首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study described here was to investigate whether ultrasound-mediated microbubble destruction (UTMD) of targeted microbubbles conjugated with an anti-vascular endothelial growth factor receptor 2 (anti-VEGFR2) antibody can enhance the therapeutic effect of doxorubicin (DOX) on a mouse hepatocellular carcinoma (HCC) model bearing HEP-G2-RFP tumors. The growth of liver tumors in mice was inhibited by using Visistar VEGFR2 plus ultrasound irradiation and by DOX alone. DOX plus UTMD had an inhibitory effect on tumor growth beginning on the seventh day of treatment, while Visistar VEGFR2 alone and DOX alone had inhibitory effects beginning on the 11th day. DOX + UTMD significantly decreased tumor volume and tumor weight compared with DOX alone (p < 0.05) and Visistar VEGFR2 alone (p < 0.05). Compared with DOX alone and Visistar VEGFR2 alone, DOX + UTMD had the highest inhibitory effect on tumor angiogenesis and the highest apoptosis index. UTMD-targeted microbubbles can significantly enhance the antitumor effect of DOX on a mouse HCC model, inhibit angiogenesis and induce apoptosis in tumor cells.  相似文献   

2.
3.
Although ultrasound-targeted microbubble destruction (UTMD) has been shown to induce bioeffects, UTMD is still desirable for therapeutic applications. Therefore, we studied the effects of UTMD on perfusion and function of the rat heart, assessed by 99mTc-MIBI pinhole-gated SPECT (Ph-gSPECT) compared with biomarker release and histopathology. Fifty-two male Wistar rats were studied. UTMD was performed using SonoVue, with a mechanical index of 1.0 or 1.6. Controls were treated without microbubbles or without ultrasound application. At baseline, day 1, day 7 and day 30, 35 rats were imaged with 99mTc-MIBI Ph-gSPECT to quantify left ventricular perfusion and function. In addition, troponin release and histopathology were investigated. No significant differences were observed for left ventricular ejection fractions, end-systolic and end-diastolic volumes, regional perfusion and functional scores up to 30 days after UTMD compared with controls. UTMD induced mild troponin release and early erythrocyte extravasation without necrosis, inflammation or fibrosis. Although UTMD has the potential to induce microlesions of the heart in small animals, these effects were transient without histological evidence of irreversible damage. Furthermore, UTMD does not induce abnormalities on perfusion or function of the heart, as assessed by Ph-gSPECT, which is reassuring concerning the use of SonoVue for potential therapeutic applications. (E-mail: sophie.hernot@gmail.com)  相似文献   

4.
Ultrasound targeted microbubble destruction has succeeded in delivering drugs and genes. This study was designed to explore characteristics of ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound. Canine thyroid adenocarcinoma cells were exposed to short-pulsed diagnostic ultrasound in the presence of cis-diamminedichloroplatinum (II) (cisplatin) and ultrasound contrast agent Sonazoid® microbubbles. The cytotoxic effect of cisplatin was enhanced by short-pulsed diagnostic ultrasound and microbubbles. Incubation time with microbubbles influenced the cytotoxic effect of cisplatin. However, exposure duration did not affect the cytotoxic effect of cisplatin. Therefore, short-pulsed diagnostic ultrasound may activate microbubbles near cells and deliver cisplatin into cells. In addition, activation of microbubbles may be concluded in a short time. Our results suggest that short exposure duration could be potentially sufficient to induce efficient drug delivery by ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound.  相似文献   

5.
Gas-filled microbubbles have become an important tool as ultrasonic contrast agents. We have previously shown that ultrasound-targeted microbubble destruction (UTMD) can direct plasmids to the heart. The aim of this study was to evaluate UTMD for protein delivery. Six different groups of rats received 1 microg of luciferase protein with varying protocols: (1) luciferase-loaded microbubbles and ultrasound; (2) luciferase only; (3) luciferase and ultrasound; (4) luciferase-loaded microbubbles; (5) unloaded microbubbles incubated with luciferase and ultrasound; (6) unloaded microbubbles with ultrasound followed by luciferase. Relative luminescence units per mg protein per s were determined in hearts and control organs. The rats that received ultrasound and luciferase-loaded bubbles showed a six-fold higher cardiac luciferase uptake compared with control groups that did not include bubbles. None of the other groups significantly augmented cardiac luciferase activity. We conclude that ultrasound-targeted microbubble destruction can substantially and noninvasively augment organ-specific delivery of proteins.  相似文献   

