of new 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine derivatives, prepared by two synthetic routes, were in vitro assayed against three Trypanosoma strains, Leishmania donovani, and Plasmodium falciparum K1. Seven out of 17 compounds showed moderate to very good activity against blood stage T. b. rhodesiense, with 10 and 17 exhibiting highest potency (IC50 of 1.0 and 1.1 microM, respectively). Interestingly, the beta-diketone precursors 1-3 had good antitrypanosomal activity toward the insect stage, with IC50 values of 1.0-3.4 microM. Among different compounds with moderate activity against T. cruzi, compound 17 showed the lowest IC50 value of 9.5 microM; thus, the series seemed to act selectively toward the different Trypanosoma parasites. Eight compounds were moderately active against L. donovani, with 2, 3, and 12 being the most promising ones (IC50 values of 2.3-5.2 microM), whereas compound 14 was the only derivative with good activity against P. falciparum (IC50 of 3.7 microM).  相似文献   

3.
Aim: To design and synthesize a series of benzenesulfonamide derivatives, 4-[2- alkylthio-5 (4)-(4-substitutedphenyl)imidazole-4(5)-yl]benzenesul fonamides (4a-4j), which are intended to act as cyclooxygenase-2 (COX-2) inhibitors with good COX-2 inhibitor activity, and which will exert anti-inflammatory activities in vivo. Methods: Benzenesulfonamide derivatives were designed and synthesized through multi-step chemical reactions. All the synthesized compounds were evaluated in an in vitro assay. The active compound 4a-4f was selected for further evaluation in a carrageenan-induced rat paw edema model. Results: Docking studies showed that compound 4 bind into the primary binding site of COX-2 with the sulfonamide SO2NH2 moiety interacting with the secondary pocket amino acid residues. In the in vitro assay, compound 4 inhibited COX-2 with an inhibition concentration IC50 value of 1.23-8 nmol/L, compared to celecoxib with IC50 value of 1.5 nmol/L. Compound 4b and 4c had good potency and selectivity in comparison to the celecoxib. In the in vivo model, compound 4a-4f exhibited a moderate potency to inhibit 50% carrageenan-induced paw edema with value of 1.58-4.3 mg/kg. In the latter experiment, compound 4c was the most active compound. Conclusion: The antiinflammatory effects obtained for compound 4a-4j could be due to the presence of fluorine or hydrogen substituents in the para position of the phenyl ring of these compounds.  相似文献   

4.
The synthesis of a series of pentadienoic and hexadienoic acid derivatives is reported. These compounds were tested as inhibitors of 5-lipoxygenase (5 LO) and cyclooxygenase (CO) in vitro and as inhibitors of arachidonic acid (AA) induced ear edema in mice in vivo. Their potency is compared with that of the standard inhibitors nafazatrom, BW 755C, NDGA, KME4, quercetine, and L 652,243. The most potent compound in vivo, diethyl 2-hydroxy-5-(ethylthio)-2(Z),4(Z)-hexadienedioate (20) inhibited AA-induced ear edema when administered topically or orally, with an ED50 value of 0.01 mg/ear and 20 mg/kg, respectively. Among the standard compounds tested, L 652,243 was the most active compound in this test with an ED50 value of 0.01 mg/ear and 1 mg/kg po, but unlike this compound, 20 is a selective inhibitor of 5-LO (IC50 = 2 microM) without any significant activity against CO (IC50 greater than 50 microM). Most of the other compounds in this series are also selective 5-LO inhibitors.  相似文献   

5.
The N-substituted tricyclic 2-aminochromone derivatives 1a, 2a, and 2b were obtained by treating the corresponding (methylthio) or (methylsulfinyl) derivatives 10, 11, or 12, respectively, with an excess of the proper amines. Compound 2c was synthesized through the reaction of 2-naphthol with the ethyl N,N-diphenylmalonamate/POCl(3) reagent 14. The N-substituted 4-aminocoumarin bicyclic and tricyclic derivatives 5-8 were prepared by treating the corresponding chloro derivatives with the excess suitable amines. Compounds 1, 2, 5-8 were tested in vitro for their antiproliferative activity (DNA synthesis inhibition in Ehrlich cells) and cytotoxicity (MTT test in HeLa cells). The inhibitory properties of three selected compounds (5c, 5e, 7c) on protein and RNA syntheses in Ehrlich cells were also evaluated. Among the 27 compounds tested, 10 4-aminocoumarin derivatives (5-8) and two 2-aminochromone derivatives (1a and 2a) showed an appreciable antiproliferative activity (IC(50) range: 1.74-13.8 microM), whereas only four compounds 5-8 exhibited a comparable cytotoxic activity (IC(50) range: 4.95-12.9 microM).  相似文献   

