首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2017,35(33):4287-4294
In this study, we described the generation and immunogenicity of the Zika Virus (ZIKV) envelope protein (E) domain III (DIII) as a protein subunit vaccine candidate. ZIKV EDIII (zEDIII) was rapidly produced in E. coli in inclusion bodies. ZIKV EDIII was solubilized, refolded and purified to >95% homogeneity with a one-step Ni2+ affinity chromatography process. Further analysis revealed that zEDIII was refolded properly and demonstrated specific binding to an anti-zEDIII monoclonal antibody that recognizes a zEDIII conformational epitope. Subcutaneous immunization of mice with 25 and 50 μg of zEDIII was performed over a period of 11 weeks. zEDIII evoked ZIKV-specific and neutralizing antibody response with titers that exceed the threshold that correlates with protective immunity against ZIKV. The antigen-specific IgG isotypes were predominantly IgG1 and splenocyte cultures from immunized mice secreted IFN-gamma, IL-4 and IL-6. Notably, zEDIII-elicited antibodies did not enhance the infection of dengue virus in Fc gamma receptor (FcγR)-expressing cells. This study provided a proof of principle for the further development of recombinant protein-based subunit vaccines against ZIKV.  相似文献   

2.
Complete ORF2 gene (1983 bp) of hepatitis E virus (HEV) and the 450 bp region within ORF2 containing neutralizing epitope (NE) cloned in pVAX1 and corresponding proteins expressed in baculovirus and prokaryotic systems respectively were evaluated as vaccine candidates. Two doses of liposome encapsulated DNA plus corresponding protein with both ORF2 and NE regions (Lipo-ORF2-DP and Lipo-NE-DP) showed 100% seroconversion and comparable anti-HEV titres in Swiss albino mice. These vaccine candidates were further evaluated as DNA, DNA-prime-protein-boost (DPPB) and liposome formulations in Rhesus monkeys. Monkeys receiving ORF2/NE DNA seroconverted after fourth dose while those immunized employing ORF2-DPPB format seroconverted at 7 weeks post third dose. In view of the delayed weak antibody response, these monkeys were not challenged. Though Lipo-ORF2-DP was immunogenic, 2 of the 4 monkeys developed HEV infection following homologous virus challenge of 100 Monkey Infectious Dose50. Both monkeys immunized with Lipo-NE-DP and 1 of the 2 monkeys immunized with NE-DPPB showed complete protection, the second monkey being protected from hepatitis with limited viral replication. Irrespective of the type of immunogen, all challenged monkeys were protected from hepatitis. The results document Lipo-NE-DP to be a promising vaccine candidate needing further evaluation.  相似文献   

3.
Men R  Wyatt L  Tokimatsu I  Arakaki S  Shameem G  Elkins R  Chanock R  Moss B  Lai CJ 《Vaccine》2000,18(27):3113-3122
Dengue epidemics increasingly pose a public health problem in most countries of the tropical and subtropical areas. Despite decades of research, development of a safe and effective live dengue virus vaccine is still at the experimental stage. To explore an alternative vaccine strategy, we employed the highly attenuated, replication-deficient modified vaccinia Ankara (MVA) as a vector to construct recombinants for expression of the major envelope glycoprotein of one or more dengue virus serotypes. MVA recombinants expressing the highly immunogenic C-terminally truncated dengue type 2 virus (DEN2) or dengue type 4 virus (DEN4) envelope protein (E), approx. 80% of the full-length, were evaluated for their protective immunity in animal models. Each of these recombinants elicited an elevated antibody response to DEN2 or DEN4 E in mice following the booster inoculation, as detected by radio-immunoprecipitation. Recombinant MVA-DEN2 80%E, but not MVA-DEN4 80%E, induced a neutralizing antibody response. The MVA-DEN2 80%E recombinant was chosen to further evaluate its ability to induce resistance to wild type DEN2 challenge in monkeys. Monkeys immunized twice with recombinant MVA-DEN2 80%E developed a low to moderate antibody response and were partially protected against DEN2 challenge, as determined by the viremia pattern. Importantly, the subsequent study showed that all four monkeys immunized with the recombinant in a three dose schedule developed an increased level of antibodies and were completely protected against DEN2 challenge. The potential efficacy of recombinant MVA-DEN2 80%E to protect primates against dengue infection suggests that construction and evaluation of MVA recombinants expressing other serotypes of dengue virus E for use in a tetravalent vaccine strategy might be warranted.  相似文献   

