首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2017,35(33):4287-4294
In this study, we described the generation and immunogenicity of the Zika Virus (ZIKV) envelope protein (E) domain III (DIII) as a protein subunit vaccine candidate. ZIKV EDIII (zEDIII) was rapidly produced in E. coli in inclusion bodies. ZIKV EDIII was solubilized, refolded and purified to >95% homogeneity with a one-step Ni2+ affinity chromatography process. Further analysis revealed that zEDIII was refolded properly and demonstrated specific binding to an anti-zEDIII monoclonal antibody that recognizes a zEDIII conformational epitope. Subcutaneous immunization of mice with 25 and 50 μg of zEDIII was performed over a period of 11 weeks. zEDIII evoked ZIKV-specific and neutralizing antibody response with titers that exceed the threshold that correlates with protective immunity against ZIKV. The antigen-specific IgG isotypes were predominantly IgG1 and splenocyte cultures from immunized mice secreted IFN-gamma, IL-4 and IL-6. Notably, zEDIII-elicited antibodies did not enhance the infection of dengue virus in Fc gamma receptor (FcγR)-expressing cells. This study provided a proof of principle for the further development of recombinant protein-based subunit vaccines against ZIKV.  相似文献   

2.
《Vaccine》2018,36(14):1846-1852
West Nile virus (WNV) has caused multiple global outbreaks with increased frequency of neuroinvasive disease in recent years. Despite many years of research, there are no licensed therapeutics or vaccines available for human use. One of the major impediments of vaccine development against WNV is the potential enhancement of infection by related flaviviruses in vaccinated subjects through the mechanism of antibody-dependent enhancement of infection (ADE). For instance, the recent finding of enhancement of Zika virus (ZIKV) infection by pre-exposure to WNV further complicates the development of WNV vaccines. Epidemics of WNV and the potential risk of ADE by current vaccine candidates demand the development of effective and safe vaccines. We have previously reported that the domain III (DIII) of the WNV envelope protein can be readily expressed in Nicotiana benthamiana leaves, purified to homogeneity, and promote antigen-specific antibody response in mice. Herein, we further investigated the in vivo potency of a plant-made DIII (plant-DIII) in providing protective immunity against WNV infection. Furthermore, we examined if vaccination with plant-DIII would enhance the risk of a subsequent infection by ZIKV and Dengue virus (DENV). Plant-DIII vaccination evoked antigen-specific cellular immune responses as well as humoral responses. DIII-specific antibodies were neutralizing and the neutralization titers met the threshold correlated with protective immunity by vaccines against multiple flaviviruses. Furthermore, passive administration of anti-plant DIII mouse serum provided full protection against a lethal challenge of WNV infection in mice. Notably, plant DIII-induced antibodies did not enhance ZIKV and DENV infection in Fc gamma receptor-expressing cells, addressing the concern of WNV vaccines in inducing cross-reactive antibodies and sensitizing subjects to subsequent infection by heterologous flavivirus. This study provides the first report of a WNV subunit vaccine that induces protective immunity, while circumventing induction of antibodies with enhancing activity for ZIKV and DENV infection.  相似文献   

3.
Development of H7N7 highly pathogenic avian influenza virus (HPAIV) vaccines is an urgent issue since human cases of infection with this subtype virus have been reported and most humans have no immunity against H7N7 viruses. We made an H7N7 vaccine combining components from an influenza virus library of non-pathogenic type A influenza viruses. Antibody and T cell recall responses specific against the vaccine strain were elicited by subcutaneous inoculation with the whole virus particle vaccine with or without alum as an adjuvant in cynomolgus macaques. No significant difference was observed in magnitude of antibody responses between vaccination with alum and vaccination without alum, though vaccination with alum induced longer recall responses of CD8+ T cells than did vaccination without alum. After challenge with a subtype of H7N7 HPAIV, the virus was detected in nasal swabs of unvaccinated macaques for 8 days but only for 1 day in the animals vaccinated either with or without alum, although the macaques vaccinated with alum showed elevated body temperature more briefly after infection. These findings demonstrated that this H7N7 HPAIV strain is pathogenic to macaques and that the vaccine conferred protective immunity to macaques against H7N7 HPAIV infection.  相似文献   

