首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelin-1 (ET-1) injected centrally induces pressor effects and associated haemodynamic changes. Here we have evaluated the effects on systemic and regional cardiovascular parameters of injection of ET-1 into the periaqueductal gray (PAG) area of anaesthetized rats. In addition, we have used the ETA receptor-selective antagonist, FR 139317, the ETB receptor-selective antagonist, BQ-788, and the ETA/ ETB receptor non-selective antagonist, SB 209670, to identify the receptor(s) mediating these effects. We have also used in vitro autoradiography to identify binding sites for ET-1 in the PAG. 2. In vitro autoradiography showed dense binding of [125I]-PD 151242 (for ETA receptors) in the PAG area, with the binding sites being homogeneously distributed within the dorsal, lateral and ventral subregions. Tissues incubated with [125I]-BQ 3020 (for ETB receptors) had little binding. 3. Injection of ET-1 (0.1, 1 and 10 pmol per rat) in the dorsolateral PAG area significantly increased, in a dose-dependent manner the mean arterial blood pressure (MAP). The highest dose of ET-1 (10 pmol) also decreased the heart rate by 18 +/- 1%, n = 6 (P < 0.05). Increases in blood pressure induced by ET-1 (1 pmol; 31 +/- 6.6 mmHg, n = 6) were greatly reduced by pre-administration to the PAG area of FR 139317 (5 nmol per rat) or SB 209670 (3 nmol per rat) (97 and 94%, respectively), but were unaffected by BQ-788 (5 nmol per rat). Similarly, FR 139317 and SB 209670 prevented the decrease in heart rate induced by ET-1 while BQ-788 did not affect it. 4. Injection of ET-1 to the PAG area caused falls in renal blood flow (RBF) as measured by an ultrasonic flow probe, and increased renal vascular resistance (RVR). Pre-treatment of the PAG with FR 139317 or SB 209670, but not with BQ-788, prevented this ET-1-induced effect. 5. Injection of ET-1 (10 pmol) also increased total peripheral resistance (TPR; control, 2.39 +/- 0.2 mmHg ml-1 min 100 g body weight) by 100 +/- 9% (n = 5) and reduced the cardiac output (CO; control, 94.7 +/- 3.1 ml min-1) by 30 +/- 3% (n = 5), as determined by radioactive microspheres. Vascular resistances were increased in other organs, such as skeletal muscle (88 +/- 5%, n = 4), the colon (55 +/- 7%, n = 4) and the stomach (47 +/- 3%, n = 4). Pretreatment of the PAG area with FR 139317 or SB 209670 reduced the increases in TPR and vascular resistance, and the reduction in CO caused by ET-1. BQ-788 did not effect the responses to ET-1. 6. Thus, there are predominantly ETA binding sites within the PAG area and injection of ET-1 into the PAG area causes complex haemodynamic changes which are sensitive to ETA receptor antagonism. ETA receptors are, therefore, the predominant mediators of the actions of ET-1 in the PAG of the rat.  相似文献   

2.
1. In this study we used ligand binding techniques to determine the affinity and selectivity of endothelin receptor agonists and antagonists in human left ventricle which expresses both ETA and ETB receptors, and compared these results with cardiovascular tissues from rat and porcine hearts. 2. The linear tripeptide antagonist, FR139317 competed for [125I]-ET-1 binding to human left ventricle with over 200,000 fold selectivity for the ETA receptor (KD ETA = 1.20 +/- 0.28 nM, KDETB = 287 +/- 93 microM). The ETA-selective non-peptide antagonist, 50235, competed with lower affinity and selectivity (KDETA = 162 +/- 61 nM, KDETB = 171 +/- 42 microM) in this tissue. BQ123 and FR139317 also showed high selectivity (greater than 20,000 fold) and affinity in rat (BQ123: KDETA = 1.18 +/- 0.16 nM, KDETB = 1370 +/- 1150 microM; FR139317: KDETA = 2.28 +/- 0.30 nM, KDETB = 292 +/- 114 microM) and pig heart (BQ123: KDETA = 0.52 +/- 0.05 nM, KDETB = 70.4 +/- 4.0 microM; FR139317: KDETA = 2.17 +/- 0.51 nM, KDETB = 47.1 +/- 5.7 microM) (n > or = 3 individuals +/- s.e.mean). 3. Although BQ3020 competed with over 1000 fold selectivity for the ETB subtype in human heart (KDETB = 1.38 +/- 0.72 nM, KDETA = 2.04 +/- 0.21 microM) the peptide inhibited only the binding of [125I]-ET-1 at concentrations greater than 100 nM in rat and porcine heart. This is in contrast to the data from the ETA-selective antagonists which indicated the presence of ETB sites in these tissues from animal hearts. 4. The peptide antagonist, BQ788, had a low, micromolar affinity (KD = 1.98 +/- 0.13 microM) using human left ventricle and no significant selectivity for the human ETB-subtype in this tissue. 5. The non-peptide ET antagonists, Ro462005 (KD = 50.3 +/- 9.5 microM) and bosentan (Ro470203; KD = 77.9 +/- 7.9 nM) competed monophasically for [125I]-ET-1 binding sites in human left ventricle. 6. The results show that the ETA antagonists, BQ123 and FR139317, are highly selective for ETA receptors in all cardiac tissues tested, whereas BQ788 has a low affinity and no selectivity in this human tissue. Further we showed that there are species differences in the binding of BQ3020 to the ETB receptors in the hearts derived from human, rat and pig.  相似文献   

3.
