首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Background: Natural killer (NK) cells play an important role in early stages of innate immune responses against viral and tumoral attacks. Activation of NK cells by leishmaniasis results in secretion of cytokines such as interferon (IFN)-γ and tumor necrosis factor (TNF)-α, which enhance the phagocytosis and clearance of parasite. Lipophosphoglycan 3 (LPG3), the Leishmania homologous with GRP94 (glucose regulated protein 94), a member of HSP90 family, contributes to LPG assembly as the most abundant macromolecule on the surface of Leishmania promastigotes. Methods: We purified NK cells from healthy individuals (n=10) using magnetic-activated cell sorting (MACS) technology. Purified NK cells were co-incubated with different concentrations of recombinant LPG3 (rLPG3), and its N-terminal (NT) and C-terminal (CT) fragments. Finally, the production of IFN-γ and TNF-α by NK cells were measured by ELISA. Results: Recombinant LPG3 but not its fragments (CT and NT), could significantly enhance the production of TNF-α by NK cells (P<0.05). Moreover, rLPG3, CT, and NT fragments were markedly stimulated the secretion of IFN-γ by NK cells (P<0.001). Conclusion: The Leishmania LPG3 antigen could effectively activate NK cells, in vitro. Leishmania LPG3 participates in the innate immunity against leishmaniasis and thereby improves the effective parasite destruction. However, its efficiency should be tested in vivo.Key Words: Leishmania, LPG3, Natural killer cell, TLR  相似文献   

2.
《Vaccine》2016,34(25):2779-2786
Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli –expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs.  相似文献   

3.
《Vaccine》2016,34(44):5225-5234
Visceral leishmaniasis (VL), caused by infection with the obligate intracellular protozoan parasite Leishmania infantum, is a fatal disease of dogs and humans. Protection against VL requires a T helper 1 (Th1) skewed CD4+ T response, but despite this knowledge, there are currently no approved-to-market vaccines for humans and only three veterinary-use vaccines globally. As VL progresses from asymptomatic to symptomatic, L. infantum–specific interferon gamma (IFNγ) driven-Th1 responses become dampened and a state of immune exhaustion established. T cell exhaustion and other immunoregulatory processes, starting during asymptomatic disease, are likely to hinder vaccine-induced responses if vaccine is administered to infected, but asymptomatic and seronegative, individuals. In this study we evaluated how immune exhaustion, shown previously by our group to worsen in concert with VL progression, effected the capacity of vaccine candidate antigen/toll-like receptor (TLR) agonist combinations to promote protective CD4+ T cell responses during progressive VL. In conjunction with Th1 responses, we also evaluated concomitant stimulation of immune-balanced IL-10 regulatory cytokine production by these vaccine products in progressive VL canine T cells. Vaccine antigen L111f in combination with TLR agonists significantly recovered CD4+ T cell IFNγ intracellular production in T cells from asymptomatic VL dogs. Vaccine antigen NS with TLR agonists significantly recovered CD4+ T cell production in both endemic control and VL dogs. Combinations of TLR agonists and vaccine antigens overcame L. infantum induced cellular exhaustion, allowing robust Th1 CD4+ T cell responses from symptomatic dogs that previously had dampened responses to antigen alone. Antigen-agonist adjuvants can be utilized to promote more robust vaccine responses from infected hosts in endemic areas where vaccination of asymptomatic, L. infantum-infected animals is likely.  相似文献   

4.
HIV has become increasingly prevalent in the Northeast region of Brazil where Leishmania infantum chagasi is endemic, and concurrent AIDS and visceral leishmaniasis (VL) has emerged. In this study, persons with HIV/AIDS and VL (n = 17) had a mean age of 37.3 years (range 29-53 years) compared with 12.5 years (1-80 years) for persons with VL alone (n = 2836). Males accounted for 88% of cases with concurrent VL and AIDS and 65% of those with VL alone. The mean CD4 count and antileishmanial antibody titre were lower and recurrence of VL and death were more likely with co-infection. Considering the prevalences of L.i. chagasi and HIV in the region, this may herald the emergence of an important public health problem.  相似文献   

5.
《Vaccine》2022,40(37):5494-5503
In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras in Mesocricetus auratus hamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.  相似文献   

6.