4.
《Vaccine》2018,36(24):3522-3532
Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model.  相似文献   

5.
《Vaccine》2018,36(27):3894-3900
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.  相似文献   

6.
Mice, guinea pigs, and rhesus monkeys were immunized with immunoaffinity-purified native glycoprotein D (gD) derived from herpes simplex virus type 1 (HSV1). The native glycoprotein has evoked significant in vivo responses even at low doses. Thus, mice immunized with doses as low as 1 microgram were significantly protected from the morbidity and mortality of lethal HSV2 challenge and from establishment of latent HSV2 infection. Protection was dose-related and correlated with prechallenge serum neutralizing antibody titres to HSV. Similarly, immunized guinea-pigs demonstrated significant reductions in the frequency, severity and duration of genital lesions induced by HSV2 vaginal challenge. In long term immunogenicity studies, immunized rhesus monkeys exhibited significant serum neutralizing antibody responses to both HSV1 and HSV2. In vitro stimulation of monkey peripheral blood leucocytes with purified gD resulted in a significant cellular proliferative response. The results obtained in these animal models with a gD subunit vaccine provide an appropriate foundation for the initiation of human studies.  相似文献   

7.
《Vaccine》2021,39(36):5173-5186
Zika virus (ZIKV) caused over two million human infections in more than 80 countries around 2015–2016. Current vaccines under development are mostly focused on inducing antibodies that despite capable of inhibiting the virus, may have the potential to trigger antibody dependent enhancement (ADE). T cell vaccines that do not induce antibodies targeting viral surface will unlikely cause ADE, but be capable of potentiating the effectiveness of an antibody-inducing vaccine. To develop such a protective T cell vaccine, we first examined the repertoire of antigen-specific T cells in immunocompetent mice that have been transiently infected by ZIKV. Through epitope mapping using 427 overlapping peptides spanning the entire length of ZIKV polyprotein, we discovered 27 immunodominant epitopes scattered throughout the virus on C, E, NS1-NS5 proteins. Among them, 8 were confirmed as CD4+ T cell epitopes, and 16 as CD8+ T cell epitopes, while 3 for both T cell subsets. From these 27 newly identified epitopes, the top 10 epitopes were selected to formulate three T cell vaccines comprised of either CD4+ T cell epitopes, or CD8+ T cell epitopes, or a mixture of both. Immunization with these T cell epitopes induced T cell-mediated cytotoxicity and cytokine production, and conferred varying degrees of protection against ZIKV challenge. Moreover, these new T cell vaccines also improved the protective efficacy of a neutralizing antibody-inducing recombinant E80 protein vaccine. Together, our results provided additional evidence in support of the protective role of ZIKV-specific CD4+ and CD8+ T cells, and laid foundation for future development of T cell vaccines for ZIKV.  相似文献   

8.
Bharati K  Rani R  Vrati S 《Vaccine》2009,27(1):10-16
We have previously described DNA vaccine candidates against Japanese encephalitis virus (JEV) that were immunogenic in mice. Present study was conducted to evaluate their immunogenicity in rhesus monkeys (Macaca mulatta) and compare it with the commercial mouse brain-derived, formalin-inactivated vaccine. Groups of four monkeys were immunized with either pMEa (expressing the anchored form of the envelope protein along with the pre-membrane protein of JEV) or pMEs (expressing the secretory form of the envelope protein along with pre-membrane protein of JEV) by intra-muscular (IM, using needle) or intra-dermal (ID, using gene gun) routes. Following primary immunization with 1mg plasmid DNA given IM, or 5 microg plasmid DNA given ID, the monkeys were boosted after 1 and 2 months with 0.5mg DNA given IM or 5 microg DNA given ID, and observed for a period of 6 months. After the second booster, most of the monkeys sero-converted and developed JEV neutralizing antibodies, albeit of low titer. Importantly however, following a sham challenge with the mouse brain-derived inactivated JEV vaccine given 6 months after immunization, the neutralizing antibody titers rose rapidly indicating a vigorous anamnestic response. Based on the JEV neutralizing antibody response following the vaccination and the extent of anamnestic response generated in the immunized monkeys, plasmid pMEa was superior to pMEs. This study indicates that the JEV candidate DNA vaccine is capable of generating protective levels of JEV neutralizing antibodies in rhesus monkeys and prime the immune system effectively against a subsequent exposure to JEV.  相似文献   

