首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Theiler's murine encephalomyelitis virus (TMEV) infection of mice can produce a biphasic disease of the central nervous system (CNS). Most susceptible strains of mice survive the acute infection and develop a chronic demyelinating disease. In this report, we analyzed the routes of spread of TMEV within the CNS of nude mice and target sites eventually infected in the CNS. Compared to the immunocompetent mouse, in which an antiviral immune response is mounted but virus persists, the nude mouse develops a severe encephalomyelitis due to the lack of functional T lymphocytes and provides a useful model for the study of viral dissemination. We demonstrated, by immunohistochemistry, the presence of viral antigen in defined regions of the CNS, corresponding to various structures of the limbic system. In addition, we found a different time course for viral spread using two different sites of intracerebral inoculation, ie, via the olfactory bulb or the cortex. Limbic structures were rapidly infected following olfactory bulb infection and then showed a decrease in viral load, presumably due to loss of target neurons. Using either route of infection, the virus was able to disseminate to similar regions. These results indicate that limbic structures and their connections are very important for the spread of TMEV in the brain. In the spinal cord, not only neuronal but hematogenous pathways were suspected to be involved in the dissemination of Theiler's virus.  相似文献   

3.
Knowledge of the cells in which Theiler's murine encephalomyelitis virus (TMEV) persists is crucial to understanding the pathogenesis of TMEV-induced demyelinating disease; however, it is still uncertain whether oligodendrocytes or macrophages are the primary target for persistence. In this study, mononuclear cells (MNC) isolated directly from central nervous system (CNS) inflammatory infiltrates of TMEV-infected mice on discontinuous Percoll gradients were found to contain infectious TMEV. Macrophages appeared to be the principal MNC infected as determined by two-color immunofluorescence. Infectious center assay and double immunostaining together indicated the presence and possible synthesis of TMEV in approximately 1 in 225 to 1 in 1000 CNS macrophages, with 1 to 7 PFU produced per macrophage. On the basis of these findings, limited replication in macrophages is consistent with the total CNS virus content detected at any time during the persistent phase of the infection as well as the slow pace of the infection.  相似文献   

4.
Shah AH  Lipton HL 《Virology》2002,304(2):443-450
Low-neurovirulence BeAn and DA Theiler's murine encephalomyelitis viruses (TMEV) cause persistent infection in the central nervous system (CNS) of susceptible mouse strains, leading to an inflammatory demyelinating process. A role for a specific virus-cell receptor interaction has been posited to explain why only low- and not high-neurovirulence TMEV cause persistent CNS infections. Low- but not high-neurovirulence TMEV use sialic acid for attachment to mammalian cells, which may contribute to neurovirulence attenuation and viral persistence. Analysis of BeAn virus binding and infection in cells with altered (mutated) cell-surface expression of sialic acid containing glyconjugates indicated that both binding and infection are mediated entirely by N-linked glycoproteins. By contrast, GDVII virus binding and infection appears to be dependent only in part on N-linked glycoproteins and not on O-linked glycoproteins or glycolipids. These results indicate that low-neurovirulence BeAn virus uses a sialic acid moiety expressed on an N-linked carbohydrate of a glycoprotein that serves as the protein entry receptor.  相似文献   

5.
Intracerebral infection of susceptible strains of mice, e.g. SJL/J, with Theiler's murine encephalomyelitis virus (TMEV) leads to a persistent CNS infection accompanied by development of a chronic-progressive inflammatory CNS autoimmune demyelinating disease which is clinically and pathologically similar to human multiple sclerosis. In contrast, resistant strains of mice, e.g. C57BL/6 (B6), effectively clear TMEV from the CNS and do not develop demyelinating disease. Although CD8(+) T cells are crucial for viral clearance in B6 mice, SJL mice also mount potent CD8(+) T cell responses against virus, thus the reason for the viral persistence in the CNS in these mice is unclear. Here, we examined innate anti-viral responses of CNS-resident astrocytes as a potential determinant of viral persistence and disease susceptibility. We demonstrate that B6 astrocytes produce significantly higher levels of cytokines, chemokines and adhesion molecules in response to TMEV infection, or stimulation with IFN-gamma and TNF-alpha or poly I:C than SJL mice. In addition, TMEV more effectively induces MHC I molecules on B6 astrocytes than SJL, corresponding with an increased ability to activate TMEV-specific CD8(+) T cells directly ex vivo. These results suggest that enhanced anti-viral responses of B6 astrocytes contribute to the ability of these mice to clear TMEV from the CNS and therefore to their resistance to the development of autoimmune demyelinating disease.  相似文献   