4.
1. To characterize the receptor subtype(s) mediating the renal vasoconstrictor effects of the endothelin (ET) and sarafotoxin (SX) peptides in the isolated perfused kidney of the rat, we have examined the effects of endothelin-1 (ET-1), sarafotoxin 6b (SX6b) and sarafotoxin 6c (SX6c) as agonists, BQ-123 and FR 139317 as selective ETA receptor antagonists, and PD 145065 as a non-selective (ETA and ETB) receptor antagonist. We have also compared in the anaesthetized rat the systemic pressor and renal vasoconstrictor effects of ET-1 and SX6c alone or after pretreatment with PD 145065. 2. In the isolated perfused kidney, ET-1, SX6b and SX6c all gave similar concentration-dependent increases in perfusion pressure. The ETA receptor selective antagonists, BQ-123 and FR 139317, both partially blocked the increase in perfusion pressure induced by ET-1. In contrast, PD 145065 completely blocked the increase in perfusion pressure caused by ET-1. 3. Indomethacin (10 microM) had no effect on the ET-1-induced increases in perfusion pressure but significantly reduced the vasoconstriction induced by low concentrations of SX6c, without affecting responses to high concentrations. In the anaesthetized rat, indomethacin (5 mg kg-1) did not modify the systemic pressor or renal vasoconstrictor effects of ET-1 or SX6c. 4. In anaesthetized rats, bolus intravenous injections of ET-1 or SX6c (0.1, 0.25, 0.5 or 1.0 nmol kg-1) produced initial transient depressor responses followed by sustained and dose-dependent increases in mean arterial pressure (MAP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. To explore potential differences between endothelin (ET) receptors in airway versus vascular smooth muscle from the same species, the ETB receptors mediating contractions produced by ET-1, ET-3 and the selective ETB ligands, sarafotoxin S6c (S6c) and BQ-3020, in rabbit bronchus and pulmonary artery were investigated by use of peptide and non-peptide ET receptor antagonists. 2. In rabbit pulmonary artery SB 209670 (10 microM), a mixed ETA/ETB receptor antagonist, was a more potent antagonist of contractions produced by S6c (pKB = 7.7; n = 9; P < 0.05), than those elicited by ET-1 (pKB = 6.7; n = 6) or ET-3 (pKB = 6.7; n = 5). BQ-788 (10 microM), an ETB receptor antagonist, inhibited responses produced by ET-3 (pKB = 5.1; n = 8), BQ-3020 (pKB = 5.2; n = 4) or S6c (pKB = 6.2; n = 9; P < 0.05 compared to potency versus ET-3- or BQ-3020-induced contractions), but was without inhibitory effect on ET-1-induced contractions (n = 5). RES-701 (10 microM), another selective ETB receptor antagonist, was without effect on contractions produced by S6c (n = 4) or ET-1 (n = 4), and potentiated ET-3- (n = 5) or BQ-3020-induced responses (n = 4). 3. The combination of BQ-788 (10 microM) and BQ-123 (10 microM), an ETA-selective receptor antagonist, antagonized contractions produced by lower concentrations of ET-1 (1 and 3 nM) in rabbit pulmonary artery, but was without effect on responses elicited by higher concentrations of ET-1 (n = 5). The combination of RES-701 (10 microM) and BQ-123 (10 microM) potentiated responses elicited by ET-1, producing a 3.7 fold shift to the left in the agonist concentration-response curve (n = 5). 4. In rabbit bronchus SB 209670 (3 microM) had similar potency for antagonism of contractions produced by ET-1 (pKB = 6.3; n = 6), ET-3 (pKB = 6.5; n = 6) or S6c (pKB = 6.1; n = 8). BQ-788 (3 microM) was without effect on responses elicited by ET-1, ET-3 or S6c (n = 6) but antagonized BQ-3020-induced contractions (pKB = 6.4; n = 4). RES-701 (3 microM) was without effect on contractions produced by S6c (n = 6) or BQ-3020 (n = 4), and potentiated rather than antagonized ET-1- or ET-3-induced responses (n = 6), reflected by a significant (about 6 fold) shift to the left in ET-1 or ET-3 concentration-response curves. The combination of BQ-788 (3 microM) and BQ-123 (3 microM) was without effect on contractions produced by ET-1 in rabbit bronchus (n = 6). The combination of RES-701 (3 microM) and BQ-123 (3 microM) potentiated responses elicited by ET-1, producing a 5.2 fold shift to the left in the agonist concentration-response curve (n = 5). 5. BQ-123 (3 or 10 microM), an ETA-selective receptor antagonist, was without effect on ET-1, ET-3 or S6c concentration-response curves (n = 3-6) in rabbit pulmonary artery or rabbit bronchus. 