9.
Qin E  Shi H  Tang L  Wang C  Chang G  Ding Z  Zhao K  Wang J  Chen Z  Yu M  Si B  Liu J  Wu D  Cheng X  Yang B  Peng W  Meng Q  Liu B  Han W  Yin X  Duan H  Zhan D  Tian L  Li S  Wu J  Tan G  Li Y  Li Y  Liu Y  Liu H  Lv F  Zhang Y  Kong X  Fan B  Jiang T  Xu S  Wang X  Li C  Wu X  Deng Y  Zhao M  Zhu Q 《Vaccine》2006,24(7):1028-1034
BACKGROUND: In 2003, severe acute respiratory syndrome (SARS) resulted in hundreds of infections and deaths globally. We aim to assess immunogenicity and protective efficacy of purified inactivated Vero-cell SARS vaccine in monkeys. METHODS: The cultures of SARS coronavirus (SARS-CoV) BJ-01 strain infected Vero cells were inactivated with beta-propiolactone. Sequential procedures, including ultrafiltration, gel filtration and ion exchange chromatography, were performed to obtain purified inactivated SARS vaccine. The purified SARS vaccine was analyzed with electron microscope, HPLC and Western blotting. We immunized three groups of cynomolgus macaques fascicularis with adjuvant-containing purified vaccine, purified vaccine and unpurified vaccine, respectively, and a fourth group served as a control. Antibody titers were measured by plaque reduction neutralization test. The vaccinated monkeys were challenged with SARS-CoV BJ-01 strain to observe protective efficacy. Additionally, three groups of rhesus monkeys were immunized with different doses of the purified inactivated SARS vaccine (0.5, 1 and 2mug/time/monkey) on days 0 and 7, and the monkeys were challenged with SARS-CoV GZ-01 strain. We assessed the safety of the SARS vaccine and observed whether the antibody dependent enhancement (ADE) occurred under low levels of neutralizing antibody in rhesus. FINDINGS: The purity of SARS vaccine was 97.6% by HPLC identification and reacted with convalescent sera of SARS patients. The purified SARS vaccine induced high levels of neutralizing antibodies and prevented the replication of SARS-CoV in monkeys. Under low levels of neutralizing antibody, no exacerbation of clinical symptoms was observed when the immunized monkeys were challenged with SARS-CoV. In this preliminary animal trial, no side effects were detected when monkeys were immunized with purified SARS vaccine either at normal or large doses. INTERPRETATION: The purified inactivated SARS vaccine could induce high levels of neutralizing antibody, and protect the monkeys from the challenge of SARS-CoV. The SARS vaccine prepared in the study appeared to be safe in monkeys.  相似文献   

10.
Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as X-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX® adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX® adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system.  相似文献   