4.
目的 用寨卡病毒非结构蛋白NS1免疫小鼠并制备鼠源单克隆抗体,建立捕获ELISA方法检测寨卡病毒NS1蛋白.方法 合成NS1基因序列构建真核表达载体pcDNA3.1-NS1,转染HEK293细胞收集上清,经Ni+柱亲和层析法纯化NS1蛋白.以纯化的NS1重组蛋白为抗原免疫BALB/c小鼠,取脾脏进行细胞融合,筛选阳性细...  相似文献   

5.
《Vaccine》2020,38(14):2943-2948
Despite a critical need for a respiratory syncytial virus (RSV) vaccine and decades of development efforts, a vaccine to protect infants, elderly, and other at-risk populations from RSV infection remains elusive. We have previously generated a new, live-attenuated vaccine candidate against RSV using rational, computer-aided gene design and chemical synthesis through a process termed viral gene “deoptimization.” In this study, we assessed the attenuation, immunogenicity, and efficacy of this synthetic, live-attenuated RSV vaccine candidate, RSV-MinL4.0, in African Green Monkeys. RSV-MinL4.0 was produced under good-manufacturing-practice (GMP) in Vero cells. Vaccination with RSV-MinL4.0 resulted in minimal virus shedding after vaccination, generation of robust humoral and cellular immune responses (despite the presence of baseline RSV neutralizing antibodies in one animal) that were comparable to a wildtype infection, and protection from virus shedding post-challenge with wildtype RSV. These findings demonstrate the promise of RSV-MinL4.0 as a live-attenuated vaccine which will undergo clinical trials to test its ability to safely and effectively protect pediatric and elderly populations from infection with RSV.  相似文献   

6.
《Vaccine》2015,33(1):193-200
The development of an H2N2 vaccine is a priority in pandemic preparedness planning. We previously showed that a single dose of a cold-adapted (ca) H2N2 live attenuated influenza vaccine (LAIV) based on the influenza A/Ann Arbor/6/60 (AA ca) virus was immunogenic and efficacious in mice and ferrets. However, in a Phase I clinical trial, viral replication was restricted and immunogenicity was poor. In this study, we compared the replication of four H2N2 LAIV candidate viruses, AA ca, A/Tecumseh/3/67 (TEC67 ca), and two variants of A/Japan/305/57 (JAP57 ca) in three non-human primate (NHP) species: African green monkeys (AGM), cynomolgus macaques (CM) and rhesus macaques (RM). One JAP57 ca virus had glutamine and glycine at HA amino acid positions 226 and 228 (Q–G) that binds to α2-3 linked sialic acids, and one had leucine and serine that binds to α2-3 and α2-6 linked residues (L–S). The replication of all ca viruses was restricted, with low titers detected in the upper respiratory tract of all NHP species, however replication was detected in significantly more CMs than AGMs. The JAP57 ca Q–G and TEC67 ca viruses replicated in a significantly higher percentage of NHPs than the AA ca virus, with the TEC67 ca virus recovered from the greatest percentage of animals. Altering the receptor specificity of the JAP57 ca virus from α2-3 to both α2-3 and α2-6 linked sialic acid residues did not significantly increase the number of animals infected or the titer to which the virus replicated. Taken together, our data show that in NHPs the AA ca virus more closely reflects the human experience than mice or ferret studies. We suggest that CMs and RMs may be the preferred species for evaluating H2N2 LAIV viruses, and the TEC67 ca virus may be the most promising H2N2 LAIV candidate for further evaluation.  相似文献   