Background

Echinococcosis is a zoonotic parasitic disease of humans and various herbivorous domestic animals transmitted by the contact with domestic and wild carnivores, mainly dogs and foxes. The aim of this study is the production, purification and evaluation immunogenicity of new construction of EG95 protein.

Methods

The recombinant plasmid pET32-a+ used for Eg95 expression was constructed with the EG95 gene of Echinococcus granulosus fused with the thioredoxin tag. This recombinant clone was over expressed in Escherichia coli BL-21 (DE-3). The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The purification was performed under denaturing conditions in the presence of 8M urea by Ni–NTA column and dialysis. The purified recombinant proteins were confirmed with western blot analysis using polyclonal antiserum. To find out the immunogenicity of the purified protein, the BALB/c mice (10 mice/group) were immunized by injecting 20 μg rEG95 protein formulated in Freund’s and alum adjuvant.

Results

Immunization of mice with rEG95 using CFA/IFA and alum adjuvant generated high level of total antibody. In proliferation assay, the lymphocytes were able to mount a strong proliferative response with related production of IFN-γ, IL-12 and TNF-α but with low secretion of either IL-4 or IL-10. The humoral and cellular immune responses against rEG95 suggested a mixed Th1/Th2 response with high intensity toward Th1.

Conclusion

Our findings suggest that new construct of rEG95 formulated with CFA/IFA and alum adjuvant elicited strong cellular and humoral responses supporting further development of this vaccine candidate.  相似文献   

7.
The Apical Membrane Antigen 1 (AMA-1) is considered a promising candidate for development of a malaria vaccine against asexual stages of Plasmodium. We recently identified domain II (DII) of Plasmodium vivax AMA-1 (PvAMA-1) as a highly immunogenic region recognised by IgG antibodies present in many individuals during patent infection with P. vivax. The present study was designed to evaluate the immunogenic properties of a bacterial recombinant protein containing PvAMA-1 DII. To accomplish this, the recombinant protein was administered to mice in the presence of each of the following six adjuvants: Complete/Incomplete Freund's Adjuvant (CFA/IFA), aluminium hydroxide (Alum), Quil A, QS21 saponin, CpG-ODN 1826 and TiterMax. We found that recombinant DII was highly immunogenic in BALB/c mice when administered in the presence of any of the tested adjuvants. Importantly, we show that DII-specific antibodies recognised the native AMA-1 protein expressed on the surface of P. vivax merozoites isolated from the blood of infected patients. These results demonstrate that a recombinant protein containing PvAMA-1 DII is immunogenic when administered in different adjuvant formulations, and indicate that this region of the AMA-1 protein should continue to be evaluated as part of a subunit vaccine against vivax malaria.  相似文献   

8.
Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species.  相似文献   

9.
Glycoprotein D (gD) is essential for attachment and penetration of Bovine herpesvirus 5 (BoHV-5) into permissive cells, and is a major target of the host immune system, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate in mice the immunogenicity of recombinant BoHV-5 gD (rgD5) expressed in Pichia pastoris. Vaccines formulated with rgD5 alone or adjuvanted with Montanide 50 ISA V2; Emulsigen or Emulsigen-DDA was administered intramuscularly or subcutaneously. Almost all formulations stimulated a humoral immune response after the first inoculation. The only exception was observed when the rgD5 was administered subcutaneously without adjuvant, in this case, the antibodies were observed after three doses. Higher titers of neutralizing antibodies were obtained with the three oil-based adjuvant formulations when compared to non-adjuvanted vaccine formulations. The rgD5 vaccine stimulated high mRNA expression levels of Th1 (INF-γ) and pro-inflammatory cytokines (IL-17, GM-CSF). The results demonstrated that the recombinant gD from BoHV-5 conserved important epitopes for viral neutralization from native BoHV-5 gD and was able to elicit mixed Th1/Th2 immune response in mice.  相似文献   