11.
Dengue virus (DENV) is the causal agent of severe disease and, in some cases, mortality in humans, but no licensed vaccines against dengue are available. An effective vaccine against dengue requires long-term humoral and cellular immune responses. Several viral proteins have been the subjects of intense research, especially the envelope (E) protein, aimed at developing a vaccine. Domain III of the envelope protein (EDIII) has been identified as a potential candidate because it is involved in binding to host cell receptors and contains epitopes that elicit virus neutralizing antibodies. However, this domain is not sufficiently antigenic when is expressed and administered as antigen to elicit a strong immune response. One alternative to enhance immunogenicity is to target the antigen to dendritic cells to induce T-cells for broad antibody responses. In this work, a single chain antibody fragment (scFv) raised against the DEC-205 receptor fused with the EDIII was successfully expressed in Nicotiana benthamiana. The recombinant protein was expressed and purified from the plant and evaluated in BALB/c mice to test its immunogenicity and ability to induce neutralizing antibodies against DENV. The mice immunized with the recombinant protein produced specific and strong humoral immune responses to DENV. Only two immunizations were required to generate a memory response to DENV without the presence of adjuvants. Also, recognition of the recombinant protein with sera from DENV-infected patients was observed. These findings suggest that this strategy has potential for development of an effective vaccine against DENV.  相似文献   

12.
Block OK  Rodrigo WW  Quinn M  Jin X  Rose RC  Schlesinger JJ 《Vaccine》2010,28(51):8085-8094
Dengue viruses co-circulate as four serologically distinct viruses (DENV1-4) that commonly infect individuals sequentially. Current DENV candidate vaccines incorporate the entire virion envelope E protein (E) ectodomain thereby stimulating both DENV serotype-specific and cross-reactive antibodies. Because the latter may enhance naturally acquired infection, such vaccine formulations must be tetravalent. We evaluated the neutralizing and enhancing antibody response to E domain III (dIII) proteins, in which serotype-specific neutralizing determinants are concentrated. Mice immunized with insect cell-secreted recombinant DENV-dIII proteins individually, and in tetravalent combination, produced serotype-specific IgG1 neutralizing antibodies that nevertheless exhibited measurable DENV enhancing activity in FcγR-bearing cells. Vaccine strategies directed to DENV-dIII-targeted neutralizing antibody production remain attractive but will likely require further modifications to induce safe, protective immunity.  相似文献   

13.
《Vaccine》2018,36(14):1846-1852
West Nile virus (WNV) has caused multiple global outbreaks with increased frequency of neuroinvasive disease in recent years. Despite many years of research, there are no licensed therapeutics or vaccines available for human use. One of the major impediments of vaccine development against WNV is the potential enhancement of infection by related flaviviruses in vaccinated subjects through the mechanism of antibody-dependent enhancement of infection (ADE). For instance, the recent finding of enhancement of Zika virus (ZIKV) infection by pre-exposure to WNV further complicates the development of WNV vaccines. Epidemics of WNV and the potential risk of ADE by current vaccine candidates demand the development of effective and safe vaccines. We have previously reported that the domain III (DIII) of the WNV envelope protein can be readily expressed in Nicotiana benthamiana leaves, purified to homogeneity, and promote antigen-specific antibody response in mice. Herein, we further investigated the in vivo potency of a plant-made DIII (plant-DIII) in providing protective immunity against WNV infection. Furthermore, we examined if vaccination with plant-DIII would enhance the risk of a subsequent infection by ZIKV and Dengue virus (DENV). Plant-DIII vaccination evoked antigen-specific cellular immune responses as well as humoral responses. DIII-specific antibodies were neutralizing and the neutralization titers met the threshold correlated with protective immunity by vaccines against multiple flaviviruses. Furthermore, passive administration of anti-plant DIII mouse serum provided full protection against a lethal challenge of WNV infection in mice. Notably, plant DIII-induced antibodies did not enhance ZIKV and DENV infection in Fc gamma receptor-expressing cells, addressing the concern of WNV vaccines in inducing cross-reactive antibodies and sensitizing subjects to subsequent infection by heterologous flavivirus. This study provides the first report of a WNV subunit vaccine that induces protective immunity, while circumventing induction of antibodies with enhancing activity for ZIKV and DENV infection.  相似文献   