6.
Ultrasound-mediated microbubble cavitation improves perfusion in chronic limb and myocardial ischemia. The purpose of this study was to determine the effects of ultrasound-mediated microbubble cavitation in acute limb ischemia and investigate the mechanism of action. The animal with acute hindlimb ischemia was established using male Sprague-Dawley rats. The rats were randomly divided into three groups: intermittent high-mechanical-index ultrasound pulses combined with microbubbles (ultrasound [US] + MB group), US alone (US group) and MB alone (MB group). Both hindlimbs were treated for 10 min. Contrast ultrasound perfusion imaging of both hindlimbs was performed immediately and 5, 10, 15, 20 and 25 min after treatment. The role of the nitric oxide (NO) pathway in increasing blood flow in acutely ischemic tissue was evaluated by inhibiting endothelial nitric oxide synthase (eNOS) with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME). In the US + MB group, microvascular blood volume and microvascular blood flow of the ischemic hindlimb were significantly increased after treatment (both p values <0.05), while the microvascular flux rate (β) increased, but not significantly (p > 0.05). The increases were observed immediately after treatment, and had dissipated by 25 min. Changes in the US and MB groups were minimal. Inhibitory studies indicated cavitation increased phospho-eNOS concentration in ischemic hindlimb muscle tissue, and the increase was significantly inhibited by L-NAME (p < 0.05). Ultrasound-mediated microbubble cavitation transiently increases local perfusion in acutely ischemic tissue, mainly by improving microcirculatory perfusion. The eNOS/NO signaling pathway appears to be an important mediator of the effect.  相似文献   

7.
目的 探讨应用超声靶向破坏微泡(UTMD)技术介导shRNA抑制小鼠肝癌细胞株JNK1基因表达的能力。方法 构建并筛选shRNA最佳表达载体。体外培养肝癌细胞Hca-F,共分为5组:A组为空白对照组;B组为shRNA质粒组;C组为脂质体组;D组为超声微泡+超声辐照组;E组为脂质体+超声微泡+超声辐照组。应用倒置荧光显微镜观察转染率;荧光定量PCR检测JNK1的mRNA水平;Western-Blot检测JNK1的蛋白质表达。结果 获得了shRNA干扰效果最好的表达载体。各组转染率比较:E组均大于B、C、D组(P均<0.05);C、D组之间差异无统计学意义(P>0.05)。荧光定量PCR和Western-Blot检测各组JNK1mRNA和蛋白表达比较:E组的JNK1mRNA和蛋白表达水平均最低(P均<0.05)。结论 脂质体转染法与UTMD技术结合可以提高小鼠肝癌细胞株JNK1 shRNA的转染效率,并能够增强基因表达的抑制效果。  相似文献   

8.
目的 探讨利用低频超声联合SonoVue微泡造影剂促进基因转染人前列腺癌裸鼠皮下移植瘤的可行性。方法 采用人前列腺癌PC-3细胞建立裸鼠皮下移植瘤模型,成瘤后随机分为空白组(仅注射生理盐水)、单纯质粒组(注射生理盐水和质粒混悬液)、低频超声组(注射生理盐水和质粒混悬液后超声辐照)和低频超声+微泡组(注射超声微泡造影剂和质粒混悬液后超声辐照)。超声辐照条件:功率3 W/cm2,占空比5:5,频率80 kHz,辐照10 min。基因转染3天后在激光共聚焦显微镜下观察各组绿色荧光蛋白表达情况,并分析其平均荧光强度;同时行常规病理检查,观察低频超声联合微泡辐照对组织的损伤程度。结果 4组中,仅低频超声+微泡组可见明显绿色荧光,与其他各组差异均有统计学意义(P均<0.05);空白组、单纯质粒组和低频超声组均未见明显绿色荧光。各组均未见明显组织损伤。结论 SonoVue微泡造影剂在低频超声辐照下能够安全有效地促进pEGFP基因转染进入人前列腺癌裸鼠皮下移植瘤组织内。  相似文献   