6. These data indicate that contractions induced by ET-1, ET-3, S6c and BQ-3020 in rabbit pulmonary artery or rabbit bronchus appear to be mediated predominantly via stimulation of ETB receptors. However, the qualitative and quantitative differences in the relative profiles of the various structurally diverse peptide and non-peptide antagonists examined suggests that responses produced by the ET ligands may not be mediated by a homogeneous ETB receptor population. In addition, the results suggest that differences exist in the ETB receptors mediating contraction in pulmonary vascular versus airway tissues in the same species. These receptors are not very sensitive to the standard ETB receptor antagonists, BQ-788 and RES-701. Furthermore, the results also provide further evidence that the potencies of ET receptor antagonists depend upon the ET agonist.  相似文献   

6.
In the rabbit isolated pulmonary artery, neither the ETA receptor antagonist, BQ-123 (10 microM), nor the ETB receptor antagonist, BQ-788 (10 microM), inhibited the contractions induced by 1 nM endothelin-1 (ET-1). However, the combination of BQ-123 and BQ-788 completely inhibited the ET-1-induced contraction. In contrast, the ETB-selective agonist, sarafotoxin S6c (1 nM)-induced contraction was completely inhibited by BQ-788 but not by BQ-123. In receptor binding assays, [125I]-ET-1 specific binding to pulmonary arterial membranes was inhibited by BQ-123 (1 microM) by approximately 20% and additive treatment with BQ-788 (1 microM) completely inhibited the BQ-123-resistant component of [125I]-ET-1 specific binding. The present study demonstrates synergistic inhibition by BQ-123 and BQ-788 of ET-1-induced contraction of the rabbit pulmonary artery and the coexistence of ETA and ETB receptors, suggesting that the activation of either only ETA or only ETB receptors may be sufficient to cause complete vasoconstriction. Therefore, blockade of both receptor subtypes would be necessary for the inhibition of some ETA/ETB composite types of responses.  相似文献   

7.
8.
1. Endothelin (ET)-1 has been postulated to be involved in the development of obstructive airway diseases in man. In the present study, we attempted to characterize ET receptor subtypes mediating ET-1-induced contraction in human isolated bronchi. The ET receptor antagonists used in the present study were BQ-123 (ETA receptor-selective), BQ-788 (ETB receptor-selective) and BQ-928 (ETA/ETB dual). Sarafotoxin S6c (S6c) was also used as an ETB receptor-selective agonist. 2. In human bronchi, ET-1 and S6c (10(-12)M to 10(-7) M) produced concentration-dependent contraction with almost equal potency (pD2: 8.88 +/- 0.16 for ET-1 and 9.42 +/- 0.15 for S6c). The contraction induced by S6c was competitively antagonized by BQ-788 alone (1 and 10 microM) with a pKB value of 7.49 +/- 0.21, suggesting that the stimulation of ETB receptors causes a contraction of human bronchi. However, contrary to expectation, the concentration-response curves for ET-1 were not affected by BQ-788. The ET-1- and S6c-induced contractions were not affected by BQ-123 (10 microM). Thus, ET-1-induced contraction of human bronchi is not antagonized by BQ-123 alone or by BQ-788 alone. 3. Combined treatment with 10 microM BQ-123 and 10 microM BQ-788 significantly antagonized the contraction induced by ET-1 with a dose-ratio of 11. BQ-928 also significantly antagonized ET-1-induced contraction with a pKB value of 6.32 +/- 0.24. 4. The specific binding of [125I]-ET-1 to human bronchial membrane preparations was inhibited by BQ-123 (100 pM to 1 microM) by approximately 40%. Combination treatment with BQ-788 (100 pM to 1 microM) completely inhibited the BQ-123-resistant component of [125I]-ET-1 specific binding. 5. In conclusion, the present study demonstrates that BQ-788 alone cannot inhibit ET-1-induced contractions in human bronchi, although human bronchial ETB receptors are BQ-788-sensitive. Furthermore, it was shown that blockade of both receptor subtypes antagonizes ET-1-induced contraction, and that both receptor subtypes co-exist in human bronchial smooth muscles. These findings suggest that ETA receptors as well as ETB receptors are involved in ET-1-induced contraction in human bronchi. If ET-1 is involved in human airway diseases, dual blockade of ETA and ETB receptors may be necessary to treat the diseases.  相似文献   

9.