14.
Dengue disease is an increasing global health problem that threatens one-third of the world's population. To control this emerging arbovirus, an efficient preventive vaccine is still needed. Because four serotypes of dengue virus (DV) coexist and antibody-dependent enhanced infection may occur, most strategies developed so far rely on the administration of tetravalent formulations of four live attenuated or chimeric viruses. Here, we evaluated a new strategy based on the expression of a single minimal tetravalent DV antigen by a single replicating viral vector derived from pediatric live-attenuated measles vaccine (MV). We generated a recombinant MV vector expressing a DV construct composed of the four envelope domain III (EDIII) from the four DV serotypes fused with the ectodomain of the membrane protein (ectoM). After two injections in mice susceptible to MV infection, the recombinant vector induced neutralizing antibodies against the four serotypes of dengue virus. When immunized mice were further inoculated with live DV from each serotype, a strong memory neutralizing response was raised against all four serotypes. A combined measles-dengue vaccine might be attractive to immunize infants against both diseases where they co-exist.  相似文献   

15.
《Vaccine》2020,38(35):5653-5658
The COVID-19 outbreak has become a global pandemic responsible for over 2,000,000 confirmed cases and over 126,000 deaths worldwide. In this study, we examined the immunogenicity of CHO-expressed recombinant SARS-CoV-2 S1-Fc fusion protein in mice, rabbits, and monkeys as a potential candidate for a COVID-19 vaccine. We demonstrate that the S1-Fc fusion protein is extremely immunogenic, as evidenced by strong antibody titers observed by day 7. Strong virus neutralizing activity was observed on day 14 in rabbits immunized with the S1-Fc fusion protein using a pseudovirus neutralization assay. Most importantly, in <20 days and three injections of the S1-Fc fusion protein, two monkeys developed higher virus neutralizing titers than a recovered COVID-19 patient in a live SARS-CoV-2 infection assay. Our data strongly suggests that the CHO-expressed SARS-CoV-2 S1-Fc recombinant protein could be a strong candidate for vaccine development against COVID-19.  相似文献   

16.
Swine are an important amplifier of Japanese encephalitis (JE) virus in the paradomestic environment. In this study, two JE protein vaccine candidates were evaluated for immunogenicity in swine. Both vaccine plasmids are based on a prokaryotic vector pET-32a(+). One plasmid, designated pET-32a(+)-epitope, encode a cassette consisting of a neutralizing epitope on envelope (E) protein of JE virus, whereas the other plasmid, designated pET-32a(+)-epitope-hsp70, express the fusion protein of the epitope and M.T hsp70. Some differences were detected in the immunogenicity of these two proteins in swine. Swine immunized twice with 2000pmol of the neutralizing epitope or the fusion protein developed neutralizing antibody titers of respectively, 154 and 300, and anti-neutralizing epitope antibody titers of 10(4.25) and 10(6.0) by 3 weeks after the second immunization. In addition, swine immunized with the neutralizing epitope emulsified with adjuvant S206 or with imported mineral oil and Tween-80 induced neutralizing antibody titers of 196 and 244, and anti-neutralizing epitope antibody titers of 10(5.25) or 10(5.6) at the same time point. However, swine administered two doses of a commercial JE vaccine (attenuated virus preparation; JEV SA14-14-2 strain) developed less favorable antibody responses with neutralizing antibody titer 40 and anti-neutralizing epitope antibody titers 10(3.7). The anamnestic response was followed by monitoring titers 1 week after boosting with a viral antigen; swine immunized twice with the fusion protein showed a 177-fold increase in anti-neutralizing epitope titer, indicating a strong recall of the antibody response. The animals maintained detectable levels of anti-neutralizing epitope antibody for at least 105 days after two immunizations, indicating that these four protein antigens are able to stimulate virus-specific memory B cells and long-lasting antibodies at higher levels than is achieved using a current commercial attenuated JEV vaccine. The group immunized with the epitope fused to M.T hsp70 made the strongest proliferation of lymphocytes. Through the assay of the amount of interferon (IFN)-gamma and interleukin (IL)-4 in the serum, swine immunized with the fusion protein increased IFN-gamma in the serum which showed that M.T hsp70 potentiated Th1 immune response.  相似文献   

17.
《Vaccine》2016,34(30):3500-3507
We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2–7 days post-challenge. All naïve macaques had detectable viral RNA from day 2–10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10–30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further development of a tetravalent EDIII-E2 dengue vaccine.  相似文献   