6.
We have studied the effects of four different phenol derivatives, with methyl and halogen substituents, on heterologously expressed human skeletal muscle sodium channels, in order to find structural determinants of blocking potency. All compounds blocked skeletal muscle sodium channels in a concentration-dependent manner. The methylated phenol 3-methylphenol and the halogenated phenol 4-chlorophenol blocked sodium currents on depolarization from -100 mV to 0 mV with IC(50) values of 2161 and 666 microM respectively. Methylation of the halogenated compound further increased potency, reducing the IC(50) to 268 microM in 2-methyl-4-chlorophenol and to 150 microM in 3,5-dimethyl-4-chlorophenol. Membrane depolarization before the test depolarization increased sodium channel blockade. When depolarizations were started from -70 mV or when a 2.5 s prepulse was introduced before the test pulse inducing slow inactivation, the IC(50) was reduced more than 3 fold in all compounds. The values of K(D) for the fast-inactivated state derived from drug-induced shifts in steady-state availability curves were 14 microM for 3,5-dimethyl-4-chlorophenol, 19 microM for 2-methyl-4-chlorophenol, 26 microM for 4-chlorophenol and 115 microM for 3-methylphenol. All compounds accelerated the current decay during depolarization and slowed recovery from fast inactivation. No relevant frequency-dependent block after depolarizing pulses applied at 10, 50 and 100 Hz was detected for any of the compounds. All the phenol derivatives that we examined are effective blockers of skeletal muscle sodium channels, especially in conditions that are associated with membrane depolarization. Blocking potency is increased by halogenation and by methylation with increasing numbers of methyl groups.  相似文献   

7.
A newly described plant-derived flavonoid, hypolaetin-8-glucoside, which has anti-inflammatory and gastroprotective actions in-vivo, and its corresponding aglycone, hypolaetin, have been compared with 14 other flavonoids for inhibition of eicosanoid generation via the 5-lipoxygenase and cyclo-oxygenase pathways in elicited rat peritoneal leukocytes stimulated with calcium ionophore. Comparable results for the inhibitory profiles of the compounds were obtained using either radioimmunoassay of released eicosanoids or radio-TLC of metabolites formed from labelled arachidonate, but there were differences in absolute potency of the inhibitors. Hypolaetin-8-glucoside was a weak but selective inhibitor of 5-lipoxygenase (IC50 56 microM vs 5-lipoxygenase; greater than 1000 microM vs cyclo-oxygenase), whereas the aglycone hypolaetin was a more potent and selective 5-lipoxygenase inhibitor (IC50 4.5 microM vs 70 microM). Results with three other glycoside/aglycone pairs confirmed that addition of sugar residues greatly reduces inhibitory potency whilst retaining selectivity against 5-lipoxygenase. Analysis of 12 aglycone flavonoids showed that inhibitory potency and selectivity against 5-lipoxygenase is conferred by the presence of 3'4'-vicinal diol (catechol) in ring B as part of a 3,4-dihydroxycinnamoyl structure as proposed by others and by incorporation of additional hydroxyl substituents. In contrast, "cross-over" of inhibitory selectivity is observed in compounds containing few hydroxyl substituents (with none in ring B) which are selective against cyclo-oxygenase. These results are discussed in relation to possible mechanisms of hypolaetin-8-glucoside's protective actions and the concept that these inhibitory effects of flavonoids cannot be ascribed to a unitary free radical scavenging action.  相似文献   