1. We have characterized the receptors mediating contractions to endothelin-1 (ET-1) or IRL 1620, an ETB receptor selective agonist, in isolated strips of tissue prepared from different parts of the guinea-pig airways. We used as antagonists BQ-123 and FR139317 (ETA receptor-selective) and PD 145065 (ETA/ETB receptor non-selective). 2. ET-1 and IRL 1620 (10(-10) M to 10(-6) M) caused similar concentration-dependent contractions of strips of guinea-pig trachea and upper bronchus. In the guinea-pig trachea without epithelium or lung parenchyma, IRL 1620 was less potent than ET-1. 3. In the trachea, contraction to ET-1 (< 10(-8) M) was preceded by a transient relaxation which was inhibited by BQ-123 (10(-5) M) or FR 139317 (10(-5) M) or by the removal of the epithelium. The concentration-response curve to ET-1 in the trachea was shifted to the right by PD 145065 (10(-5) M to 10(-4) M). PD 145065 (10(-4) M) also inhibited the response to ET-1 (3 x 10(-7) M) by 55%. Contractions induced by IRL 1620 were not affected by BQ-123 (10(-6) M) or FR139317 (10(-6) M) but were significantly attenuated by 10(-5) M of either antagonist. PD 145065 at 10(-6) M strongly attenuated and at 10(-5) M abolished contractions induced by IRL 1620.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The present study investigated the role possibly played by ET-receptor antagonism at periaqueductal grey (PAG) area level in decreasing the arterial blood pressure and heart rate values reached in DOCA-salt hypertensive rats. A 3-week DOCA-salt treatment induced an increase in blood pressure of up to 174+/-3 mmHg in Sprague-Dawley (SD) rats. This was paralleled by a significant increase in heart rate (HR), and endothelin-1 (ET-1) levels throughout the brain, as assessed by specific EIA ( P<0.05). In contrast, a 40% reduction of ETA mRNA levels into the brain was detected through RT-PCR. The basal MABP of DOCA rats was significantly modified by PAG injections of FR139317, an ETA receptor antagonist, or SB209670, an ETA/ETB receptor antagonist. BQ-788, an ETB receptor antagonist, was found to have no effect on blood pressure levels, while FR139317 and SB209670 also led to a significantly modified HR. PAG-endothelin ETA antagonism can therefore be said to counteract the cardiovascular changes induced by DOCA-salt treatment in rats.  相似文献   

11.
Microinjection of N-methyl-D-aspartate (NMDA) (0.068 to 6.8 nmol) into the periaqueductal gray area (PAG) of anaesthetized rats caused dose-dependent increases in blood pressure. Preinjection (10 min before) of FR 139317 (an ETA receptor selective antagonist; 5 nmol) or SB 209670 (an ETA/ETB receptor non-selective antagonist; 5 nmol) to the PAG reduced the pressor response to NMDA whereas BQ-788 (an ETB receptor selective antagonist; 5 nmol) did not affect the NMDA-induced hypertension. Pretreatment with DL-2-amino-5-phosphono valeric acid (2-APV) (an NMDA receptor selective antagonist, 5 nmol) also abolished the pressor response induced by NMDA. Dose-dependent increases in blood pressure induced by injection of angiotensin II (0.1-10 nmol) to the PAG were unaffected by FR 139317 or SB 209670. Thus, our data indicate that endogenous ET-1, via an action on ETA receptors, contributes to the pressor effects of NMDA within the brain.  相似文献   

12.
