首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Whereas it is important to gain prognostic information in patients with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS), there is still a lack of definitive data about the significance of normal-appearing white (NAWM) and gray (NAGM) matter damage in these patients. The aim of this study was to clarify the role of magnetization transfer magnetic resonance imaging (MT MRI) in assessing “occult” damage at the earliest clinical stage of MS. Dual echo, post-contrast T1-weighted, and MT MRI were obtained from 43 CIS patients with paraclinical evidence of spatial disease dissemination within 3 months from disease onset and from 22 controls. In patients, conventional MRI was obtained after 3 and 12 months from the baseline assessment, to detect disease dissemination in time (DIT). A neurological examination was also conducted to ascertain the occurrence of relapses for an average follow up period of 1389 (range = 420–1847) days. MTR maps were derived and NAWM and NAGM MT ratio (MTR) histograms were analyzed. During the follow up, 30 patients showed MRI evidence of DIT, and 21 experienced a relapse. T2 lesion volume (LV) was significantly higher in patients with DIT than in those without (p = 0.005). MTR histogram variables did not significantly differ between patients with MRI or clinical DIT. T2 LV was the only significant predictor of clinical DIT at follow-up (p = 0.001). This study shows that MT MRI-detectable damage to NAWM and NAGM may not be an important feature of all patients at presentation with a CIS highly suggestive of MS and that such a damage may develop with subsequent disease evolution. Received in revised form: 14 April 2006  相似文献   

2.
Although the mechanisms underlying the accumulation of disability in primary progressive (PP) multiple sclerosis (MS) are still unclear, a major role seems to be played by 'occult' tissue damage. We investigated whether conventional and magnetization transfer (MT) MRI may provide complementary information for the assessment of PPMS severity. Conventional and MT MRI scans from 226 PPMS patients and 84 healthy controls were collected for centralized analysis. The expanded disability status scale (EDSS) score was rated at the time of MRI acquisition. T2 lesion volume, normalized brain volume (NBV) and cervical cord cross-sectional area (CSA) were measured. Magnetization transfer ratio (MTR) histograms from whole brain tissue, normal-appearing white matter and grey matter (NAGM) were also obtained. Mean NBV, CSA and MTR histogram-derived metrics showed significant inter-centre heterogeneity. After correcting for the acquisition centre, pooled average MTR and histogram peak height values were different between PPMS patients and controls for all tissue classes (P-values between 0.03 and 0.0001). More severe brain and cord atrophy and MT MRI-detectable NAGM damage were found in patients who required walking aids than in those who did not (P-values: 0.03, 0.001 and 0.016). A composite score of NBV, CSA, whole brain and NAGM MTR histogram peak height z-scores was correlated with patients' EDSS (r = 0.37, P 0.001). Magnetization transfer MRI might provide information complementary to that given by conventional MRI when assessing PPMS severity. Sequence-related variability of measurements makes the standardization of MT MRI acquisition essential for the design of multicentre studies.  相似文献   

3.
BACKGROUND: Magnetization transfer (MT) magnetic resonance imaging (MRI) can provide in vivo quantitative estimates of microscopic tissue damage in normal-appearing white matter (NAWM) and gray matter (GM) from patients with multiple sclerosis (MS). OBJECTIVE: To determine whether a one-time MT MRI can provide markers of short-term disease evolution in patients with relapsing-remitting MS. DESIGN: Eighteen-month observational study. SETTING: Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele. PATIENTS: Twenty-two patients with untreated relapsing-remitting MS. MAIN OUTCOME MEASURES: Relapse rate; disability according to the Expanded Disability Status Scale (EDSS); dual-echo, 2-dimensional gradient echo with and without a saturation MT pulse and T1-weighted MRIs of the brain; and MT ratio (MTR) histograms for NAWM and GM. RESULTS: During the study period, 13 patients (59%) experienced 25 relapses. The median EDSS score was 1.25 (range, 0-3.5) at study entry and 1.75 (range, 0-3) at study exit. Significant, although moderate, correlations were found between average GM MTR values at baseline and EDSS changes during the study period (r = -0.44; P = .04). A trend was observed for the correlation between NAWM MTR values at baseline and the EDSS changes throughout 18 months (r = -0.42; P = .05). For the relation between EDSS changes and baseline GM MTR, the slope of the regression line was -0.5 (95% confidence interval, -1.0 to 0.0), indicating that a decrease in the baseline GM MTR of 1% predicted an increase in the EDSS score of 0.5 point throughout the 18 months. CONCLUSION: This study indicates that a "snapshot" MT MRI assessment detects subtle brain tissue changes that are associated with short-term disability accumulation in patients with relapsing-remitting MS.  相似文献   