8.
We have previously reported that a series of 4-[4-(N-substituted (thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives were potent and selective inhibitors of platelet-derived growth factor receptor (PDGFR) phosphorylation and demonstrated several biological effects such as suppression of neointima formation following balloon injury in rat carotid artery by oral administration. Here, we investigated structure-activity relationships of the 6,7-dimethoxyquinazolinyl moiety. In regard to 6,7-dimethoxy groups, ethoxy analogues showed potent activity (IC(50) of 16b is 0.04 microM; IC(50) of 17a is 0.01 microM) and further extension of the alkyl group reduced activity. Interestingly, methoxyethoxy (IC(50) of 16j is 0.02 microM; IC(50) of 17h is 0.01 microM) and ethoxyethoxy (IC(50) of 17j is 0.02 micro M) analogues showed the most potent activity, suggesting that the inserted oxygen atom significantly interacts with beta-PDGFR. Among tricyclic quinazoline derivatives, the 2-oxoimidazo[4,5-e]quinazoline derivative 21a showed potent activity (IC(50) = 0.10 microM). Regarding replacements of quinazoline by other heterocyclic rings, pyrazolo[3,4-d]pyrimidine (39a, IC(50) = 0.17 microM) and quinoline (IC(50) of 40a is 0.18 microM; IC(50) of 40b is 0.09 microM) derivatives showed potent activity. Isoquinoline and some pyridopyrimidine derivatives were completely inactive; therefore, 1-aza has an important role. Also 7-aza and 8-aza substitution on the parent quinazoline ring has a detrimental effect on the interaction with beta-PDGFR. We also demonstrated that the substituents on the quinazoline ring possess major consequences for metabolic polymorphism. Although there existed extensive metabolizers and poor metabolizers in Sprague-Dawley rats administrated 6,7-dimethoxyquinazoline derivatives (1b and 1c), 6-(2-methoxy)ethoxy-7-methoxyquinazoline analogue 16k showed no metabolic polymorphism.  相似文献   

9.
Previous SAR studies (Part 1: Mai, A.; et al. J. Med. Chem. 2003, 46, 512-524) performed on some portions (pyrrole-C4, pyrrole-N1, and hydroxamate group) of 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1a) highlighted its 4-phenylacetyl (1b) and 4-cynnamoyl (1c) analogues as more potent compounds in inhibiting maize HD2 activity in vitro. In the present paper, we investigated the effect on anti-HD2 activity of chemical substitutions performed on the pyrrole-C2 ethene chains of 1a-c, which were replaced with methylene, ethylene, substituted ethene, and 1,3-butadiene chains (compounds 2). Biological results clearly indicated the unsubstituted ethene chain as the best structural motif to get the highest HDAC inhibitory activity, the sole exception to this rule being the introduction of the 1,3-butadienyl moiety into the 1a chemical structure (IC50(2f) = 0.77 microM; IC50(1a) = 3.8 microM). IC50 values of compounds 3, prepared as 1b homologues, revealed that between benzene and carbonyl groups at the pyrrole-C(4) position a hydrocarbon spacer length ranging from two to five methylenes is well accepted by the APHA template, being that 3a (two methylenes) and 3d (five methylenes) are more potent (2.3- and 1.4-fold, respectively) than 1b, while the introduction of a higher number of methylene units (see 3e,f) decreased the inhibitory activities of the derivatives. Particularly, 3a (IC50 = 0.043 microM) showed the same potency as SAHA in inhibiting HD2 in vitro, and it was 3000- and 2.6-fold more potent than sodium valproate and HC-toxin and was 4.3- and 6-fold less potent than trapoxin and TSA, respectively. Finally, conformationally constrained forms of 1b,c (compounds 4), prepared with the aim to obtain some information potentially useful for a future 3D-QSAR study, showed the same (4a,b) or higher (4c,d) HD2 inhibiting activities in comparison with those of the reference drugs. Molecular modeling and docking calculations on the designed compounds performed in parallel with the chemistry work fully supported the synthetic effort and gave insights into the binding mode of the more flexible APHA derivatives (i.e., 3a). Despite the difference of potency between 1b and 3a in the enzyme assay, the two APHA derivatives showed similar antiproliferative and cytodifferentiating activities in vivo on Friends MEL cells, being that 3a is more potent than 1b in the differentiation assay only at the highest tested dose (48 microM).  相似文献   