Hypertension is accompanied by increased arterial endothelin-1 (ET-1) and decreased arterial contraction to ET-1. By contrast, veins remain responsive to ET-1 in hypertension. Isometric contraction was used to test the hypothesis that veins do not desensitize to ET-1 to the extent of arteries, possibly because of the presence of functional ETA and ETB receptors on veins and only functional ETA receptors on arteries. Contraction to ET-1 after exposure to ET-1 (100 nmol/L) was abolished in aortae, while in veins 36.3 +/- 0.2% of maximal contraction to ET-1 remained. Aortae were unresponsive to the ETA receptor agonist ET-1(1-31) (100 nmol/L) after ET-1 exposure, while 21.9 +/- 0.6% of maximum venous contraction to ET-1 (1-31) remained. In a similar manner, the venous ETB receptor did not lose responsiveness to the ETB receptor agonist sarafotoxin 6c (S6c, 100 nmol/L); aortae did not contract to S6c. In ET-1-desensitized veins, the ETB receptor antagonist BQ-788 (100 nmol/L) decreased maximum contraction to ET-1, but did not alter potency (-log EC50 control = 8.14 +/- 0.01 mol/L; BQ-788 = 8.13 +/- 0.04 mol/L). The ETA receptor antagonist atrasentan (100 nmol/L) blocked remaining venous contraction to ET-1 (control = 8.05 +/- 0.05 mol/L; atrasentan = unmeasurable). Maintained responsiveness to ET-1 in veins occurs primarily via the ETA receptor, while in arteries the ETA receptor is responsible for desensitization to ET-1.  相似文献   

13.
1. We have compared the receptors mediating the contractions of rings of rat thoracic aorta or rabbit pulmonary artery and rat stomach strips in response to the endothelin/sarafotoxin (ET/SX) family of peptides and to those mediating endothelium-dependent vasodilations within the isolated perfused mesentery of the rat. To discriminate ETA receptors from ETB receptors we have used the criteria that ET-1 is more active than SX6c on ETA receptors, and that the ET/SX peptides are equiactive on ETB receptors. We have also assessed the effects of the ETA receptor-selective antagonist BQ-123, and the non-selective ET receptor antagonist PD 142893 on the responses of each preparation to the ET/SX peptides. 2. ET-1-induced constrictions of the rat thoracic aorta (EC50 3 x 10(-10) M), a prototypic ETA receptor-mediated response, or isolated perfused mesentery of the rat were antagonized by BQ-123 (10(-5) M) or PD 142893 (10(-5) M). SX6c did not constrict either the rat isolated perfused mesentery or the rat thoracic aorta. Thus, ETA receptors mediate these constrictions. 3. ET-1 and SX6c were approximately equipotent in constricting rabbit pulmonary artery rings (EC50S 3-6 x 10(-10) M). Neither BQ-123 (10(-5) M) nor PD 142893 antagonized the contractions induced by ET-1. These effects suggest mediation by ETB receptors but PD 142893 (10(-5) M) did give a 3 fold antagonism of constrictions induced by SX6c. 4. SX6c was more potent than ET-1 in contracting the rat stomach strip (threshold concentrations 10(-10) and 3 x 10(-10) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. The present study characterizes the receptors responsible for endothelin-1-induced release of thromboxane A2 from the guinea pig lung and of endothelium-derived nitric oxide from the rabbit perfused kidney, by the use of the selective ETA receptor antagonist, BQ-123, and a novel selective ETB receptor antagonist, BQ-788. 2. In the guinea pig perfused lung, endothelin-1 (ET-1) (5 nM) induced a marked increase of thromboxane A2 which was reduced by 17 +/- 5.0, 70 +/- 1.0 and 93 +/- 1.2% by BQ-788 infused at concentrations of 1, 5 and 10 nM respectively. In contrast, BQ-123 (0.1 and 1.0 microM) had little or no effect on the ET-1-induced release of thromboxane A2. 