7.
K Boonnak  M Paskel  Y Matsuoka  L Vogel  K Subbarao 《Vaccine》2012,30(38):5603-5610
We studied the replication of influenza A/California/07/09 (H1N1) wild type (CA09wt) virus in two non-human primate species and used one of these models to evaluate the immunogenicity and protective efficacy of a live attenuated cold-adapted vaccine, which contains the hemagglutinin and neuraminidase from the H1N1 wild type (wt) virus and six internal protein gene segments of the A/Ann Arbor/6/60 cold-adapted (ca) master donor virus. We infected African green monkeys (AGMs) and rhesus macaques with 2×10(6) TCID(50) of CA09wt and CA09ca influenza viruses. The virus CA09wt replicated in the upper respiratory tract of all animals but the titers in upper respiratory tract tissues of rhesus macaques were significant higher than in AGMs (mean peak titers 10(4.5) TCID(50)/g and 10(2.0) TCID(50)/g on days 4 and 2 post-infection, respectively; p<0.01). Virus replication was observed in the lungs of all rhesus macaques (10(2.0)-10(5.4) TCID(50)/g) whereas only 2 out of 4 AGMs had virus recovered from the lungs (10(2.5)-10(3.5) TCID(50)/g). The CA09ca vaccine virus was attenuated and highly restricted in replication in both AGMs and rhesus macaques. We evaluated the immunogenicity and protective efficacy of the CA09ca vaccine in rhesus macaques because CA09wt virus replicated more efficiently in this species. One or two doses of vaccine were administered intranasally and intratracheally to rhesus macaques. For the two-dose group, the vaccine was administered 4-weeks apart. Immunogenicity was assessed by measuring hemagglutination-inhibiting (HAI) antibodies in the serum and specific IgA antibodies to CA09wt virus in the nasal wash. One or two doses of the vaccine elicited a significant rise in HAI titers (range 40-320). Two doses of CA09ca elicited higher pH1N1-specific IgA titers than in the mock-immunized group (p<0.01). Vaccine efficacy was assessed by comparing titers of CA09wt challenge virus in the respiratory tract of mock-immunized and CA09ca vaccinated monkeys. Significantly lower virus titers were observed in the lungs of vaccinated animals than mock-immunized animals (p≤0.01). Our results demonstrate that AGMs and rhesus macaques support the replication of pandemic H1N1 influenza virus to different degrees and a cold-adapted pH1N1 vaccine elicits protective immunity against pH1N1 virus infection in rhesus macaques.  相似文献   

8.
《Vaccine》2018,36(42):6334-6344
As a successful prevention strategy for controlling the highly contagious and pathogenic disease of spring viremia of carp (SVC), DNA vaccines reported in recent years could trigger protective responses against SVC with the means of injection. However, there remains many concerns and uncertainties related to DNA vaccination as well as injection is labor intensive, costly and not suitable to vaccinate large numbers of fish. Therefore, more efficient and safe prophylactic measures should be urgently investigated. In this research, single-walled carbon nanotubes (SWCNTs) as the candidate SWCNTs-pET32a-G subunit vaccine carrier were administrated via bath (1, 5, 10, 20, 40 mg L−1) or injection (1, 4, 8, 12, 20 μg) in common carp juvenile, and the different immune treatments to induce immunoprotective effect were analyzed. The results showed that SWCNTs-pET32a-G could enter fish body after immersion for 10 h, furthermore, compared to control groups, antibody levels, the non-specific immune parameters (complement activity, superoxide dismutase activity and alkaline phosphatase activity), and immune-related genes (especially the TNF-α and IFNg2b) in vaccinated groups were significantly enhanced in fish immunized with SWCNTs-subunit vaccine. In addition, as a promising carrier, SWCNTs can increase the immune protective effect of naked subunit vaccine by ca. 16% in bath immunization group and by ca. 23% in injection group. This study suggests that SWCNTs-vaccine may represent a potentially efficient immersion vaccine against viral pathogens of fish in the future.  相似文献   

9.
Herpes B virus (Cercopithecine herpesvirus 1) is endemic in captive macaque populations and poses a serious threat to humans who work with macaques or their tissues. A vaccine that could prevent or limit B virus infection in macaques would lessen occupational risk. To that end, a DNA vaccine plasmid expressing the B virus glycoprotein B (gB) was constructed and tested for immunogenicity in mice and macaques. Intramuscular (IM) or intradermal (ID) immunization in mice elicited antibodies to gB that were relatively stable over time and predominately of the IgG2a isotype. Five juvenile macaques were immunized by either IM+ID (n=2) or IM (n=3) routes, with two booster immunizations at 10 and 30 weeks. All five animals developed antibodies to B virus gB, with detectable neutralizing activity in the IM+ID immunized animals. These results demonstrated that DNA immunization can be used to generate an immune response against a B virus glycoprotein in uninfected macaques.  相似文献   

10.
《Vaccine》2018,36(6):841-846
Seneca Valley virus (SVV) infection in pigs is associated with porcine idiopathic vesicular disease (PIVD). Outbreaks of SVV infection in pig herds have been reported in several Asia and Americas countries. Recently, a series of outbreaks of SVV infection occurred in China, Canada, Thailand and the United States. However, no available vaccines have been developed to limit the transmission of SVV. The SVV CH-FJ-2017 from Fujian province in China is a representative of the epidemic strains, and shows 98.5–99.9% capsid protein amino acid identity with the recent SVV strains. In the present study, we developed a SVV CH-FJ-2017 inactivated vaccine. The SVV was produced by cultivation of BHK-21 cells in roller bottles, inactivated with binary ethylenimine, and mixed with oil adjuvant (Montanide ISA). The immunogenicity of the inactivated vaccine in pigs was evaluated by neutralizing test, and the immunized pigs were challenged with SVV CH-FJ-2017. The results showed that animals receiving one dose of the inactivated vaccine (2 μg/dose) with oil adjuvant developed high neutralizing antibody titers and showed no clinical signs after virus challenge comparing with the non-vaccinated animals, indicating a good protective efficacy of the produced vaccine against SVV infection. This is the first reported SVV vaccine that can be used for control of SVV infection in pigs.  相似文献   