10.
《Vaccine》2018,36(9):1190-1202
Currently, there is no approved vaccine for visceral leishmaniasis (VL) caused by L. donovani. The ability to manipulate Leishmania genome by eliminating or introducing genes necessary for parasites’ survival considered as the powerful strategy to generate the live attenuated vaccine. In the present study fructose-1,6-bisphosphatase (LdFBPase) gene deleted L. donovanifbpase) was generated using homologous gene replacement strategy. Though LdFBPase gene deletion (Δfbpase) does not affect the growth of parasite in the promastigote form but axenic amastigotes display a marked reduction in their capacity to multiply in vitro inside macrophages and in vivo in Balb/c mice. Though Δfbpase L. donovani parasite persisted in BALB/c mice up to 12 weeks but was unable to cause infection, we tested its ability to protect against a virulent L. donovani challenge. Notably, intraperitoneal immunisation with live Δfbpase parasites displayed the reduction of parasites load in mice spleen and liver post challenge. Moreover, immunised BALB/c mice showed a reversal of T cell anergy and high levels of NO production that result in the killing of the parasite. A significant, correlation was found between parasite clearance and elevated IFNγ, IL12, and IFNγ/IL10 ratio compared to IL10 and TGFβ in immunised and challenged mice. Results suggested the generation of protective Th1 type immune response which induced significant parasite clearance at 12-week, as well as 16 weeks post, challenged immunised mice, signifying sustained immunity. Therefore, we propose that Δfbpase L. donovani parasites can be a live attenuated vaccine candidate for VL and a good model to understand the correlatives of protection in visceral leishmaniasis.  相似文献   

11.
Toxoplasma gondii and Neospora caninum are closely related apicomplexan parasites. The surface antigen 1 of T. gondii (TgSAG1) is a major immunodominant antigen and, therefore, is considered to be a good candidate for the development of an effective recombinant vaccine against toxoplasmosis. In this study, N. caninum stably expressing the TgSAG1 gene (Nc/TgSAG1) was constructed using pyrimethamine-resistant DHFR-TS and GFP genes as double-selection markers. The expression level, molecular weight, and antigenic property of recombinant TgSAG1 expressed by the Nc/TgSAG1 were similar to those of the native TgSAG1. The mice immunized with Nc/TgSAG1 induced TgSAG1-specific Th1-dominant immune responses and protected the mice from a lethal challenge infection with T. gondii. These results indicate that N. caninum may provide a new tool for the production of a live recombinant vector vaccine against toxoplasmosis in animals. To our knowledge, this is the first report to evaluate the usefulness of N. caninum-based live vaccine.  相似文献   

12.
We have recently developed a new experimental vaccine vector system based on Autographa californica nucleopolyhedrosis virus (AcNPV) termed the “Baculovirus Dual Expression System”, which drives expression of vaccine candidate antigens by a dual promoter that consists of tandemly arranged baculovirus-derived polyhedrin and mammalian-derived CMV promoters. The present study used this system to generate a Plasmodium vivax transmission-blocking immunogen (AcNPV-Dual-Pvs25). AcNPV-Dual-Pvs25 not only displayed Pvs25 on the AcNPV envelope, exhibiting aspects of its native three-dimensional structure, but also expressed appropriately immunogenic protein upon transduction of mammalian cells. Both intranasal and intramuscular immunization of mice with AcNPV-Dual-Pvs25 induced high Pvs25-specific antibody titres, notably of IgG1, IgG2a and IgG2b isotypes, indicating a mixed Th1/Th2 response. Importantly, sera obtained from subcutaneously immunized rabbits exhibited a significant transmission-blocking effect (96% reduction in infection intensity, 24% reduction in prevalence) when challenged with human blood infected with P. vivax gametocytes using the standard membrane feeding assay. Additionally, active immunization (both intranasal and intramuscular routes) of mice followed by challenge using a transgenic P. berghei line expressing Pvs25 in place of native Pbs25 and Pbs28 (clone Pvs25DR3) demonstrates a strong transmission-blocking response, with a 92.1% (intranasal) and 83.8% (intramuscular) reduction in oocyst intensity. Corresponding reductions in prevalence of infection were observed (88.4% and 75.5% respectively). This study offers a novel tool for the development of malarial transmission-blocking vaccines against the sexual stages of the parasite, using the Baculovirus Dual Expression System that functions as both a subunit, and DNA based vaccine.  相似文献   