3. In the same perfused model, the selective ETB agonist, IRL 1620 (50 nM), stimulated the release of thromboxane A2, but not prostacyclin. The eicosanoid-releasing properties of IRL 1620 were abolished by BQ-788 at 10 nM, yet were unaffected by BQ-123 (1 microM). 4. In the rabbit perfused kidney, BQ-788 (10 nM) potentiated the increase of perfusion pressure induced by endothelin-1 (1, 5 and 10 nM) by approximately 90%, but not that induced by angiotensin II (1 microM). Furthermore, the selective ETB receptor antagonist did not reduce the release of prostacyclin triggered by either peptide. 5. In another series of experiments, pretreatment of the perfused kidney with a nitric oxide synthase inhibitor, L-NAME (100 microM), potentiated the pressor responses to both endothelin-1 and angiotensin II. Under L-NAME treatment, BQ-788 did not further potentiate the pressor response to endothelin-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
1. The relative roles of ETA and ETB receptor activation on cholinergic nerve-mediated contraction and acetylcholine (ACh) release were examined in sheep isolated tracheal smooth muscle. 2. Electrical field stimulation (EFS; 90 V, 0.5 ms duration, 1 Hz, 10 s train) applied to sheep isolated tracheal smooth muscle strips induced monophasic contractile responses that were abolished by either 1 microM tetrodotoxin or 0.1 microM atropine, but were insensitive to 10 microM hexamethonium and 100 microM L-NAME. Thus, EFS-induced contractions resulted from the spasmogenic actions of ACh released from parasympathetic, postganglionic nerves. 3. As expected, sheep isolated tracheal smooth muscle preparations did not contract in response to the ETB receptor-selective agonist, sarafotoxin S6c (0.1-100 nM). However, sarafotoxin S6c caused a concentration-dependent and transient inhibition of EFS-induced contractions. The inhibitory effect induced by a maximally effective concentration of sarafotoxin S6c (10 nM; 72.1 +/- 5.7%, n = 6) was abolished in the presence of the ETB receptor-selective antagonist BQ-788 (1 microM). Contractile responses to exogenously administered ACh (10 nM-0.3 mM) were not inhibited by sarafotoxin S6c (1 or 10 nM; n = 7). 4. In contrast to sarafotoxin S6c, endothelin-1 induced marked contractions in sheep isolated tracheal smooth muscle. These contractions were inhibited by BQ-123, consistent with an ETA receptor-mediated response. In the presence of BQ-123 (3 microM), endothelin-1 produced a concentration-dependent inhibition of EFS-induced contractions (30 nM endothelin-1, 68.9 +/- 10.2% inhibition, n = 5). These responses were inhibited by 1 microM BQ-788, indicative of an ETB receptor-mediated process. Endothelin-1 was about 3 fold less potent than sarafotoxin S6c. 5. EFS (90 V, 0.5 ms duration, 1 Hz, 15 min train) induced the release of endogenous ACh (1.94 +/- 0.28 pmol mg-1 tissue, n = 12), as assayed by h.p.l.c. with electrochemical detection. EFS-induced release of ACh was inhibited to a similar extent by 100 nM endothelin-1 (47 +/- 4%, n = 9) and 10 nM sarafotoxin S6c (46 +/- 9%, n = 3). These effects of endothelin-1 on ACh release were inhibited by 1 microM BQ-788 alone (n = 4), by BQ-788 in the presence of 3 microM BQ-123 (n = 4), but not by 3 microM BQ-123 alone (n = 5). 6. In summary, sheep isolated tracheal smooth muscle contains two anatomically and functionally distinct endothelin receptor populations. ETA receptors located on airway smooth muscle mediate contraction, whereas ETB receptors appear to exist on cholinergic nerves that innervate tracheal smooth muscle cells and mediate inhibition of ACh release. The inhibitory effect of ETB receptor stimulation on cholinergic neurotransmission is in stark contrast to the enhancing effects hitherto described in the airways.  相似文献   

16.