10.
The potent inhibitory activity of novel 2-benzyltetralone and 2-benzylidenetetralone derivatives vs liver microsomal retinoic acid metabolizing enzymes and a MCF-7 CYP26A1 cell assay is described. In the liver microsomal assay, the 2-biphenylmethyl-6-hydroxytetralone derivatives 16a and 16b were found to be potent inhibitors (IC50 = 0.5 and 0.8 microM) compared with the broad spectrum P450 inhibitor ketoconazole and the retinoid mimetic R115866 (IC50 = 18.0 and 9.0 microM, respectively). In the MCF-7 CYP26A1 cell assay, the 2-(4-hydroxybenzyl)-6-methoxytetralone 5 and unsaturated benzylidene precursor 6 were found to be the most potent (IC50 = 7 and 5 microM, respectively), which was comparable with liarozole (7 microM) but considerably less active than R115866 (IC50 = 5 nM). With a CYP26A1 homology model, the tetralones were shown to be positioned in a hydrophobic tunnel with additional interactions, e.g., transition metal coordination and hydrogen-bonding interactions with GLY300, observed for the potent 4-hydroxyphenyl substituted inhibitors.  相似文献   

11.
The rhizome of Dryopteris crassirhizoma NAKAI exhibited significant antioxidant activity, as assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in vitro. Two phloroglucinol derivatives, flavaspidic acids PB (1) and AB (2), were isolated from the rhizome of D. crassirhizoma by a bioassay-guided fractionation. 1H-, 13C-NMR, and UV analysis were used to determine the structures. Furthermore, the two compounds were tested for their antioxidant activities, such as their DPPH radical scavenging, superoxide radical scavenging, and lipid peroxidation (LPO) inhibitory activities. Compounds 1 and 2 exhibited potent antioxidant activity against the LPO inhibitory test with IC(50) values of 12.9 and 13.1 microM, respectively, compared with alpha-tocopherol (IC(50); 15.6 microM) and butylated hydroxy anisole (BHA, IC(50); 10.8 microM), while the two compounds had a moderated effect on the DPPH radical scavenging activity (IC(50); 71.7, 76.3 microM) as well as superoxide radical scavenging activity (IC(50); 58.6, 64.4 microM). The potent activity of the flavaspidic acids (1, 2) on inhibiting LPO might be due to possible stabilization as a result of chelating with iron.  相似文献   

12.
Antioxidant flavonoids have been isolated from the flower of Rhododendron yedoense var. poukhanense. One new flavonoid and three known flavonoids, quercetin-5-O-beta-D-glucopyranoside (1), quercetin (3), and quercitrin (4), were isolated from the butanol and ethyl acetate extracts of the plant. The new flavonoid was identified as myricitrin-5-methyl ether (2). The isolation of these flavonoids from this plant, for the first time, is a valuable finding. The flavonoids were evaluated for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH), TBARS (thiobarbituric acid reactive substance) and superoxide anion radical (O2-) in the xanthine/xanthine oxidase assay system. In the DPPH scavenging assay, the IC50 values were 4.5 +/- 0.48 microM for compound 2 and 9.7 +/- 0.29 microM for compound 3, which showed an antioxidant activity approximately 1.5-2 times higher than the antioxidant activity of alpha-tocopherol (9.8 +/- 0.94 microM). Additionally, the antioxidant activities of myricitrin-5-methyl ether (2) (IC50 = 1.7 +/- 0.22 microM) and quercetrin (4) (IC50 = 1.9 +/- 0.63 microM) were higher than that of L-ascorbic acid (IC50 = 7.4 +/- 0.63 microM) when evaluated using a TBARS assay. Compound 2 showed high activity in both the inhibition of xanthine oxidase (1.1 +/- 0.21 mM) and in the activation of superoxide scavenging.  相似文献   