13.
《Vaccine》2016,34(26):2992-2995
A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies.  相似文献   

14.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting humans, mammals and birds. Eukaryotic translation initiation factor (eIF4A) is a newly identified protein associated with tachyzoite virulence. To evaluate the protective efficacy of T. gondii eIF4A, a DNA vaccine (pVAX-eIF4A) encoding T. gondii eIF4A (Tg-eIF4A) gene was constructed. The expression ability of this recombinant DNA plasmid was examined in Marc145 cells by IFA. Then, Kunming mice were intramuscularly immunized with pVAX-eIF4A and followed by challenge infection with the highly virulent T. gondii RH strain. The results showed that vaccination with pVAX-eIF4A elicited specific humoral responses, with high IgG antibody titers and specific lymphocyte proliferative responses. The cellular immune response was associated with significant production of IFN-γ, IL-2 in Kunming mice, and a mixed IgG1/IgG2a response with predominance of IgG2a production, indicating that a Th1 type response was elicited after immunization with pVAX-eIF4A. In addition, the increase of the percentage of CD8+ T cells in lymphoid in mice suggested the activation of MHC class I restricted antigen presentation pathways. After lethal challenge, the mice vaccinated with the pVAX-eIF4A showed a significantly prolonged survival time (23.0 ± 5.5 days) compared with control mice which died within 7 days of challenge (P < 0.05). These results demonstrate that pVAX-eIF4A could elicit strong humoral, Th1-type cellular immune responses and increase survival time of immunized mice, suggesting that eIF4A is a promising vaccine candidate against acute T. gondii infection in mice.  相似文献   

15.
Leishmania infection causes localized cutaneous to severe visceral disease in humans and animals. Current control measures, based on antimonial compounds, are not effective because of resistance in Leishmania. Vaccination would be a feasible alternative, but as yet no vaccine to protect humans against infection has been commercialized. Parasite antigens that preferentially stimulate the induction of significant protection through Th1 response presents a rational approach for a vaccine against leishmaniasis. With this view in mind, we investigated the potential of 78 kDa antigen of Leishmania donovani alone and along with different adjuvants against murine visceral leishmaniasis. Various adjuvants used along with 78 kDa antigen include monophosphoryl lipid A (MPL-A), liposomal encapsulation, recombinant IL-12, autoclaved Leishmania antigen (ALD) and Freund's adjuvant (FCA). BALB/c mice were immunized subcutaneously thrice with respective vaccine formulation. Challenge infection was given intracardially after 2 weeks of second booster. A significant decrease in parasite burden was seen in vaccinees over the infected controls on all post challenge days and was found that maximum protection was provided by 78 kDa + rIL-12 vaccine and it was highly immunogenic as depicted by the reduction in parasite load (71–94.8%), reduction in infection rate of peritoneal macrophages (92.9–98%), enhanced DTH response (6.5–10.5 fold), increase in IgG2a anti-leishmanial antibody production (3–3.7 fold) and up-regulation of IFN-γ (3.7–6.5 fold) and IL-2 levels (7.7–12.3 fold), which demonstrate the generation of protective Th1 type of immune response. Comparable results were also observed in 78 kDa + MPL-A and liposome-encapsulated 78 kDa vaccines with 56.5–92% and 62.9–93.4% reduction in parasite load respectively. Significant results have also been obtained with 78 kDa antigen + ALD, 78 kDa antigen + FCA and 78 kDa antigen alone group but the protective efficacy was reduced as compared to the other vaccine groups. The present study indicates that the three vaccine formulations i.e. 78 kDa antigen + rIL-12, liposome-encapsulated 78 kDa antigen and 78 kDa antigen + MPL-A, are highly efficacious and effective vaccine candidates against visceral leishmaniasis.  相似文献   