1. Quantitative autoradiographic studies were conducted to determine the distributions and densities of ETA and ETB binding site subtypes in porcine tracheal and bronchial smooth muscle. In addition, the roles of ETA and ETB receptors in endothelin-1-mediated contraction of these tissues were assessed. 2. Quantitative autoradiographic studies revealed that both ETA and ETB binding sites for [125I]-endothelin-1 were present in both bronchial and tracheal airway smooth muscle. However, the proportions of these sites were markedly different at these two levels within the respiratory tract. In tracheal smooth muscle, the proportions of ETA and ETB sites were 30 +/- 1% and 70 +/- 1% respectively, whereas in bronchial smooth muscle, these proportions were virtually reversed, being 73 +/- 2% and 32 +/- 8% respectively. 3. Endothelin-1 induced concentration-dependent contraction of porcine tracheal and bronchial airway smooth muscle. Endothelin-1 had similar potency (concentration producing 30% of the maximum carbachol contraction, Cmax) in trachea (22 nM; 95% confidence limits (c.l.), 9-55 nM; n = 9) and bronchus (22 nM; c.l., 9-55 nM; n = 6). Endothelin-1 also produced comparable maximal contractions in trachea (59 +/- 5% Cmax; n = 9) and bronchus (65 +/- 4% Cmax, n = 6). 4. In trachea, endothelin-1 induced contractions were not significantly inhibited by either the ETA receptor-selective antagonist, BQ-123 (3 microM) or the ETB receptor-selective antagonist, BQ-788 (1 microM). However, in the combined presence of BQ-123 and BQ-788, the concentration-effect curve to endothelin-1 was shifted to the right by 3.7 fold (n = 8; P = 0.01). 5. In bronchus, concentration-effect curves to endothelin-1 were shifted to the right by BQ-123 (3 microM; 4.3 fold; P < 0.05), but not by BQ-788 (1 microM). In the presence of both antagonists, concentration-effect curves to endothelin-1 were shifted by at least 6.7 fold (n = 6; P = 0.01). 6. Sarafotoxin S6c induced contraction in both tissue types, although the maximum contraction was greater in trachea (53 +/- 7% Cmax; n = 6) than in bronchus (21 +/- 5% Cmax; n = 6). BQ-788 (1 microM) markedly reduced sarafotoxin S6c potency in both trachea and bronchus (e.g. by 50 fold in trachea; c.l., 14-180; n = 6; P < 0.05). 7. These data demonstrate that the proportions of functional endothelin receptor subtypes mediating contraction of airway smooth muscle to endothelin-1, vary significantly at different levels in the porcine respiratory tract.  相似文献   

17.
1. Endothelin-1 (ET-1) produces vasoconstriction, via activation of ETA and ETB receptors on vascular smooth muscle, and vasodilatation via ETB receptors on endothelial cells. Here we have used the ETA receptor-selective antagonist, BQ-123, the ETB receptor-selective antagonist, BQ-788 and the ETA/ETB receptor non-selective antagonist, PD 145065, to study the role of these receptors in mediating the haemodynamic changes induced by an infusion of ET-1 to the anesthetized ganglion-blocked rat. 2. Infusion of ET-1 (10 pmol kg-1 min-1) increased the mean arterial pressure (MAP) by 57.5 +/- 5.1 mmHg over 70 min. This pressor response was reduced by about 50% by coinfusion of BQ-123 (10 mmol kg-1 min-1), but was unaffected by either BQ-788 (10 nmol kg-1 min-1) or PD 145065 (10 nmol kg-1 min-1). 3. After infusion of ET-1 for 70 min the cardiac output had fallen from 102.6 +/- 11.3 to 55.7 +/- 7.6 ml min-1 and the total peripheral resistance had increased from 3.24 +/- 0.6 to 10.0 +/- 0.8 mmHg ml-1 min-1 (per 100g body weight). BQ-123 decreased the magnitudes of these changes whereas BQ-788 potentiated them. PD 145065 was without effect. 4. ET-1 increased the vascular resistances of all the organs studied except the brain and stomach. These changes were attenuated by BQ-123 in the kidneys, skin, adrenal glands and caecum and potentiated by BQ-788 in the kidneys, small intestine, large intestine and mesentery. PD 145065 had little effect on the individual tissues. 5. Thus, BQ-123, a selective ETA receptor antagonist, inhibits the pressor and vascular constrictor effects of ET-1 more actively than PD 145065. As BQ-788 potentiates some of the vasoconstrictor effects of ET-1 and increases the effects of ET-1 on total peripheral resistance, the predominant role of ETB receptors in the rat circulation is to limit the pressor effects of ET-1.  相似文献   

18.