13.
A number of 1-hydroxyazole derivatives were synthesized as bioisosteres of (S)-glutamic acid (Glu) and as analogues of the AMPA receptor agonist (R,S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA, 3b). All compounds were subjected to in vitro pharmacological studies, including a series of Glu receptor binding assays, uptake studies on native as well as cloned Glu uptake systems, and the electrophysiological rat cortical slice model. Compounds 7a,b, analogues of AMPA bearing a 1-hydroxy-5-pyrazolyl moiety as the distal carboxylic functionality, showed only moderate affinity for [3H]AMPA receptor binding sites (IC(50) = 2.7 +/- 0.4 microM and IC(50) = 2.6 +/- 0.6 microM, respectively), correlating with electrophysiological data from the rat cortical wedge model (EC(50) = 280 +/- 48 microM and EC(50) = 586 +/- 41 microM, respectively). 1-Hydroxy-1,2,3-triazol-5-yl analogues of AMPA, compounds 8a,b, showed high affinity for [3H]AMPA receptor binding sites (IC(50) = 0.15 +/- 0.03 microM and IC(50) = 0.13 +/- 0.02 microM, respectively). Electrophysiological data showed that compound 8a was devoid of activity in the rat cortical wedge model (EC(50) > 1000 microM), whereas the corresponding 4-methyl analogue 8b was a potent AMPA receptor agonist (EC(50) = 15 +/- 2 microM). In accordance with this disparity, compound 8a was found to inhibit synaptosomal [3H]D-aspartic acid uptake (IC(50) = 93 +/- 25 microM), as well as excitatory amino acid transporters (EAATs) EAAT1 (IC(50) = 100 +/- 30 microM) and EAAT2 (IC(50) = 300 +/- 80 microM). By contrast, compound 8b showed no appreciable affinity for Glu uptake sites, neither synaptosomal nor cloned. Compounds 9a-c and 10a,b, possessing 1-hydroxyimidazole as the terminal acidic function, were devoid of activity in all of the systems tested. Protolytic properties of compounds 7a,b, 8b, and 9b were determined by titration, and a correlation between the pK(a) values and the activity at AMPA receptors was apparent. Optimized structures of all the synthesized ligands were fitted to the known crystal structure of an AMPA-GluR2 construct. Where substantial reduction or abolition of affinity at AMPA receptors was observed, this could be rationalized on the basis of the ability of the ligand to fit the construct. The results presented in this article point to the utility of 1-hydroxypyrazole and 1,2,3-hydroxytriazole as bioisosteres of carboxylic acids at Glu receptors and transporters. None of the compounds showed significant activity at metabotropic Glu receptors.  相似文献   

14.
A series of new 2-substituted 4-dialkylaminobicyclo[2.2.2]octane derivatives was prepared and the compounds were investigated for their activity against causative organisms of tropical diseases. The tests were performed as microplate assays using the K1 strain of Plasmodium falciparum (resistant to chloroquine and pyrimethamine) and Trypanosoma brucei rhodesiense (STIB 900). The results were compared to the activities of former tested compounds of the bicyclo[2.2.2]octane series and to known drugs. Most of the 4-amino-6,7-diphenylbicyclo[2.2.2]octan-2-one thiosemicarbazones were compounds with attractive antimalarial potency (IC(50)=0.84-0.99microM, chloroquine: IC(50)=0.12microM). One of the bicyclo[2.2.2]octan-2-yl 4-tert-butylbenzenesulfonates showed the highest antitrypanosomal activity (IC(50)=0.68microM) of the so far prepared 4-amino-6,7-diarylbicyclo[2.2.2]octane derivatives, but is distinctly less active than suramin (IC(50)=0.0075microM).  相似文献   

15.
A series of unsaturated analogues of nucleosides were prepared and their cytotoxic, antitumor, and antiviral activities were investigated. Alkylation of cytosine with (E)-1,4-dichloro-2-butene gave chloro derivative 2f, which was hydrolyzed to alcohol 2h. Cytosine, adenine, 2-amino-6-chloropurine, thymine, and (Z)-1,4-chloro-2-butene gave compounds 4c-f, which, after hydrolysis, afforded alcohols 4a, 4b, 4g, and 4h. Alkenes 4d and 4e were cyclized to heterocycles 12 and 13. Alkylation of 2,6-diaminopurine with 1,4-dichloro-2-butyne led to chloro derivative 6a, which was hydrolyzed to alcohol 6b. Allenic isomerization of 6b gave compound 5c. Chloro derivatives 2e-g, 4c-f, 5d, and 6c-e as well as pyrimidine oxacyclopentenes 9c and 9d are slow-acting inhibitors of murine leukemia L1210 of IC50 10-100 microM. The most active were analogues 4c, 4d, 4e, and 6e (IC50 10-20 microM). The corresponding hydroxy derivatives were less active of inactive. Inhibition of macromolecular synthesis with compounds 4c, 4d, 6e, 9c, and 9d follows the order: DNA greater than RNA greater than or equal to protein. Cytotoxic effects of 4c, 6e, and 9d are not reversed with any of the four basic ribonucleosides or 2'-deoxyribonucleosides. Inhibitory activity of cytosine derivative 9c is reversed with uridine and 2'-deoxyuridine but not with the corresponding cytosine nucleosides. Zone assays in several tumor cell lines show that active compounds are cytotoxic agents with little selectivity for tumor cells. Analogue 6c showed 16.7% ILS in leukemia P388/o implanted ip in mice at 510 and 1020 mg/kg, respectively. Cytallene (5b) and 6'beta-hydroxyaristeromycin (10) exhibited significant activity against Friend and Rauscher murine leukemia viruses. The rest of the hydroxy derivatives, with the exception of 4a, were moderately effective or inactive as antiviral agents. None of the chloro derivatives or oxacyclopentenes exhibited an antiviral effect at noncytotoxic concentrations. Z-Olefin 4b and 2-aminoadenallene (5c) are substrates for adenosine deaminase.  相似文献   