11.
The pandemic of HIV-1 has continued for decades, yet there remains no licensed vaccine. Previous research has demonstrated the effectiveness of a multi-envelope, multi-vectored HIV-1 vaccine in a macaque-SHIV model, illustrating a potential means of combating HIV-1. Specifically, recombinant DNA, vaccinia virus (VV) and purified protein (DVP) delivery systems were used to vaccinate animals with dozens of antigenically distinct HIV-1 envelopes for induction of immune breadth. The vaccinated animals controlled disease following challenge with a heterologous SHIV. This demonstration suggested that the antigenic cocktail vaccine strategy, which has succeeded in several other vaccine fields (e.g. pneumococcus), might also succeed against HIV-1. The strategy remains untested in an advanced clinical study, in part due to safety concerns associated with the use of replication-competent VV. To address this concern, we designed a macaque study in which psoralen/ultraviolet light-inactivated VV (UV VV) was substituted for replication-competent VV in the multi-envelope DVP protocol. Control animals received a vaccine encompassing no VV, or no vaccine. All VV vaccinated animals generated an immune response toward VV, and all vaccinated animals generated an immune response toward HIV-1 envelope. After challenge with heterologous SHIV 89.6P, animals that received replication-competent VV or UV VV experienced similar outcomes. They exhibited reduced peak viral loads, maintenance of CD4+ T cell counts and improved survival compared to control animals that received no VV or no vaccine; there were 0/15 deaths among all animals that received VV and 5/9 deaths among controls. Results define a practical means of improving VV safety, and encourage advancement of a promising multi-envelope DVP HIV-1 vaccine candidate.  相似文献   

12.
《Vaccine》2023,41(19):3024-3027
Flaviviruses are antigenically related. We evaluated the immunogenicity and efficacy of Takeda’s purified inactivated Zika vaccine (PIZV) candidate in macaques previously vaccinated with several commercially available heterologous flavivirus vaccines. Heterologous flavivirus vaccination did not elicit Zika virus (ZIKV) neutralizing antibodies and did not impact neutralizing antibody titers after one dose of PIZV. After a second PIZV dose previous vaccination with flavivirus vaccines had variable impact on ZIKV neutralizing antibody titers. However, all macaques were protected against viremia after Zika virus challenge 8–12 months post-PIZV vaccination. Therefore, vaccine-induced immunity against heterologous flavivirus vaccines does not impact PIZV efficacy in macaques.  相似文献   

13.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV. The fusion (F) protein of RSV is a potentially important target for protective antiviral immune responses. Here, we studied the immune responses elicited by recombinant replication-deficient adenovirus (rAd)-based vaccines expressing the soluble F1 fragment of F protein (amino acids 155–524) in murine model. The expression of secreted F1 fragment by rAd was significantly increased by codon optimization. Strong mucosal IgA response was induced by single intranasal immunization of codon-optimized vaccine, rAd/F1co, but not by rAd/F1wt. A single intranasal immunization with rAd/F1co provided potent protection against subsequent RSV challenge. Interestingly, neither serum Ig nor T-cell response directed to F protein was detected in the rAd/F1co-immune mice, suggesting that protective immunity by rAd/F1co is mainly mediated through mucosal IgA induction. Indeed, co-delivery of cholera toxin B subunit significantly enhanced mucosal IgA responses by the optimized vaccine, which correlates with protective efficacy. Taken together, our data demonstrate that a single intranasal administration of rAd/F1co is sufficient for the protection and represents a promising prophylactic vaccination regimen against RSV infection.  相似文献   