4.
Background and objective Contrary to what happens in adult–onset multiple sclerosis (MS), in a previous preliminary magnetic resonance imaging (MRI) study we showed only subtle normal–appearing brain tissue changes in patients with earlyonset MS. Our objective was to evaluate the presence and extent of tissue damage in the brain normalappearing white matter (NAWM) and gray matter (GM) from a larger population of patients with earlyonset MS. Methods Using diffusion tensor (DT) and magnetization transfer (MT) MRI, we obtained DT and MT ratio (MTR) maps of the NAWM and GM from 23 patients with early–onset MS and 16 sex– and age–matched healthy volunteers. Results Compared with healthy volunteers, patients with early–onset MS had significantly increased average MD (p = 0.02) and FA peak height (p = 0.007) and decreased average FA (p <0.0001) of the NAWM.Brain dual–echo lesion load was significantly correlated with average FA (r = –0.48, p = 0.02) and with FA peak height (r = 0.45, p = 0.03) of the NAWM. No MTR and diffusion changes were detected in the GM. Conclusions This study confirms the paucity of the ‘occult’ brain tissue damage in patients with earlyonset MS. It also suggests that in these patients GM is spared by the disease process and that NAWM changes are likely to be secondary to Wallerian degeneration of fibers passing through macroscopic lesions.  相似文献   

5.
Although there is substantial brain grey matter pathology in secondary progressive multiple sclerosis (MS), there has been limited investigation of its contribution to disability. This study investigated the correlation of magnetization transfer ratio (MTR) measures taken from brain grey matter, normal appearing white matter (NAWM) and lesions with neurological deficit and disability in 113 people with secondary progressive MS. In order to adjust for the potential effects of focal white matter lesions and global brain atrophy, T2 lesion volume and normalized brain volume (NBV) were also calculated for each subject. Clinical measures included the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) scores. Linear regression analysis was used to assess the age- and gender-adjusted correlation of MTR histogram mean, peak height and peak location with the MSFC and individual component measures. Logistic regression analysis was used to determine whether imaging measures could be used to predict if subjects were in the higher disability group (EDSS ≥ 6.5). Significant correlations were detected between MSFC composite and mean MTR in (i) normal appearing white matter (NAWM; r = 0.327, p < 0.0001), (ii) grey matter (r = 0.460, p < 0.0001) and (iii) lesions (r = 0.394, p < 0.0001). Although NBV and T2 lesion volume correlated significantly with MSFC, grey matter histogram mean emerged as the best predictor of MSFC score. None of the MRI measures significantly predicted higher EDSS. These results suggest that brain grey matter pathology plays an important role in determining neurological impairment. The apparent paucity of correlation between MRI measures and EDSS is likely to represent the relative insensitivity of the latter measure in this study group.  相似文献   

6.
Cervical cord magnetization transfer ratio (MTR) histograms were obtained from 45 patients at presentation with clinically isolated syndromes (CIS) suggestive of multiple sclerosis (MS). The mean values of MTR histogram-derived metrics were not different between CIS patients and healthy control subjects or between patients with and without evidence of disease dissemination in time. Only three patients showed significantly lower cord MTR values than control subjects. These findings suggest the absence of intrinsic structural damage of the cervical cord soon after the onset of CIS suggestive of MS, even in those patients with an early evolution to MS.  相似文献   