16.
Schistosoma mansoni lung-stage larvae are known to be the major target of innate and acquired immunity to schistosomiasis. Lung schistosomula cytosolic or surface membrane antigens are hidden, entirely inaccessible to the host immune system, and hence are not particularly important as vaccine candidates. Conversely, excretory–secretory (E–S) products released from intact, viable, elongated, and contractile schistosomula are ideal potential vaccines, as such molecules can readily play a central role in the induction of local primary and memory immune response effectors that would directly target, surround, and pursue the larvae while negotiating the lung capillaries. Therefore, 6-day-old ex vivo larvae were isolated from mouse or hamster lung cells and used for generation of E–S products, which were shown to elicit strong immune responses and significant (P < 0.05) protection against challenge infection in BALB/c mice. Proteomic analysis of E–S molecules following 10× concentration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis identified peptides related to innumerable host and about 15 S. mansoni-specific proteins. Selected S. mansoni-specific E–S peptides prepared in a multiple antigen peptide (MAP) or recombinant form were shown to stimulate considerable specific antibody response and peripheral blood mononuclear cell expression of mRNA for several cytokines in immunized C57BL/6 and BALB/c mice. However, highly significant (P < 0.05 to <0.005) reduction in challenge infection worm burden and egg load was recorded only when the immunization conditions in test mice provided the S. mansoni antigen-specific T helper (Th) type response milieu favorable for each immunogen. That was polarized Th1 for S. mansoni aldolase and thioredoxin peroxidase 1 MAPs, polarized Th2 for recombinant 14-3-3-like protein, mixed Th1/Th17 for calpain MAP, and mixed Th1/Th2 for recombinant p18 protein. The findings together indicated that the immune responses issue is as critical as the nature and source of the antigen for the development of vaccine against schistosomiasis.  相似文献   

17.
A transmission-blocking vaccine (TBV) against Plasmodium falciparum is likely to be a valuable tool in a malaria eradication program. Pfs230 is one of the major TBV candidates, and multiple Pfs230-based vaccines induced antibodies, which prevented oocyst formation in mosquitoes as determined by a standard membrane-feeding assay (SMFA). Pfs230 is a >300?kDa protein consisting of 14 cysteine motif (CM) domains, and the size and cysteine-rich nature of the molecule have hampered its production as an intact protein. Except for one early study with maltose-binding protein fusion Pfs230 constructs expressed in Esherichia coli, all other studies have focused on only the first four CM domains in the Pfs230 molecule. To identify all possible TBV candidate domains, we systematically produced either single-CM-domain (a total of 14), 2-CM-domain (7), or 4-CM-domain (6) recombinant protein fragments using a eukaryotic wheat germ cell-free expression system (WGCFS). In addition, two more constructs which covered previously published regions, and an N-terminal prodomain construct spanning the natural cleavage site of Pfs230 were produced. Antisera against each fragment were generated in mice and we evaluated the reactivity to native Pfs230 protein by Western blots and immunofluorescence assay (IFA), and functionality by SMFA. All 30 WGCFS-produced Pfs230 constructs were immunogenic in mice. Approximately half of the mouse antibodies specifically recognized native Pfs230 by Western blots with variable band intensities. Among them, seven antibodies showed higher reactivities against native Pfs230 determined by IFA. Interestingly, antibodies against all protein fragments containing CM domain 1 displayed strong inhibitions in SMFA, while antibodies generated using constructs without CM domain 1 showed no inhibition. The results strongly support the concept that future Pfs230-based vaccine development should focus on the Pfs230 CM domain 1.  相似文献   