9.
低能量脉冲式超声联合微泡对兔VX2肿瘤微循环的阻断作用   总被引:2,自引:0,他引:2  
目的探讨低能量脉冲式超声联合微泡对兔VX2肿瘤微循环的阻断作用及其病理机制。方法将36只皮下VX2荷瘤兔随机平均分成3组:超声微泡组注入0.2ml/kg体质量微泡5ml,并辅以超声辐照10min;单纯超声组注入生理盐水5ml,辐照10min;单纯微泡组仅注入0.2ml/kg体质量微泡5ml,不进行超声辐照。CEUS观察各组治疗前、治疗后0、30min、60min时血流灌注情况,比较各时间点的灌注面积。治疗后即刻随机选取各组6只荷瘤兔处死,完整切取肿瘤,行病理学检查。结果超声微泡组治疗后即刻肿瘤血流灌注完全消失,灌注面积为0,但30min及60min后灌注有所恢复,各时间点治疗后灌注面积显著大于治疗前(均P<0.05);大体病理检查见肿瘤微血管扩张、管壁结构崩解,弥漫性充血、出血和肿瘤组织水肿,局部血肿,形成血栓等。单纯超声组及单纯微泡组治疗前、后造影剂灌注面积无差异,肿瘤内部未见出血、水肿等。结论低能量超声联合微泡能够阻断肿瘤微循环,可能是由于空化效应导致血管壁损伤,组织水肿对局部肿瘤血液循环产生阻力,从而阻断肿瘤血液循环。  相似文献   

10.
Aggressive tumors are characterized by angiogenesis that promotes the migration and dissemination of tumor cells. Our aim was to develop a dual-targeted microbubble system for non-invasive evaluation of tumor angiogenesis in ultrasound. Avidinylated microbubbles were conjugated with biotinylated arginylglycylaspartic acid and vascular endothelial growth factor receptor 2 (VEGFR2) antibodies. Subcutaneous MHCC-97H liver carcinoma models were established. Non-targeted, αvβ3-targeted, VEGFR2-targeted and dual-targeted microbubbles was intravenously injected in series while acquiring ultrasound images of the tumor. The microbubbles were destroyed by a high-mechanical-index pulse 4?min after the injection. Peak intensity (PI) before and after the destructive pulse was recorded to compare contrast enhancement by different microbubbles. The targeting rates of the integrin-targeted, VEGFR2-targeted and dual-targeted groups were 95.02%, 96.04% and 94.23%, respectively, with no significant differences. Tumors in all groups were significantly enhanced. The time–intensity curve indicated no significant differences in arrival time, PI, area under the curve, amplitude and mean transit time. The difference in ultrasound signal intensity before and after the destructive pulse (⊿PI) for all targeted microbubble groups was significantly greater than that for the non-targeted microbubble group (all p values?<?0.05), and the difference for the dual-targeted microbubble group was significantly greater than those of both mono-targeted groups (p?<0.05).  相似文献   

11.
To investigate whether ultrasound-targeted microbubble destruction (UTMD) could transfer gene into central nervous system (CNS) following blood-brain barrier disruption (BBBD), DNA-loaded microbubbles were infused into the mice intravenously following ultrasonic exposure. Opening of the BBB, changes of mRNA and expression of enhanced green fluorescent protein (EGFP), and safety evaluation were measured. By UTMD, EGFP were substantially expressed in the cytoplasm of the neurons at the sonicated area with minor erythrocytes extravasation and the mRNA and expression of EGFP were markedly enhanced by about 15-fold and 10-fold, respectively, than that with US alone (p < 0.01). No EGFP was detected in the mice treated with DNA-loaded microbubbles or plasmid alone. The gene expression reached a climax at 48 h, gradually reduced to a much lower level thereafter. These results demonstrated UTMD could effectively enhance exogenous gene delivery and expression in CNS following BBBD, and this technique may provide a new method for CNS gene therapy.  相似文献   