7.
Background: In 10–15 % of patients with multiple sclerosis (MS), the clinical course is characterized by slow progression in disability without relapses (primary progressive (PP) MS). The mechanism of disability in this form of MS is poorly understood. Using magnetization transfer ratio (MTR) imaging, we investigated normal appearing white matter (NAWM) and normal appearing grey matter (NAGM) in PPMS and explored the relationship of MTR measures with disability. Methods: Thirty patients with PPMS and 30 age matched controls had spin echo based MTR imaging to study lesions and normal appearing tissues. The brain was segmented into NAWM and NAGM using SPM99 with lesions segmented using a semiautomated local thresholding technique. A 75 % probability threshold for classification of NAWM and NAGM was used to diminish partial volume effects. From normalized histograms of MTR intensity values, six MTR parameters were measured. Mean lesion MTR and T2 lesion volume were also measured. Disability was assessed using Kurtzke's expanded disability status scale (EDSS). Results: Compared with controls, patients exhibited a significant reduction in mean NAWM (p = 0.001) and NAGM (p = 0.004) MTR. Spearman's rank correlation of EDSS with the six MTR parameters in NAWM and NAGM, mean lesion MTR, and T2 lesion volume, was only significant with mean NAGM MTR (r = −0.41, p = 0.02), the 25th percentile of NAGM MTR intensity (r = −0.37, p = 0.05), and T2 lesion volume (r = 0.39, p = 0.04). Multiple regression analysis of the relationship between EDSS and 4 MR parameters representing each tissue type (mean NAWM MTR, mean NAGM MTR, mean lesion MTR, T2 lesion volume) showed that the association of EDSS with mean NAGM MTR remained significant. Conclusions: There appear to be significant abnormalities in the NAGM in PP MS. Further investigation of the pathological basis and functional significance of grey matter abnormality in PPMS is warranted. Received: 7 September 2001, Received in revised form: 3 January 2002, Accepted: 16 January 2002 Correspondence to D. H. Miller  相似文献   

8.
BACKGROUND/PURPOSE: Gray matter involvement in multiple sclerosis (MS) is of growing interest with respect to disease pathogenesis. Magnetization transfer imaging (MTI), an advanced MRI technique, is sensitive to disease in normal appearing white matter (NAWM) in patients with MS. DESIGN/METHODS: We tested if MTI detected subcortical (deep) gray matter abnormalities in patients with MS (n= 60) vs. age-matched normal controls (NL, n= 20). Magnetization transfer ratio (MTR) maps were produced from axial proton density, conventional spin-echo, 5 mm gapless slices covering the whole brain. Region-of-interest-derived MTR histograms for the caudate, putamen, globus pallidus, thalamus, and NAWM were obtained. Whole brain MTR was also measured. RESULTS: Mean whole brain MTR and the peak position of the NAWM MTR histogram were lower in patients with MS than NL (P < .001) and mean whole brain MTR was lower in secondary progressive (SP, n= 10) than relapsing-remitting (RR, n= 50, P < .001) patients. However, none of the subcortical gray matter nuclei showed MTR differences in MS vs. NL, RR vs. SP, or SP vs. NL. CONCLUSIONS: The MTI technique used in this cohort was relatively insensitive to disease in the deep gray matter nuclei despite showing sensitivity for whole brain disease in MS. It remains to be determined if other MRI techniques are more sensitive than MTI for detecting pathology in these areas.  相似文献   

9.
Abstract The aims of this study were to improve, using a 3.0 Tesla (T) scanner and diffusion tensor (DT) magnetic resonance imaging (MRI) with sensitivity encoding, our understanding of: 1) the possible pathological substrates of normal-appearing white matter (NAWM) and grey matter (GM) damage in multiple sclerosis (MS) and 2) the factors associated to WM and GM atrophy in this condition. Conventional and DT MRI of the brain were acquired from 32 relapsing-remitting (RR) MS patients and 16 controls. Lesion load, WM (WMV), overall GM (GMV), and neocortical GM (NCV) volumes were measured. NAWM mean diffusivity (MD) and fractional anisotropy (FA), and GM MD were calculated. GMV and NCV were lower (p ≤ 0.001) in MS patients than controls, whereas WMV did not differ significantly. MS patients had higher NAWM and GM average MD and lower NAWM average FA (p ≤ 0.001) than controls. Moderate correlations were found between intrinsic lesion and tissue damage with both GM volumetric and diffusivity changes ()0.41 ≤ r ≤ 0.42, p ≤ 0.04). DT MRI and volumetry measurements at 3.0 T confirm the presence of NAWM and GM abnormalities in RRMS patients. Although histopathology was not available, axonal and neuronal damage and consequent reactive glial proliferation are the most likely substrates of the changes observed.  相似文献   