6.
P Borrow  A A Nash 《Immunology》1992,76(1):133-139
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which induces a chronic demyelinating disease of the central nervous system (CNS) in certain susceptible mouse strains. Demyelination has been shown to result from immunopathological responses mediated by CD4+, major histocompatibility complex (MHC) class II-restricted T cells. As little or no class II is expressed in the normal mouse CNS, the ability of astrocytes to express these proteins and present antigen to T cells from TMEV-infected mice was investigated here. It is shown that astrocytes are capable of presenting TMEV to virus-specific T cells in vitro, and that this ability is dependent on prior induction of MHC class II by interferon-gamma (IFN-gamma) treatment. Unlike other viruses such as murine hepatitis virus-JHM (a coronavirus) and measles, TMEV is not capable of inducing class II on astrocytes directly. There is a correlation between the ease of class II induction on astrocytes from different mouse strains by IFN-gamma and mouse strain susceptibility to TMEV-induced demyelinating disease. These results suggest that following viral infection and initial T-cell infiltration into the CNS, class II induction on astrocytes is a key step allowing local antigen presentation and amplification of immunopathological responses within the CNS and hence the development of demyelinating disease.  相似文献   

7.
P Borrow  C J Welsh    A A Nash 《Immunology》1993,80(3):502-506
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus which causes a biphasic central nervous system (CNS) disease in certain strains of mice. Lytic virus replication within the CNS causes acute damage at early times post-infection, with the surviving animals developing a chronic CNS demyelinating disease. This damage is thought to result both from direct viral damage and from an immunopathological CD4+ T-cell mediated delayed-type hypersensitivity response to virus. By contrast, CD4+ T cells have a vital protective role at early times post-infection, as mice specifically depleted of CD4+ T cells of this subset prior to infection with TMEV die within 3-5 weeks. In an investigation of how CD4+ T cells act to mediate protection in TMEV-infected mice, we show that CD4+ cell-depleted animals, which fail to make a significant antiviral antibody response, could be protected by passive transfer of neutralizing antibodies. However, surviving animals had high levels of persisting virus in the CNS and they developed very severe symptoms of chronic demyelinating disease. The appearance of infectious virus was not due to selection of neutralizing antibody-resistant viral variants. These results demonstrate that the key protective role of CD4+ T cells in TMEV-infected mice is to provide help for antibody production by B cells at early times post-infection, but that other CD4+ cell-dependent mechanisms must contribute to control of virus replication, and are of importance in determining the levels of virus subsequently persisting in the CNS, and hence the severity of the chronic demyelinating disease.  相似文献   

8.
Mice experimentally infected with Theiler's murine encephalomyelitis virus (TMEV) develop a persistent infection of the central nervous system (CNS). The most striking feature of this infection is the occurrence of inflammatory primary demyelination in the spinal cord white matter. The pathogenesis of myelin degeneration in this model has not been clarified, but morphologic and immunologic data suggest that the host immune response plays a major role in the production of myelin injury. Because of low virus titers in infected adult mice and of the small size of TMEV, virus particles have never been observed in this demyelinating model. Yet elucidation of the types of cells in the CNS supporting virus replication would be important for a better understanding of both virus persistence and virus-induced demyelinating pathology. The present paper is a sequential study of the localization of TMEV in the spinal cord in infected mice by ultrastructural immunohistochemical techniques. Results indicate that virus replication is mainly in neurons during the acute phase of the disease, while in the chronic phase viral inclusions are mainly found in macrophages in and around demyelinating lesions. Other cells are also infected, but to a lesser degree. In the neuronal system both axoplasmic and dendritic flow appear to facilitate the spread of virus in the CNS. In macrophages, the presence of virus particles and the association of virus with altered components of the cytoskeleton support active virus production rather than simple internalization. The macrophage appears to play an important role in both the establishment of virus persistence and in the process of demyelination in this animal model.  相似文献   