1. We determined competition binding characteristics of endothelin ETB receptor selective ligands in human left ventricle and compared these values to those obtained with rat left ventricle. Sarafotoxin S6c, ET-3, BQ788 and IRL2500 competed against [125I]-PD151242 (ETA selective radioligand) with low affinity in human left ventricle, confirming the ETB selectivity of these compounds. 2. ET-3 competed with moderate selectivity for ETB over ETA receptors in human left ventricle and with slightly higher selectivity in rat left ventricle (460 and 1,400 fold, respectively). There was a small difference in the affinity of ETA receptors for ET-3 (KD ETA in human left ventricle = 0.07 +/- 0.02 microM; KD ETA in rat left ventricle = 0.27 +/- 0.08 microM; P = 0.05) but no difference in the affinity of ETB receptors for this ligand (KD ETB in human left ventricle = 0.15 +/- 0.06 nM; KD ETB in rat left ventricle = 0.19 +/- 0.03 nM). 3. The selectivity of sarafotoxin S6c for ETB over ETA receptors in human left ventricle was 5,900 fold compared with 59,400 fold in rat left ventricle. The affinity of ETA receptors for sarafotoxin S6c was higher in human than in rat left ventricle (KD ETA = 2.00 +/- 0.20 microM and 3.50 +/- 0.26 microM, respectively; P = 0.03), while the affinity of ETB receptors for this ligand was higher in rat left ventricle (KD ETB = 0.06 +/- 0.02 nM) than in human left ventricle (KD ETB = 0.34 +/- 0.13 nM) (P = 0.02). The affinity of ETB receptors for sarafotoxin S6c in rat left ventricle determined in the absence or presence of GTP was the same indicating that differing affinity states of ETB receptors in human and rat left ventricle do not account for the variation observed between species. 4. There was no difference in the affinity of ETA receptors for BQ788 (KD ETA = 1.01 +/- 0.20 microM and KD ETA = 1.39 +/- 0.35 microM) or for the novel ETB selective antagonist. IRL2500 (KD ETA = 30.0 +/- 20.8 microM and KD ETA = 55.6 +/- 9.93 microM) in human and rat left ventricle, respectively. ETB receptors had a significantly higher affinity for BQ788 (KD ETB = 9.8 +/- 1.3 nM and KD ETB = 31.0 +/- 5.4 nM; P = 0.02) and IRL2500 (KD ETB = 78.2 +/- 9.7 nM and KD ETB = 300.0 +/- 75.1 nM; P = 0.03) in human and rat left ventricle, respectively. The synthetically synthesized ETB selective antagonist RES-701-1 (0.1 -3 microM) failed to inhibit [125I]-ET-1 binding in either tissue. 5. In conclusion, we have compared equilibrium dissociation constants for a number of ETB selective compounds in human and rat heart. The affinity of ETB receptors for sarafotoxin S6c, BQ788 and IRL2500 differed in human and rat left ventricle. No difference in affinity was detected for ET-3 binding at ETB receptors. Sarafotoxin S6c binding was unaffected by GTP indicating that the different receptor affinities in human and rat heart cannot be explained by differing ETB receptor affinity states. This study highlights the need to consider differences in binding characteristics that may arise from the use of tissues obtained from different species.  相似文献   

19.
1. The distribution of [125I]-endothelin (ET-1) binding sites on atherosclerotic human epicardial coronary arteries has been studied by in vitro receptor autoradiography. 2. [125I]-ET-1 binding was to the tunica media and regions of neovascularization. 3. Competition studies were carried out in the presence of ET-1 and the ETA receptor antagonist, FR 139317. The IC50 values for ET-1 at the tunica media and regions of neovascularization were similar (mean +/- s.e.mean of n = 4 patients, 2.5 +/- 0.9 nM and 2.9 +/- 0.9 nM, respectively) whereas IC50 values for FR 139317 at regions of neovascularization (607 +/- 34 nM) were significantly higher than those of the tunica media (12.6 +/- 2.4 nM) (P < 0.0001). 4. These results indicate that ETA receptors are present on the tunica media of the diseased human coronary artery whereas a different ET receptor subtype exists at regions of neovascularization.  相似文献   

20.
1. We have characterized the constrictor endothelin receptors present in human isolated blood vessels using ETA and ETB selective agonists and antagonists. 2. Monophasic dose-response curves were obtained for ET-1 with EC50 values of 6.8 nM in coronary artery, 3.9 nM in internal mammary artery, 17.4 nM in pulmonary artery, 14.5 nM in aorta and 3.2 nM in saphenous vein. In coronary artery, ET-2 was equipotent with ET-1 with an EC50 value of 5.7 nM. The non-selective peptide, sarafotoxin 6b, was 2-3 times less potent than ET-1 but the maximum responses to these two were comparable. 3. In each vessel ET-3 was much less active than ET-1. No response was obtained to ET-3 in aorta and pulmonary artery or in up to 50% of coronary artery, mammary artery and saphenous vein preparations. In those preparations that did respond, dose-response curves were incomplete at 300 nM. Variable contractions were also obtained with the ETB-selective agonist, sarafotoxin 6c (S6c). Where responses were detected, although S6c was more potent than ET-1 (EC50 values of 0.6-1.2 nM), the maximum response produced was always less than 20% of that to ET-1. 4. The synthetic ETB agonists, BQ3020 and [1,3,11,15Ala]-ET-1, were without effect in any of the five blood vessels at concentrations up to 3 microM. 5. ET-1-induced vasoconstriction was blocked by the ETA-selective antagonists, BQ123 and FR139317.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号