10.
Abnormalities within normal–appearing grey and white matter (NAGM and NAWM) occur early in the clinical course of multiple sclerosis (MS) and can be detected in–vivo using the magnetisation transfer ratio (MTR). To better characterize the rates of change in both tissues and to ascertain when such changes begin, we serially studied a cohort of minimally disabled, early relapsing–remitting MS patients, using NAGM and NAWM MTR histograms. Twenty–three patients with clinically definite early relapsing–remitting MS (mean disease duration at baseline 1.9 years), and 19 healthy controls were studied. A magnetisation transfer imaging sequence was acquired yearly for two years. Twenty–one patients and 10 controls completed followup. NAWM and NAGM MTR histograms were derived and mean MTR calculated. A hierarchical regression analysis, adjusting for brain parenchymal fraction,was used to assess MTR change over time. MS NAWM and NAGM MTR were significantly reduced in comparison with controls at baseline and, in patients, both measures decreased further during follow–up: (–0.10pu/year, p = 0.001 and –0.18pu/year, p < 0.001 respectively). The rate of MTR decrease was significantly greater in NAGM than NAWM (p = 0.004). Under the assumption that such changes are linear, backward extrapolation of the observed rates of change suggested that NAWM abnormality began before symptom onset. We conclude that increasing MTR abnormalities in NAWM and NAGM are observed early in the course of relapsing–remitting MS. It is now important to investigate whether these measures are predictive of future disability, and consequently, whether MTR could be used as a surrogate marker in therapeutic trials.  相似文献   

11.
OBJECTIVE: To evaluate the contribution made by cervical cord damage, assessed using a fast short-tau inversion recovery (fast-STIR) sequence and magnetization transfer ratio (MTR) histogram analysis to the clinical manifestations of MS. BACKGROUND: Previous studies have failed to show significant correlations between the number and extent of T2 spinal cord lesions and the clinical status of patients with MS. Fast-STIR is more sensitive than T2-weighted imaging for detecting cervical cord MS lesions. MTR histogram analysis provides estimates of the overall disease burden in the cervical cord with higher pathologic specificity to the more destructive aspects of MS than T2-weighted scans. METHODS: We obtained fast-STIR and magnetization transfer (MT) scans from 96 patients with MS (52 with relapsing-remitting [RRMS], 33 with secondary progressive [SPMS], and 11 with primary progressive [PPMS] MS) and 21 control subjects. Dual-echo scans of the brain were also obtained and lesion load measured. Results: Eighty-one of the patients with MS had an abnormal cervical cord scan. Patients with SPMS had more cervical cord lesions and more images with visible cervical cord damage than did patients with RRMS or PPMS (p = 0.04). The entire cohort of patients with MS had lower average MTR of the cervical cord (p = 0.006) than control subjects. Compared to control subjects, patients with RRMS had similar cervical cord MTR histogram-derived measures, whereas those with PPMS had lower average MTR (p = 0.01) and peak height (p = 0.02). Patients with SPMS had lower histogram peak height than did those with RRMS (p = 0.03). The peak position and height of the cervical cord MTR histogram were independent predictors of the probability of having locomotor disability. We found no correlation between brain T2 lesion load and any of the cervical cord MTR histogram metrics. CONCLUSIONS: This study shows that the amount and severity of MS pathology in the cervical cord are greater in the progressive forms of the disease. An accurate assessment of cervical cord damage in MS gives information that can be used in part to explain the clinical manifestations of the disease.  相似文献   