9.
Kang BS  Yahikozawa H  Koh CS  Kim BS 《Virology》2007,366(1):185-196
Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in an immune-mediated demyelinating disease similar to human multiple sclerosis. TMEV infection is widely spread via fecal-oral routes among wild mouse populations, yet these infected mice rarely develop clinical disease. Oral vaccination has often been used to protect the host against many different infectious agents, although the underlying protective mechanism of prior oral exposure is still unknown. To understand the mechanisms involved in protection from demyelinating disease following previous oral infection, immune parameters and disease progression of mice perorally infected with TMEV were compared with those of mice immunized intraperitoneally following intracerebral infection. Mice infected perorally, but not intraperitoneally, prior to CNS viral infection showed lower chronic viral persistence in the CNS and reduced TMEV-induced demyelinating disease. However, a prolonged period of post-oral infection was necessary for effective protection. Mice orally pre-exposed to the virus displayed markedly elevated levels of antibody response to TMEV in the serum, although T cell responses to TMEV in the periphery were not significantly different between perorally and intraperitoneally immunized mice. In addition, orally vaccinated mice showed higher levels of early CNS-infiltration of B cells producing anti-TMEV antibody as well as virus-specific CD4(+) and CD8(+) T cells in the CNS compared to intraperitoneally immunized mice. Therefore, the generation of a sufficient level of protective immune responses appears to require a prolonged time period to confer protection from TMEV-induced demyelinating disease.  相似文献   

10.
Multiple sclerosis (MS) has been proposed to be an immune‐mediated disease in the central nervous system (CNS) that can be triggered by virus infections. In Theiler's murine encephalomyelitis virus (TMEV) infection, during the first week (acute stage), mice develop polioencephalomyelitis. After 3 weeks (chronic stage), mice develop immune‐mediated demyelination with virus persistence, which has been used as a viral model for MS. Regulatory T cells (Tregs) can suppress inflammation, and have been suggested to be protective in immune‐mediated diseases, including MS. However, in virus‐induced inflammatory demyelination, although Tregs can suppress inflammation, preventing immune‐mediated pathology, Tregs may also suppress antiviral immune responses, leading to more active viral replication and/or persistence. To determine the role and potential translational usage of Tregs in MS, we treated TMEV‐infected mice with ex vivo generated induced Tregs (iTregs) on day 0 (early) or during the chronic stage (therapeutic). Early treatment worsened clinical signs during acute disease. The exacerbation of acute disease was associated with increased virus titers and decreased immune cell recruitment in the CNS. Therapeutic iTreg treatment reduced inflammatory demyelination during chronic disease. Immunologically, iTreg treatment increased interleukin‐10 production from B cells, CD4+ T cells and dendritic cells, which may contribute to the decreased CNS inflammation.  相似文献   

11.
Infection of the central nervous system by Theiler's murine encephalomyelitis virus (TMEV), a picornavirus, produces chronic demyelinating disease in susceptible mice. In this immunoelectron microscopic study of TMEV infection of neonatal mouse brain cells in culture, TMEV antigen was found on the surfaces of infected oligodendrocytes and astrocytes by labeling with hyperimmune serum from TMEV-infected mice or with rabbit antiserum to purified inactivated DA strain TMEV. Brain-derived macrophages had no TMEV-specific antigen on their surfaces and were not able to maintain productive TMEV infection, even though TMEV antigen was present in the cytoplasm. The presence of TMEV antigens on the surfaces of oligodendrocytes (myelin-producing cells) was unexpected because picornaviruses are nonenveloped viruses and do not bud from cell surfaces. The finding is consistent with the hypothesis that demyelination follows damage of infected oligodendrocytes by immune cells or immunoglobulins that recognize surface virus antigen.  相似文献   