14.
West Nile virus (WNV) is a mosquito-transmitted flavivirus and an emerging pathogen in many parts of the world. In the elderly and immunosuppressed, infection can progress rapidly to debilitating and sometimes fatal neuroinvasive disease. Currently, no WNV vaccine is approved for use in humans. As there have been several recent outbreaks in the United States and Europe, there is an increasing need for a human WNV vaccine. In this study, we formulated the ectodomain of a recombinant WNV envelope (E) protein with the particulate saponin-based adjuvant Matrix-M™ and studied the antigen-specific immune responses in mice. Animals immunized with Matrix-M™ formulated E protein developed higher serum IgG1 and IgG2a and neutralizing antibody titers at antigen doses ranging from 0.5 to 10 μg compared to those immunized with 3 or 10 μg of E alone, E adjuvanted with 1% Alum, or with the inactivated virion veterinary vaccine, Duvaxyn® WNV. This phenotype was accompanied by strong cellular recall responses as splenocytes from mice immunized with Matrix-M™ formulated vaccine produced high levels of Th1 and Th2 cytokines. Addition of Matrix-M™ prolonged the duration of the immune response, as elevated humoral and cellular responses were maintained for more than 200 days. Importantly, mice vaccinated with Matrix-M™ formulated E protein were protected from lethal challenge with both lineage 1 and 2 WNV strains. In summary, Matrix-M™ adjuvanted E protein elicited potent and durable immune responses that prevented lethal WNV infection, and thus is a promising vaccine candidate for humans.  相似文献   

15.
《Vaccine》2015,33(36):4505-4512
The Tc24 calcium binding protein from the flagellar pocket of Trypanosoma cruzi is under evaluation as a candidate vaccine antigen against Chagas disease. Previously, a DNA vaccine encoding Tc24 was shown to be an effective vaccine (both as a preventive and therapeutic intervention) in mice and dogs, as evidenced by reductions in T. cruzi parasitemia and cardiac amastigotes, as well as reduced cardiac inflammation and increased host survival. Here we developed a suitable platform for the large scale production of recombinant Tc24 (rTc24) and show that when rTc24 is combined with a monophosphoryl-lipid A (MPLA) adjuvant, the formulated vaccine induces a Th1-biased immune response in mice, comprised of elevated IgG2a antibody levels and interferon-gamma levels from splenocytes, compared to controls. These immune responses also resulted in statistically significant decreased T. cruzi parasitemia and cardiac amastigotes, as well as increased survival following T. cruzi challenge infections, compared to controls. Partial protective efficacy was shown regardless of whether the antigen was expressed in Escherichia coli or in yeast (Pichia pastoris). While mouse vaccinations will require further modifications in order to optimize protective efficacy, such studies provide a basis for further evaluations of vaccines comprised of rTc24, together with alternative adjuvants and additional recombinant antigens.  相似文献   

16.
《Vaccine》2021,39(42):6201-6205
Since June 2020, a new H9N2 virus of the Y280 lineage has been epidemic in Korea. Initially, a Korean commercial vaccine against the Y280 and Y439 lineages of H9N2 was evaluated for use in SPF chickens. A single vaccination did not protect chickens against virus of the Y280 lineage, with no significant reduction in virus shedding and a 37.5% inhibition in virus recovery rate in cecal tonsil. rgHS314 was selected as a vaccine candidate, showing immunogenicity in SPF chickens, and was highly productive in eggs. Moreover, rgHS314 protected with high levels of protective immunity and significantly reduced virus shedding, with 100% and 83.3% inhibition of virus recovery in the cecal tonsil against homologous and heterologous challenge viruses, respectively. Taken together, these data suggest that a single vaccination with this recombinant vaccine candidate could elicit cross-reactive immune responses capable of protecting chickens against H9N2 viruses of the Y439 and Y280 lineages.  相似文献   

17.
《Vaccine》2022,40(2):255-265
The high mutation rate of infectious bronchitis virus (IBV) poses a significant threat to the protective efficacy of vaccines. This study aimed at analyzing the S1 genes of IBV field strains isolated in Southwestern China from 2018 to 2020, assessing the pathogenicity of four dominating strains, and evaluating the protective efficacy of four commercial vaccine strains against the endemic representative strains. Thirty-two field strains of IBV were isolated in Southwestern China from 2018 to 2020. Phylogenetic analysis of their S1 genes revealed the nucleotide homology ranged from 64.6% to 100%, and belonged to five genotypes [GI-19 (QX, 53.13%), GI-28 (LDT3-A,15.63%), GI-7 (TW, 12.50%), GI-1 (Mass, 6.23%), GVI-1 (TC07-2, 6.25%)], and two variant groups [variant-3 (3.13%) and variant-5 (3.13%)]. Recombination events between field and vaccine strains or between field strains were identified in the S1 genes of eight IBV field strains. The CK/CH/YNKM/191128 and CK/CH/CQBS/191203 strains of GI-19 showed morbidity rates of 66.7% and 73.7%, respectively, and mortality rates of 13.3% and 33.3%, respectively. Besides, the CK/CH/SCYC/191030 and CK/CH/GZGY/191021 strains of GI-28 caused morbidity rates of 60% and 86.7%, respectively, and mortality rates of 33.3%. The protective efficacy of the four commercial live vaccine strains (4/91, FNO-E55, LDT3-A, and QXL87) ranged from 70% ? 100% and reduced tissue lesions against CK/CH/GZGY/191021 and CK/CH/CQBS/191203 strains. LDT3-A strain was the most effective one but still could not completely prohibit IBV shedding. These findings provide a reference for IBV molecular evolution analysis and control of IB.  相似文献   