12.
Ultrasound-targeted microbubble destruction (UTMD) has evolved as a promising tool for organ-specific gene and drug delivery. Taking advantage of high local concentrations of therapeutic substances and transiently increased capillary permeability, UTMD could be used for the treatment of ultrasound accessible tumors. The aim of this study was to evaluate if UTMD can locally increase capillary permeability in a hepatoma model of the rat. Furthermore, we evaluated whether UTMD can transfect DNA into such tumors. Subcutaneous Morris hepatomas were induced in both hind limbs of ACI rats by cell injection. A total of 18 rats were divided into three groups. Only one tumor per rat was treated by ultrasound. The first group received injection of Evans blue, followed by UTMD. The second group received a phosphate-buffered saline solution infusion and ultrasound to the target tumor after Evans blue injection. The third group received UTMD first, followed by Evans blue injection. Tumors and control organs were harvested, and Evans blue extravasation was quantified. Another 12 rats received DNA-loaded microbubbles by UTMD to one tumor, encoding for luciferase. Evans blue injection followed by UTMD showed about fivefold higher Evans blue amount in the target tumors compared with the control tumors. In contrast, no significant difference in Evans blue content was detected between target and control tumors when ultrasound was applied without microbubbles or when UTMD was performed before Evans blue injection. Plasmid transfection was not successful. In conclusion, ultrasound targeted microbubble destruction is able to transiently increase capillary permeability in hepatomas. Using naked DNA, this technique does not seem to be feasible for noninvasive transfection of hepatomas.  相似文献   

13.

Purpose

The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model.

Methods

Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 107 microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times.

Results

The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm3, P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice.

Conclusion

Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.  相似文献   

14.
Failure of coronary recanalization within 12 h or no flow in the myocardium after percutaneous coronary intervention is associated with high mortality from myocardial infarction, and insufficient angiogenesis in the border zone results in the expansion of infarct area. In this study, we examined the effects of ultrasound-targeted microbubble destruction (UTMD) on angiogenesis and left ventricular dysfunction in a mouse model of myocardial infarction. Fifty-four mice with MI were treated with no UTMD, ultrasound (US) alone or UTMD four times (days 1, 3, 5 and 7), and another 18 mice underwent sham operation and therapy. Therapeutic US was generated with a linear transducer connected to a commercial diagnostic US system (VINNO70). UTMD was performed with the VINNO70 at a peak negative pressure of 0.8 MPa and lipid microbubbles. Transthoracic echocardiography was performed on the first and seventh days. The results indicated that UTMD decreased the infarct size ratio from 78.1 ± 5.3% (untreated) to 43.3 ± 6.4%, accelerated angiogenesis and ameliorated left ventricular dysfunction. The ejection fraction increased from 25.05 ± 8.52% (untreated) to 42.83 ± 9.44% (UTMD). Compared with that in other groups, expression of vascular endothelial growth factor and endothelial nitric oxide synthase and release of nitric oxide were significantly upregulated after UTMD treatment, indicating angiogenesis. Therefore, UTMD is a potential physical approach in the treatment of myocardial infarction.  相似文献   

15.
Ultrasound can be used to target endothelial cells in cancer therapy where the destruction of vasculature leads to tumor cell death. Here, we demonstrate ultrasound bioeffects in which the levels of genes in endothelial cells can be significantly altered by ultrasound-stimulated microbubble exposure. These were compared with established effects of radiation on endothelial cells at a gene level. Human-endothelial cells were exposed to ultrasound and microbubbles, radiation or combinations of ultrasound, microbubbles and radiation. Gene expression analyses revealed an up-regulation of genes known to be involved in apoptosis and ceramide-induced apoptotic pathways, including SMPD2, UGT8, COX6B1, Caspase 9 and MAP2K1 with ultrasound-stimulated microbubble exposure but not SMPD1. This was supported by immunohistochemistry and morphologic changes examined with cell microscopy, which showed changes in SMPD1 gene product in cells with microbubble exposure. This supports the hypothesis that ultrasound-stimulated microbubbles can induce significant bioeffect-related changes in gene expression and can affect ceramide signaling pathways in endothelial cells, leading to apoptosis.  相似文献   