12.
Theiler murine encephalomyelitis virus (TMEV), DA strain, induces in susceptible strain of mice a biphasic disease consisting of early acute disease followed by late chronic demyelinating disease. Both phases of the disease are associated with inflammatory infiltrates of the central nervous system (CNS). Late chronic demyelinating disease induced by TMEV serves as an excellent model to study human demyelinating disease, multiple sclerosis. During early acute disease, the virus is partially cleared from the CNS by CD3(+) T cells. These T cells express Fas, FasL, negligible levels of Bcl-2 proteins and undergo activation-induced cell death as determined by TUNEL assay leading to resolution of the inflammatory response. In contrast, during late chronic demyelinating disease, and despite dense perivascular and leptomeningeal infiltrates, only very few cells undergo apoptosis. Mononuclear cells infiltrating the CNS express Bcl-2. It appears that the lack of apoptosis of T cells during late chronic demyelinating disease leads to the accumulation of these cells in the CNS. These cells may play a role in the pathogenesis of the demyelinating disease.  相似文献   

13.
Central nervous system (CNS) infection by Theiler's murine encephalomyelitis virus (TMEV) causes an immune-mediated demyelinating disease similar to human multiple sclerosis in susceptible mice. To understand the pathogenic mechanisms, we analyzed the level, specificity, and function of CD4(+) Th cells in susceptible SJL/J and resistant C57BL/6 mice. Compared to resistant mice, susceptible mice have three- to fourfold higher levels of overall CNS-infiltrating CD4(+) T cells during acute infection. CD4(+) T cells in the CNS of both strains display various activation markers and produce high levels of IFN-gamma upon stimulation with anti-CD3 antibody. However, susceptible mice display significantly fewer (tenfold) IFN-gamma-producing Th1 cells specific for viral capsid epitopes as compared to resistant mice. Furthermore, preimmunization with capsid-epitope peptides significantly increased capsid-specific CD4(+) T cells in the CNS during the early stages of viral infection and delayed the development of demyelinating disease in SJL/J mice. This suggests a protective role of capsid-reactive Th cells during early viral infection. Therefore, a low level of the protective Th1 response to viral capsid proteins, in conjunction with Th1 responses to unknown epitopes may delay viral clearance in susceptible mice leading to pathogenesis of demyelination during acute infection, as compared to resistant mice.  相似文献   

14.
Infection of mice with variants of mouse hepatitis virus, strain JHM (MHV-JHM), provide models of acute and chronic viral infection of the central nervous system (CNS). Through targeted recombination and reverse genetic manipulation, studies of infection with MHV-JHM variants have identified phenotypic differences and examined the effects of these differences on viral pathogenesis and anti-viral host immune responses. Studies employing recombinant viruses with a modified spike (S) glycoprotein of MHV-JHM have identified the S gene as a major determinant of neurovirulence. However, the association of S gene variation and neurovirulence with host ability to generate anti-viral CD8 T cell responses is not completely clear. Partially protective anti-viral immune responses may result in persistent infection and chronic demyelinating disease characterized by myelin removal from axons of the CNS and associated with dense macrophage/microglial infiltration. Demyelinating disease during MHV-JHM infection is immune-mediated, as mice that lack T lymphocytes fail to develop disease despite succumbing to encephalitis with high levels of infectious virus in the CNS. However, the presence of T lymphocytes or anti-viral antibody can induce disease in infected immunodeficient mice. The mechanisms by which these immune effectors induce demyelination share an ability to activate and recruit macrophages and microglia, thus increasing the putative role of these cells in myelin destruction.  相似文献   