18.
An efficacious Chlamydia vaccine is urgently needed to control Chlamydia infections. Heterologous prime-boost vaccination regimens are emerging as a promising strategy for preventing intracellular viral and bacterial infections. However, it remains to be determined if this regimen would be a feasible and effective approach for Chlamydia infection. In this study, we examined the immune response and the protective efficacy induced by various vaccination regimens using a recombinant adenovirus vector expressing the Chlamydia antigen CPAF (AdCPAF) and recombinant CPAF (rCPAF) subunit vaccines formulated with CpG oligodeoxynucleotides and/or a synthetic immunomodulatory peptide HH2 as adjuvants. A single dose of AdCPAF stimulated potent antibody production but weak cellular immune responses in mice. A booster rCPAF vaccine formulated with both CpG and HH2, but not CpG alone or HH2 alone, showed robust adjuvant effects on induction of Th1-biased cellular immune responses in mice primed with AdCPAF. In contrast, a homologous regimen using rCPAF/CpG/HH2 subunit vaccine for both priming and boosting induced a weak antibody response, but potent cellular immunity with a mixed Th1/Th17 profile. Despite the disparities observed in humoral and cellular immune responses, both the heterologous and homologous prime-boost regimens conferred significant immune protection against genital Chlamydia muridarum challenge in C3H/HeN and BALB/c mice.  相似文献   

19.
Brucellosis is one of the most prevalent zoonotic diseases of worldwide distribution caused by the infection of genus Brucella. Live attenuated vaccines such as B. abortus S19, B. abortus RB51 and B. melitensis Rev1 are found most effective against brucellosis infection in animals, contriving a number of serious side effects and having chances to revert back into their active pathogenic form. In order to engineer a safe and effective vaccine candidate to be used in both animals and human, a recombinant subunit vaccine molecule comprising the truncated region of glucokinase (r-glk) gene from B. abortus S19 was cloned and expressed in Escherichia coli BL21DE3 host. Female BALB/c mice immunized with purified recombinant protein developed specific antibody titer of 1:64,000. The predominant IgG2a and IgG2b isotypes signified development of Th1 directed immune responses. In vitro cell cytotoxicity assay using anti-r-glk antibodies incubated with HeLa cells showed 81.20% and 78.5% cell viability against lethal challenge of B. abortus 544 and B. melitensis 16M, respectively. The lymphocyte proliferative assay indicated a higher splenic lymphocyte responses at 25 μg/ml concentration of protein which implies the elevated development of memory immune responses. In contrast to control, the immunized group of mice intra-peritoneal (I.P.) challenged with B. abortus 544 were significantly protected with no signs of necrosis and vacuolization in their liver and spleen tissue. The elevated B-cell response associated with Th1 adopted immunity, significant in vitro cell viability as well as protection afforded in experimental animals after challenge, supplemented with histopathological analysis are suggestive of r-glk protein as a prospective candidate vaccine molecule against brucellosis.  相似文献   

20.
《Vaccine》2018,36(43):6433-6441
Better tools are necessary to eliminate visceral leishmaniasis (VL). Modeling studies for regional Leishmania elimination indicate that an effective vaccine is a critical tool. Dogs are the reservoir host of L. infantum in Brazil and the Mediterranean basin, and therefore are an important target for public health interventions as well as a relevant disease model for human VL. No vaccine has been efficacious as an immunotherapy to prevent progression of already diagnostically positive individuals to symptomatic leishmaniasis. We performed a double-blinded, block-randomized, placebo-controlled, vaccine immunotherapy trial testing the efficacy of a recombinant Leishmania A2 protein, saponin-adjuvanted, vaccine, LeishTec®, in owned hunting dogs infected with L. infantum. The primary outcome was reduction of clinical progression, with reduction of mortality as a secondary outcome. Vaccination as an immunotherapy reduced the risk of progression to clinically overt leishmaniasis by 25% in asymptomatic dogs (RR: 1.33 95% C.I. 1.009–1.786 p-value: 0.0450). Receiving vaccine vs. placebo reduced all-cause mortality in younger asymptomatic dogs by 70% (RR: 3.19 95% C.I.: 1.185–8.502 p-value = 0.0245). Vaccination of infected-healthy animals with an anti-Leishmania vaccine significantly reduced clinical progression and decreased all-cause mortality. Use of vaccination in infected-healthy dogs can be a tool for Leishmania control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号