12.
Magnetisation transfer (MT) imaging provides indirect information on tissue structure abnormalities in areas that otherwise may appear normal on conventional MRI. We determined the evolution of MT changes in normal appearing white matter (NAWM) and lesion on serial examination of 9 multiple sclerosis (MS) patients and age matched controls. The mean NAWM MT ratio (MTR) was found to correlate strongly (R = 0.93) with the length of time since the patient's first clinical presentation and was well characterized by a linear decrease of -0.16%/year (p < 0.0001). The time zero intercept of the NAWM MTR regression was 30.7 +/- 0.2%, not different from the average MTR of white matter from controls (30.4 +/- 0.2 %). An additional gradual decrease in NAWM MTR was observed 6 to 12 months before the appearance of a new lesion on conventional MRI, while a more precipitous decrease in MTR was seen 2 to 6 months before the lesion appeared. Those lesions that exhibited pre-lesion MTR decreases showed less MTR recovery than lesions which had no pre-lesion MTR decrease. The data suggest that the MTR of NAWM in MS undergoes a slow progressive decrease that starts at disease onset and accelerates rapidly in focal areas just prior to lesion appearance on conventional MRI.  相似文献   

13.
PURPOSE: To investigate the relationship between immune cell secretion of brain-derived neurotrophic factor (BDNF) with clinical and MRI variables in multiple sclerosis (MS) patients. BACKGROUND: BDNF exerts beneficial effects on neuronal growth and repair and is secreted by both neurons and immune cells. Consequently, it may mediate the crosstalk between the immune system and CNS in autoimmune diseases such as MS. METHODS: Fifty-two relapsing MS patients (41 females, age: 48.8+/-6.6 years, disease duration: 12.7+/-8.4 years) were enrolled. Clinical and MRI measurements (including, T1-, T2- and contrast-enhancing (CE) lesion volumes (LVs); normalized measures of whole brain, white matter (WM) and gray matter (GM) volumes; diffusion weighted imaging measure of mean whole brain (WB) parenchyma diffusivity and magnetization transfer ratio (MTR) measures were obtained. RESULTS: Immune cell BDNF secretion after anti-CD3 plus anti-CD28 stimulation was positively associated with increased CE-LV (p=0.026). The MTR of CE-LV and normal-appearing (NA) WM (NAWM) were negatively associated with immune cell BDNF secretion after anti-CD3 plus anti-CD28 stimulation. Immune cell BDNF secretion after anti-CD3 plus anti-CD28 was positively associated with higher WM volume (p=0.027). Immune cell BDNF secretion after anti-CD3 plus anti-CD28 stimulation was decreased with increasing disease duration (p=0.031). The BDNF secretion was independent of the BDNF Val66Met (dBSNP ID: rs6265) SNP genotype. CONCLUSIONS: Immune cell BDNF secretion is associated with the sites of higher inflammatory activity as evidenced by CE lesions and may represent an important factor associated with the WM volume of patients with MS.  相似文献   

14.
BACKGROUND: Patients with primary progressive multiple sclerosis (PPMS) often develop severe disability despite low levels of abnormality on conventional magnetic resonance imaging (MRI). This may relate to diffuse pathological processes occurring in normal appearing brain tissue (NABT) involving both white matter (NAWM) and grey matter (NAGM). Magnetisation transfer imaging (MTI) is capable of identifying these processes and may be particularly informative when applied to patients with early PPMS. AIM: To assess the relationship between abnormalities in NABT identified by MTI and disability and other radiological data in patients with early PPMS. METHODS: We studied 43 patients within 5 years of disease onset and 43 controls. The Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) were scored. Magnetisation transfer ratios (MTR) of NABT, NAWM, and NAGM were calculated and the following MTR parameters were measured: mean, peak height, peak location, and MTR value at the 25th, 50th, and 75th percentiles. Proton density, T2, T1, and gadolinium enhancing lesion loads were also calculated. RESULTS: Differences were found between patients and controls in mean, peak height, and peak location of NAWM and NAGM (p < or = 0.001). Weak to moderate correlations were found between MTR parameters and disability in both NAWM and NAGM. Strong correlations between MTR parameters and lesion loads were found, particularly in NAWM. CONCLUSION: MTR abnormalities are seen in NAWM and NAGM in early PPMS and both are associated with disability. NAWM MTR abnormalities are more closely related to conventional MRI measures than those seen in NAGM.  相似文献   