15.
16.
17.
Recombinant proteins to the LP, VP1, VP2, VP3, VP4, 2A, 2B, 2C, 3A, and 3D genes of Theiler's murine encephalomyelitis virus (TMEV) were generated and antibodies were produced against them for use in analysis of the TMEV epitopes responsible for eliciting the antibody responses observed during acute and chronic disease. Antibodies against recombinant VP1, VP2, and VP3 recognized the corresponding proteins from purified TMEV particles. In immunohistochemical analysis, antibodies against recombinant capsid (VP1, VP2, and VP3), and non-capsid (2A, 2C, 3A) proteins were reactive with PO-2D cells (astrocytes) infected with TMEV in vitro and with brain tissues of acutely infected mice. Antibodies against VP4, 2B, and 3D antigens were not reactive with corresponding viral proteins in infected astrocytes cells or brain tissues, but they reacted with TMEV precursor proteins produced during the early viral replication phase. Sera from SJL/J mice infected with TMEV acutely (14 days) and chronically (45 days) reacted with VP1, VP2, VP4, 2A, and 2C proteins. In an in vitro assay for neutralization, only anti-VP1 antibodies neutralized TMEV infection. These findings suggest that both capsid and non-capsid proteins of TMEV play a role in the immunopathology of the TMEV disease in the central nervous system.  相似文献   

18.
Theiler's murine encephalomyelitis virus (TMEV) infection produces a chronic demyelinating disease in mice, and myelin breakdown appears to be immune-mediated. By using an attenuated TMEC strain, WW virus, to infect mice, the course of the disease was slowed and the severity of the inflammatory and glial responses were reduced. In this circumstance, most of the demyelinating lesions showed extensive remyelination, predominantly by Schwann cells. In addition, it was demonstrated that there was recurrent demyelinating activity in the central nervous system (CNS) of infected animals. It is suggested that the rapidity and intensity of demyelinating lesions may influence the potential for remyelination and that Schwann cell participation may be a more important mechanism of myelin repair than it is now thought to be. The fact that there is a recurrent demyelination in TMEV infection increases its relevance as an experimental animal model for multiple sclerosis.  相似文献   

19.
Theiler's murine encephalomyelitis virus (TMEV) induces a chronic demyelinating disease in the central nervous system of susceptible mice. Resistance to persistent TMEV infection maps to he D locus of the major histocompatibility complex suggesting a prominent role of antiviral CTL in the protective immune response. Introduction of the D(b) gene into the FVB strain confers resistance to this otherwise susceptible mouse line. Infection of the FVB/D(b) mouse with TMEV provides a model where antiviral resistance is determined by a response elicited by a single class I molecule. Resistant mice of the H-2(b) haplotype mount a vigorous H-2D(b)-restricted immunodominant response to the VP2 capsid protein. To investigate the extent of the contribution of the immunodominant T cell population in resistance to TMEV, FVB/D(b) mice were depleted of VP2-specific CD8(+) T cells by peptide treatment prior to virus infection. Peptide-treated mice were not able to clear the virus and developed extensive demyelination. These findings demonstrate that the D(b)-restricted CD8(+) T cells specific for a single viral peptide can confer resistance to TMEV infection. Our ability to manipulate this cellular response provides a model for investigating the mechanisms mediating protection against virus infection by CD8(+) T cells.  相似文献   

20.
Theiler's murine encephalomyelitis virus (TMEV) strains fall into two groups: high-neurovirulence GDVII virus results in rapidly fatal encephalitis, while low-neurovirulence BeAn and DA viruses produce persistent central nervous system (CNS) infection and inflammatory demyelinating disease. Because macrophages (Mphis) are key components in BeAn virus-induced demyelinating disease, we examined the susceptibility of primary peritoneal macrophages (pMphis) to BeAn infection in vitro. Freshly isolated, thioglycollate-elicited pMphis were resistant to BeAn virus infection even at high multiplicity of infection. In contrast, after incubation of thioglycollate-elicited pMphis at 37 degrees C for 4 days before infection, approximately half of the cells expressed virus antigen(s) and contained nicked DNA indicative of apoptosis. However, BeAn virus RNA replication and virus yields were highly restricted. Interestingly, about one-third of the cells were apoptotic but negative for virus RNA and antigen(s). Tumor necrosis factor-alpha (TNF-alpha) and interferon-alpha (IFN-alpha) were elevated in BeAn-infected pMphi cultures suggesting that bystander killing may be responsible for the apoptosis seen in BeAn virus antigen-negative cells. These data show for the first time that pMphis are susceptible to BeAn virus infection, although the infection is highly restricted and most of these cells undergo BeAn-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号