16.
A series of 45 phenethylamine derivatives were synthesized and evaluated for their inhibitory activity against pig kidney aldose reductase (ALR2, EC 1.1.1.21). Their IC(50) values ranged from 400 microM to 24 microM. The binding modes of compounds at the active site of ALR2 were examined using flexible docking. The results indicated that phenethylamine derivatives nicely fit into the active pocket of ALR2 by forming various hydrogen bonding and hydrophobic interactions. 3D-QSAR analysis was also conducted using FlexX-docked alignment of the compounds. The best prediction was obtained by CoMSIA combined with hydrophobic and hydrogen bond donor/acceptor field (q(2) = 0.557, r(2) = 0.934). A new derivative, 4-oxo-4-(4-hydroxyindole)butanoic acid, was designed, taking into account the CoMSIA field and the binding mode derived by FlexX docking. This rationally designed compound exhibits an ALR2 inhibition with an IC(50) value of 7.4 microM, which compares favorably to that of a well-known ALR2 inhibitor, tolrestat (IC(50) = 16 microM) and represents a potency approximately 240-fold higher than that of an original phenethylamine lead compound, YUA001.  相似文献   

17.
The structure-activity relationships of a tamoxifen (TAM) (Z-1-(4- beta-dimethylaminoethoxyphenyl)1,2-diphenylbut-1-ene) series have been investigated. The tamoxifen derivatives were assayed in vitro by their modulation of estradiol (E2)-stimulated prolactin synthesis in primary cultures of dispersed rat pituitary gland cells. Monohydroxylation of TAM in position 4 of the stilbene ring system was found to be the optimal substitution for binding to the estrogen receptor [relative binding affinity (RBA) = 234] and to inhibit E2 (1 nM)-stimulated prolactin synthesis (IC50 7 nM) by pituitary cells in primary culture. Substitution in positions 3 and 4 to form a catechol did not decrease affinity for the estrogen receptor (RBA = 252), and potency as an antiestrogen was maintained in the prolactin assay (IC50 20 nM) as long as oxidation of the catechol was prevented. All of the hydroxylated derivatives of tamoxifen tested were estrogen antagonists; however, removal of the alkylaminoethoxy side chain from TAM produced a full estrogen agonist with low potency (20 nM). In contrast, removal of the side chain from 4-hydroxytamoxifen (4-OH TAM) produced a partial agonist. A structural analogue of 4-OH TAM, 3-[beta-dimethylaminoethoxy]-11-ethyl-12-(4-hydroxyphenyl)5,6- dihydrodibenzo[a,e]-cyclooctene (7c) had a decreased potency (IC50 16 nM) compared with 4-OH TAM (IC50 4 nM in the same experiment) as an estrogen antagonist. If the side chain was changed from a dimethylaminoethoxy to glyceryl, antagonist activity was reduced (IC50 0.8 microM). An allyl side chain produced a compound with no antiestrogenic activity at concentrations up to 1 microM. An adaptation of Belleau's macromolecular perturbation theory is suggested to explain the interaction of agonists, antagonists, and partial agonists at the ligand binding site of the estrogen receptor.  相似文献   