18.
《Vaccine》2016,34(4):495-502
The role of pre-existing immunity for influenza vaccine responses is of great importance for public health, and thus has been studied in various contexts, yet the impact of differential priming on vaccine responses in the midst of antigenic drift remains to be elucidated. To address this with antigenically related viruses, mice were first primed by either infection or immunization with A/Puerto Rico/8/34 (PR8) virus, then immunized with whole-inactivated A/Fort Monmouth/1/47 (FM1) virus. The ensuing vaccine responses and the protective efficacy of FM1 were superior in PR8 infection-primed mice compared to PR8 immunization-primed or unprimed mice. Increased FM1-specific Ab responses of PR8 infection-primed mice also broadened cross-reactivity against contemporary as well as antigenically more drifted strains. Further, prior infection heightened the protective efficacy of antigenically distant strains, such as A/Brisbane/59/2006 infection followed by immunization with split pandemic H1N1 vaccine (A/California/07/2009). Therefore, influenza infection is a significant priming event that intensifies future vaccine responses against drift strains.  相似文献   

19.
《Vaccine》2021,39(36):5173-5186
Zika virus (ZIKV) caused over two million human infections in more than 80 countries around 2015–2016. Current vaccines under development are mostly focused on inducing antibodies that despite capable of inhibiting the virus, may have the potential to trigger antibody dependent enhancement (ADE). T cell vaccines that do not induce antibodies targeting viral surface will unlikely cause ADE, but be capable of potentiating the effectiveness of an antibody-inducing vaccine. To develop such a protective T cell vaccine, we first examined the repertoire of antigen-specific T cells in immunocompetent mice that have been transiently infected by ZIKV. Through epitope mapping using 427 overlapping peptides spanning the entire length of ZIKV polyprotein, we discovered 27 immunodominant epitopes scattered throughout the virus on C, E, NS1-NS5 proteins. Among them, 8 were confirmed as CD4+ T cell epitopes, and 16 as CD8+ T cell epitopes, while 3 for both T cell subsets. From these 27 newly identified epitopes, the top 10 epitopes were selected to formulate three T cell vaccines comprised of either CD4+ T cell epitopes, or CD8+ T cell epitopes, or a mixture of both. Immunization with these T cell epitopes induced T cell-mediated cytotoxicity and cytokine production, and conferred varying degrees of protection against ZIKV challenge. Moreover, these new T cell vaccines also improved the protective efficacy of a neutralizing antibody-inducing recombinant E80 protein vaccine. Together, our results provided additional evidence in support of the protective role of ZIKV-specific CD4+ and CD8+ T cells, and laid foundation for future development of T cell vaccines for ZIKV.  相似文献   

20.
《Vaccine》2018,36(34):5116-5123
Schmallenberg virus (SBV), which emerged in 2011 in Central Europe and subsequently spread very rapidly throughout the continent, affects predominantly ruminants. SBV is transmitted by insect vectors, and therefore vaccination is one of the major tools of disease control. Only recently, a domain connected to virus neutralization has been identified at the amino-terminal part of the viral envelope protein Gc. Here, this Gc domain delivered by recombinant EHV-1 or MVA vector viruses was tested in a vaccination-challenge trial in cattle, one of the major target species of SBV.The EHV-1-based vaccine conferred protection in two of four animals, whereas immunization using the MVA vector vaccine efficiently induced an SBV-specific antibody response and full protection against SBV challenge infection in all the vaccinated animals. Moreover, due to the absence of antibodies against SBVs N-protein, both vector vaccines enable the differentiation between vaccinated and field-infected animals making them to a promising tool to control SBV spread as well as to prevent disease in domestic ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号