16.
AimThe inhibitory effects on expression of JNK1 in mouse hepatocellular carcinoma cell lines and cell migration and invasion were mediated by ultrasound-targeted microbubble destruction (UTMD).Materials and methodsThe best shRNA vector was built and screened. The hepatocellular carcinoma cell lines were cultured in vitro and divided into five groups: the group of normal Hca-F cells, the group of shRNA plasmid (already selected from the above procedure), the group of Lipofectamine, the group of UTMD (ultrasound microbubbles combined with ultrasound exposure) and the group of Lipofectamine and UTMD. The transfection rate was observed by inverted fluorescence microscope. The expression levels of JNK1 mRNA and protein were evaluated by fluorescence quantitative PCR and Western Blot respectively. The cell proliferation was detected by CCK-8. The ability of migration and invasion in vitro was detected by transwell assay.ResultsThe best shRNA vector was established. The comparison of the transfection rate: The group of Lipofectamine and UTMD was larger than that of the groups of shRNA plasmid, Lipofectamine lipofection and UTMD (all P < 0.05). There was no significant difference between the group of Lipofectamine and the group of UTMD (P > 0.05). The comparison of the expression levels of JNK1 mRNA and protein: Both of the mRNA and protein expression levels were lowest in the group of Lipofectamine and UTMD (all P < 0.05). CCK-8 showed that cell viability decreased most in the group of Lipofectamine and UTMD (all P < 0.05); Transwell assay showed that the abilities of migration and invasion decreased most in the group of Lipofectamine and UTMD (all P < 0.05).ConclusionThe transfection rate of JNK1 shRNA can be improved through the combination of lipofection and UTMD in mouse hepatocellular carcinoma cell lines, therefore enhancing the inhibitory effects of gene expression. The inhibitory effects of cell proliferation, migration and invasion can also be enhanced.  相似文献   

17.
Hemodynamic flow variations at low fluid shear stress are thought to play a critical role in local atherosclerotic plaque initiation and development and to affect plaque instability. Targeted microbubbles are being developed as intravascular agents for identifying atherosclerotic lesions using ultrasound. How variations in local hydrodynamic flow influence the adhesiveness of targeted microbubbles is not well understood. We postulated that rates of targeted microbubble binding and accumulation differ when subjected to steady flow (SF) as compared with oscillatory or pulsatile flow (PF), because PF imposes non-uniform blood rheology and periodic acceleration and deceleration of blood velocity, when compared with SF. We assessed the binding rates of targeted microbubbles in seven randomly assigned PF and seven matched SF replicate runs at low (<1 Pa) and intermediate (≥1 and <2.5 Pa) wall shear stress (WSS) by drawing 4.8 × 106 microbubbles mL−1 over streptavidin-coated substrates, immobilized within a parallel plate flow chamber at a calculated density of 81 binding sites μm-2. Selective binding and accumulation of targeted microbubbles was recorded in a single field of view using real-time video microscopy. Microbubble accumulation was modeled to obtain flow-mediated microbubble binding kinetics (amplitude, A, and rate constant, k). PF elicited higher microbubble accumulation rates, in comparison to SF. The rates of microbubble accumulation differed significantly between PF and SF (p < 0.05) at intermediate WSS but not at low WSS (p > 0.05). The rate of microbubble accumulation decreased as WSS increased.  相似文献   