18.
A Japanese encephalitis (JE) vaccine candidate encoding JE virus premembrane (prM) and envelope (E) genes, designated pNJEME, was evaluated for safety and immunogenicity in non-human primate, cynomolgus monkeys. pNJEME was constructed using a vector (pNGVL4a) designed to address some of the safety concerns of DNA vaccine. In two different experiments, two immunizations with 300 microg of pNJEME by intramuscular (i.m.) injection, and 3 microg of pNJEME using a gene gun, and three immunizations by i.m. injection with 500 microg of pNJEME were performed. All the three protocols induced low to high levels of neutralizing antibody, indicating an ability of pNJEME to induce neutralizing antibody in monkeys with a wide individual variation in response to pNJEME. In one experiment designed to compare the DNA vaccine with a commercial inactivated JE vaccine, three immunizations by i.m. inoculation with 300 microg of pNJEME or by gene gun administration with 3 microg of pNJEME induced similar levels of neutralizing antibody to those induced by three immunizations with a human dose of the inactivated vaccine in most monkeys. After intranasal challenge with the Beijing P3 or JaTH160 strain of JE virus, pNJEME-immunized monkeys showed anamnestic neutralizing antibody responses, indicating that pNJEME induced memory B cells which were responsive to infection with JE virus. No systemic and local reactions were observed in any monkeys after i.m. or gene gun inoculations with plasmid DNAs.  相似文献   

19.
《Vaccine》2021,39(47):6817-6828
Respiratory syncytial virus (RSV) is one of the most important causes of respiratory disease in infants, immunocompromised individuals, and the elderly. Natural infection does not result in long-term immunity, and there is no licensed vaccine. Vesicular stomatitis virus (VSV) is a commonly used vaccine vector platform against infectious diseases, and has been used as a vector for a licensed Ebola vaccine. In this study, we expressed the RSV fusion (F) protein, the RSV F protein stabilized in either a pre-fusion or a post-fusion configuration, the attachment glycoprotein (G), or the G and F proteins of RSV in combination in a VSV vector. Cotton rats were immunized with these recombinants intranasally or subcutaneously to test immunogenicity. RSV F stabilized in either a pre-fusion or a post-fusion configuration proved to be poorly immunogenic and protective when compared to unmodified F. RSV G provided partial protection and moderate levels of neutralizing antibody production, both of which improved with intranasal administration compared to subcutaneous inoculation. The most successful vaccine vector was VSV expressing both the G and F proteins after intranasal inoculation. Immunization with this recombinant induced neutralizing antibodies and provided protection from RSV challenge in the upper and lower respiratory tract for at least 80 days. Our results demonstrate that co-expression of F and G proteins in a VSV vector provides synergistic effects in inducing RSV-specific neutralizing antibodies and protection against RSV infection.  相似文献   

20.
Naarding MA  Falkowska E  Xiao H  Dragic T 《Vaccine》2011,29(16):2910-2917
Several studies have emphasized the importance of an early, highly neutralizing antibody response in the clearance of Hepatitis C virus (HCV) infection. The envelope glycoprotein E2 is a major target for HCV neutralizing antibodies. Here, we compared antibody responses in mice immunized with native soluble E2 (sE2) from the H77 1a isolate coupled with different adjuvants or combinations of adjuvants. Adjuvanting sE2 with Freund's, monophosphoryl lipid A (MPL), cytosine phosphorothioate guanine oligodeoxynucleotide (CpG ODN), or alpha-galactosylceramide (αGalCer) derivatives elicited only moderate antibody responses. In contrast, immunizations with sE2 and QuilA elicited exceptionally high anti-E2 antibody titers. Sera from these mice effectively neutralized HCV pseudoparticles (HCVpp) 1a entry. Moreover, the combination of QuilA and CpG ODN further enhanced neutralizing antibody titers wherein cross-neutralization of HCVpp 4 was observed. We conclude that the combination of QuilA and CpG ODN is a promising adjuvant combination that should be further explored for the development of an HCV subunit vaccine. Our work also emphasizes that the ideal combination of adjuvant and immunogen has to be determined empirically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号