18.
Several substituted derivatives of kynurenic acid were tested on the N-methyl-D-aspartate (NMDA) receptor/ion channel complex present in the guinea pig myenteric plexus, on the binding of [3H]glycine and of [3H]N-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) to rat cortical membranes and on the depolarization of mice cortical wedges induced by NMDA or quisqualic acid (QA). Kynurenic acid derivatives, having a chlorine (CI) or a fluorine atom in position 5 or 7 but not in position 6 or 8 had significantly lower IC50s than the parent compound when tested on the antagonism of glutamate-induced ileal contraction and in the glycine binding assay. A further significant increase in potency was obtained by substituting a thio group for the hydroxy group in position 4 of kynurenic acid: the IC50 was 160 +/- 20 microM of kynurenic acid and 70 +/- 15 microM of thiokynurenic acid in the myenteric plexus whereas these IC50s for glycine binding were 25 +/- 3 and 9 +/- 2 microM respectively. Several thiokynurenic acid derivatives were synthetized and showed an increased affinity for the glycine recognition site over the corresponding kynurenic acid derivatives. Glycine competitively antagonized the actions of the thiokynurenates in the ileum, in cortical wedges and on [3H]TCP binding. In this preparation, 7-Cl-thiokynurenic acid had an IC50 of 8 microM for antagonizing 10 microM NMDA-induced depolarization while 50% of the 10 microM QA depolarization was antagonized at 300 microM. Thus thiokynurenic acid derivatives seem to be a new group of potent and selective antagonists of strychnine-insensitive glycine receptors.  相似文献   

19.
The antioxidant properties of eleven alpha-pyrones and four gamma-pyrones were evaluated by means of three different tests: reduction of the stable free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide anion scavenging assay and lipid peroxidation assay. In the DPPH test, 6-aryl-5,6-dihydro-4-hydroxypyran-2-ones (3) and 4-hydroxypyran-2-one (5f) were the most active derivatives with IC50 values ranging from 36.7 to 394 mumol/l. Potent superoxide anion scavenging properties appeared in derivatives possessing phenol moieties. Thus phenolic pyrones 5e and 5f exhibited a noteworthy activity (IC50 = 0.180 and 0.488 mmol/l, respectively) when reference compound, ascorbic acid, demonstrated only 24% inhibition at a concentration of 1 mg/ml. In addition derivative 5f significantly inhibited the Fe2+/ADP/ascorbate-induced lipid peroxidation of rat liver microsomes with an IC50 value of 0.069 mmol/l. Due to its multiple mechanism of protective action, compound 5f may be useful for the treatment of oxidative tissue injury in human disease.  相似文献   

20.
A series of biphenylsulfonamide derivatives of (S)-2-(biphenyl-4-sulfonylamino)-3-methylbutyric acid (5) were prepared and evaluated for their ability to inhibit matrix metalloproteinases (MMPs). For this series of compounds, our objective was to systematically replace substituents appended to the biphenyl and alpha-position of 5 with structurally diverse functionalities to assess the effects these changes have on biological and pharmacokinetic activity. The ensuing structure-activity relationship (SAR) studies showed that biphenylsulfonamides substituted with bromine in the 4'-position (11c) significantly improved in vitro activity and exhibited superior pharmacokinetics (C(max), t(1/2), AUCs), relative to compound 5. Varying the lipophilicity of the alpha-position by replacing the isopropyl group of 11c with a variety of substituents, in general, maintained potency versus MMP-2, -3, and -13 but decreased the oral systemic availability. Subsequent evaluation of its enantiomer, 11c', showed that both compounds were equally effective MMP inhibitors. In contrast, the corresponding hydroxamic acid enantiomeric pair, 16a (S-isomer) and 16a' (R-isomer), stereoselectivity inhibited MMPs. For the first time in this series, 16a' provided nanomolar potency against MMP-1, -7, and -9 (IC(50)'s = 110, 140, and 18 nM, respectively), whereas 16a was less potent against these MMPs (IC(50)'s = 24, 78, and 84 microM, respectively). However, unlike 11c, compound 16a' afforded very low plasma concentrations following a single 5 mg/kg oral dose in rat. Subsequent X-ray crystal structures of the catalytic domain of stromelysin (MMP-3CD) complexed with inhibitors from closely related series established the differences in the binding mode of carboxylic acid-based inhibitors (11c,c') relative to the corresponding hydroxamic acids (16a,a').  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号