18.
Ultrasound targeted microbubble destruction (UTMD) has evolved as a promising tool for organ specific gene and drug delivery. Using DNA-loaded microbubbles, cardiac transfection has been shown to be feasible. However, two-dimensional properties of the ultrasound beam limit cardiac transgene expression to the focal zone, thus, reducing its potential therapeutic effect. The aim of this study was to test if spatial distribution of ultrasound targeted microbubble destruction in the heart could lead to augmented transgene expression or increased capillary permeability. Lipid microbubbles containing plasmids with a luciferase transgene were used to target rat hearts. The diagnostic ultrasound probe was fixed in a mid-short axis view with a gel stand-off between the chest and probe. Ultrasound (1.3 MHz) with a mechanical index of 1.6 was intermittently applied to rats during microbubble infusion. Rats were randomized to either stay in that position or move horizontally in a cranio-caudal direction (3 mm sweep) relative to the ultrasound probe during UTMD. After 4 days, organs were harvested and analyzed for reporter gene expression. Another group of rats received Evans Blue, followed by UTMD with unloaded microbubbles. Again, rats were randomized into a static or moving group. Hearts were harvested to evaluate extravasation of Evans Blue. Moving rats in a cranio-caudal direction significantly increased transgene expression by 19-fold in the anterior heart, by sixfold in the posterior heart and by 32-fold in the apex. Interestingly, Evans Blue extravasation was not augmented in the moving group. Spatial distribution of UTMD may increase transgene expression due to sonication of larger areas in the heart. In contrast, capillary permeability does not increase, indicating less capillary damage. (E-mail: raffi.bekeredjian@med.uni-heidelberg.de)  相似文献   

19.
Qiu L  Zhang L  Wang L  Jiang Y  Luo Y  Peng Y  Lin L 《Gene therapy》2012,19(7):703-710
The study was to investigate the probability of increasing the transfection of the gene in tendons by ultrasound-targeted microbubble destruction (UTMD), and to search for the most suitable transfection conditions. A mixture of microbubbles and enhanced green fluorescent protein (EGFP) plasmids was injected into rabbit Achilles tendons by different administration routes and the tendons were ultrasound pulse by different ultrasonic conditions in order to determine the most appropriate conditions. Then, the rabbits were divided into four groups: (1) ultrasound + microbubbles + plasmid; (2) ultrasound+ plasmid; (3) microbubble + plasmid; (4) plasmid only. EGFP expression in the tendons and other tissues, and the damage to tendon and paratenon were all observed. The results showed that EGFP expression in the tendon was higher by ultrasound pulse with 2 W cm(-2) of output intensity and a 20% duty cycle for 10 min. Local injection was determined to be the better administration route. Among the four groups, EGFP expression in Group 1 was higher than that in other groups. EGFP expression was highest on seventh day, then it gradually decrease over time, and lasted more than 56 days. EGFP expression was not found in other tissues. There was no obvious injury caused by UTMD. Under suitable conditions, it is feasible to use UTMD as a safe and effective gene transfection therapy for tendon injuries.  相似文献   

20.
目的平行板流动腔评价在生理血流条件下携抗小鼠P-选择素单抗靶向超声微泡(MBp)的靶向黏附效能。方法采用"亲和素-生物素"桥接法构建MBp;在3种浓度(10、100和1000ng/ml)小鼠P-选择素Fc段(PSFc)包被的平行板流动腔和固定剪切应力下,以及最大包被浓度和不同剪切应力(0.2-1.7dyn/cm^2)下分别检测MBp的每分钟结合数量(结合率),以抗小鼠P-选择素单抗封闭组和空白组为对照。在3种包被浓度下检测MBp达半数解离的剪切应力。所有分组样本数均为3。结果两对照组均未见有明显的MBp结合。实验组MBp结合率随包被浓度的增高而增加(P〈0.05),然而与剪切应力呈现双向性(P〈0.05)。MBp达半数解离的剪切应力随包被浓度的增加而增大(P〈0.05)。结论MBp在生理条件下可与PSFc特异有效地结合,体外对靶向超声微泡的靶向黏附效能评价将有助于判定超声分子成像的效果和靶向微泡的在体应用环境条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号