15.
Although cognitive impairment is common in multiple sclerosis (MS), its pathophysiology is still poorly understood. Abnormalities of cerebral blood flow (CBF) have long been acknowledged in MS and advances in perfusion magnetic resonance imaging (MRI) allow for their assessment in vivo. We investigated the relationship between regional perfusion changes and neuropsychological (NP) dysfunctions in patients with relapsing-remitting and primary-progressive MS. Absolute CBF, cerebral blood volume (CBV) and mean transit time were measured in 32 MS patients and 11 healthy controls using dynamic susceptibility contrast-enhanced T2(*)-weighted MRI. A comprehensive NP test battery was administered to all patients. A mixed model analysis of covariance was performed for group comparisons in terms of perfusion measures in normal-appearing white matter (NAWM) and deep gray matter (GM). Pearson's correlations were used to describe the association of perfusion metrics with NP Z-scores. CBF and CBV values were significantly decreased in both NAWM and deep GM in MS patients compared with controls (P=0.01). In all patients, deep GM CBF was significantly associated with Rey Complex Figure Test (RCFT)-Copy (r=0.5; P=0.001) and deep GM CBV and NAWM CBV were significantly associated with Color-Word Interference Inhibition Switching test (D-KEFSIS) (r=0.4; P=0.008 and r=0.4; P=0.02). However, the only associations that remained significant after Bonferroni correction were between deep GM CBF and RCFT-Copy (P=0.006), and deep GM CBV and D-KEFSIS (P=0.04). Our results suggest a role for tissue perfusion impairment in NP dysfunction in MS. Large-scale studies are needed to characterize better this association.  相似文献   

16.
The aim of this study was to correlate diffusion to magnetization transfer (MT) magnetic resonance imaging (MRI) results in multiple sclerosis (MS), in order to establish if the former technique provides complementary information. Magnetization transfer ratio (MTR) and apparent diffusion coefficient (ADC) were measured in 156 different regions of interest (ROIs) of 14 MS patients, where 84 corresponded to T1 hypointense lesions, 60 to T1 isointense lesions and 12 to regions of normal appearing white matter (NAWM). MTR mean value was higher for T1 isointense than for T1 hypointense lesions, and lower when compared to NAWM. ADC mean value for T1 isointense lesions was higher than for NAWM, but lower than for T1 hypointense lesions. A significant negative correlation was found between ADC and MTR for hypointense lesions (Pearson's r = -0.758, P < 0.001), whereas this correlation was much weaker for T1 isointense lesions (Pearson's r= -0.256, P = 0.049). There was no correlation between ADC and MTR for NAWM. The fact that ADC and MTR show a strong correlation only for T1 hypointense lesions indicates that, when tissue integrity is not severely compromised, as in the case of T1 isointense lesions or NAWM, ADC and MTR might be sensitive to different pathological processes.  相似文献   

17.
We sought to determine the influence of tissue damage and the potential impact of cortical reorganization on the performance to the Paced Auditory Serial Addition Test (PASAT) in patients at the earliest stage of multiple sclerosis (MS). Magnetization transfer ratio (MTR) imaging and functional magnetic resonance imaging (fMRI) experiments using PASAT as paradigm were carried out in 18 patients with clinically isolated syndrome suggestive of MS (CISSMS) compared to 18 controls. MTR histogram analyses showed structural abnormalities in patients involving the normal-appearing white matter (NAWM) but also the gray matter (GM). Mean PASAT scores were significantly lower in the group of patients taken as a whole, and were correlated with the mean NAWM MTR value. No correlation was observed between PASAT scores and GM MTR. However, in the subgroup of patients with normal PASAT performance (n = 9), fMRI showed larger activations in bilateral Brodmann area 45 (BA45) and right BA44 compared to that in controls (n = 18). In these areas with potentially compensatory reorganization, the whole group of patients (n = 18) showed significantly greater activation than controls (n = 18). Activation in the right BA45 was inversely correlated with the mean NAWM MTR and the peak position of GM MTR histograms of patients. This study indicates that even at the earliest stage of MS, cortical reorganization is present inside the executive system of working memory and could tend to limit the determinant functional impact of NAWM injury on the execution of the PASAT.  相似文献   

18.
We investigated the magnetization transfer ratio (MTR) of normal-appearing white (NAWM) and grey matter (NAGM) in a relatively large group of multiple sclerosis (MS) patients, and the relations of MTR changes with clinical disability. MTR was measured in 66 MS patients (12 PP, 35 RR, 19 SP) and 23 healthy controls, using a whole-brain 3D-FLASH technique corrected post-hoc for B1-induced variation. Histogram parameters of conservatively selected NAWM and cortical NAGM were analysed using Bonferroni-corrected ANOVA with age as covariate. Additionally, manually outlined regions of interest were analysed using a multilevel method. Lesions had low MTR (mean 22.7+/-6.9%), but NAWM exhibited limited changes: MTR histogram peak position was 32.8+/-1.0% in controls and 32.4+/-0.9% in MS patients, with a significant decrease compared to controls only in SPMS patients (31.9+/-1.1%, p=0.045). Cortical NAGM histograms did not differ significantly between patients and controls. In SPMS, regional mean MTR was significantly decreased in corpus callosum and hippocampus. MTR histogram parameters of NAGM and NAWM were correlated with EDSS and MSFC scores, with lesion volume and with normalized brain volume. We conclude that disease-induced MTR changes were small in MS NAWM and NAGM, but did correlate with clinical decline, lesion volume and overall cerebral atrophy.  相似文献   

19.
The authors evaluated the magnetization transfer ratio (MTR) of T2 lesions, normal-appearing white matter (NAWM), and brain from 39 migraineurs, 17 healthy volunteers, and 22 patients with MS. Migraineurs had NAWM and brain MTR values similar to those of normal subjects but significantly higher than those of MS patients. Average lesion MTR values also were significantly lower in MS patients than in migraineurs. In patients with migraine, other etiologies should be considered in the presence of tissue damage beyond that seen on T2-weighted scans.  相似文献   

20.
The clinical course of multiple sclerosis (MS) is highly variable ranging from benign to aggressive, and is difficult to predict. Since magnetization transfer (MT) imaging can detect focal abnormalities in normal-appearing white matter (NAWM) before the appearance of lesions on conventional MRI, we hypothesized that changes in MT might be able to predict the clinical evolution of MS. We assessed MR data from MS patients who were subsequently followed clinically for 5 years. We computed the mean MT ratio (MTr) in gray matter, in lesions identified on T2-weighted MRI, and in NAWM, as well as in a thick central brain slice for each patient. Patients were divided into stable and worsening groups according to their change in Expanded Disability Status Scale (EDSS) scores over 5 years. We calculated the sensitivity, specificity, predictive value, and odds ratio of the baseline MTr measures in order to assess their prognostic utility. We found significant differences in baseline MTr values in NAWM (p = 0.005) and brain slice (p = 0.03) between clinically stable and worsening MS patients. When these MTr values were compared with changes in EDSS over 5 years, a strong correlation was found between the EDSS changes and MTr values in both NAWM (SRCC = −0.76, p < 0.001) and in the brain slice (SRCC = 0.59, p = 0.01). Baseline NAWM MTr correctly predicted clinical evolution in 15/18 patients (1 false positive and 2 false negatives), yielding a positive predictive value of 77.78 %, a negative predictive value of 88.89 %, and an odds ratio of 28. The relationship between 5-year changes in EDSS and MTr values in T2 weighted MRI lesions was weaker (SRCC = −0.43, p = 0.07). Our data support the notion that the quantification of MTr in the NAWM can predict the clinical evolution of MS. Lower MTr values predict poorer long-term clinical outcome. Abnormalities of MTr values in the NAWM are more relevant to the development of future patient disability than those in the T2-weighted MRI lesions. Received: 3 May 2001, Received in revised form: 11 October 2001, Accepted: 22 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号