首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Murine gammaherpesvirus 68 replicates in the alveolar epithelium and induces an inflammatory infiltrate in the lung, following intranasal challenge, and is cleared 10 and 13 days after infection by a T-cell-dependent mechanism. In order to understand the development of the immune response to this virus and how leukocyte trafficking to the lung is regulated, chemokine expression during MHV-68 infection was examined in lung tissue using an RNase protection assay. Expression of RANTES, eotaxin, MIP-1 alpha, MIP-1 beta, IP-10, and MCP-1 was upregulated by day 7 after infection. Chemokine concentrations in lung lavage fluid were also determined by ELISA. MCP-1, RANTES, MIP-1 alpha, eotaxin, and KC were upregulated during MHV-68 infection. Most of these chemokines have been reported to be chemoattractants for either activated T cells or monocytes, which are the major cellular components of the inflammatory infiltrate induced by the virus. Upregulated expression of the corresponding receptors for the chemokines, including CCR1, CCR2, CCR3, CCR5, and CXCR3, coincided with the development of the inflammatory infiltrate. The chemokine levels peaked at around day 7 after infection, coinciding with peak viral titers and slightly preceding maximal T cell infiltration. In vitro chemotaxis assays confirmed that lung lavage fluid from MHV-68-infected mice had chemotactic activity, which was partially blocked by antibodies to IP-10 and RANTES. These observations suggest that the chemokines detected play an important role in regulating leukocyte trafficking to the lungs during MHV-68 infection.  相似文献   

2.
Influenza virus infections induce chemokines and cytokines, which regulate the immune response. The chemokine receptor CCR2 plays an important role in macrophage recruitment and in the development of T1 immunity. In the present study, we addressed the role of CCR2 in influenza A virus infection. CCR2 knockout (-/-) mice are protected against influenza A virus infection, despite delayed recruitment of macrophages. We show that low-dose influenza infection of CCR2-/- mice leads to increased neutrophilia between Days 5 and 10 after infection and decreased monocyte/macrophage and CD4(+) T cell recruitment to the lungs between Days 5 and 7 after infection. These changes in leukocyte recruitment did not result from or cause increased viral titers or delayed viral clearance. Neutrophilia in the lungs correlated with increased keratinocyte-derived chemokine (KC) and/or MIP-2 expression in CCR2-/- mice between Days 5 to 10 after infection, although the kinetics of neutrophil recruitment was not altered. MIP-2 mRNA and protein expression was increased three- to fivefold, and KC protein levels were increased two- to threefold in CCR2-/- compared with CCR2 wild-type mice at Day 5 after infection. This preceded the peak neutrophil influx, which occurred 7 days after infection. In vitro studies confirmed that MIP-2 and KC accounted for neutrophil chemotactic activity in the bronchoalveolar lavage. CCR2 deficiency also resulted in increased MIP-1alpha, MIP-1beta, MCP-1, and IFN-inducible protein 10 and decreased RANTES mRNA expression. Furthermore, IL-6 and TNF-alpha cytokine production were elevated after infection. These studies suggest that CCR2 plays a multifactorial role in the development of the immune response to influenza.  相似文献   

3.
Chemokines and chemokine receptors play a role in cell recruitment during granulomatous inflammatory reactions. Here, we evaluated the expression of chemokines and chemokine receptors and their regulation by IFN-gamma in the course of Paracoccidioides brasiliensis (Pb) infection in mice. We found an association between KC and MIP-1alpha (CCL3) production and neutrophil infiltration in the lungs of Pb-infected mice during the early acute phase of infection. High levels of RANTES/CCL5, MCP-1/CCL2, IP-10/CXCL10, and Mig/CXCL9 simultaneously with mononuclear cell infiltration in the lungs was found. In the absence of IFN-gamma (GKO mice) we observed increased production of KC and MIP-1alpha and chronic neutrophilia. Moreover, we found a change in the chemokine receptor profiles expressed by wild-type (WT) versus GKO animals. Increased expression of CXCR3 and CCR5, and low levels of CCR3 and CCR4 were observed in the lungs of Pb-infected WT mice, whereas the opposite effect was observed in the lungs of GKO mice. Consistent with these results, infected cells from WT mice preferentially migrated in response to IP-10 (CXCR3 ligand), while those from GKO mice migrated in response to eotaxin/CCL11 (CCR3 ligand). These results suggest that IFN-gamma modulates the expression of chemokines and chemokine receptors as well as the kind of cells that infiltrate the lungs of Pb-infected mice.  相似文献   

4.
We used quantitative PCR to investigate the expression of chemokines and chemokine receptors in two Th1-mediated murine models of inflammatory bowel disease (IBD). First, mRNA levels encoding the chemokines MIG, RANTES, lymphotactin, MIP-3alpha, TCA-3, TARC, MIP-3beta, LIX, MCP-1 and MIP-1beta and the receptors CCR4, CCR6 and CCR2 were significantly increased in chronically inflamed colons of IL-10-/- mice when compared with wildtype mice. Interestingly, reversal of colitis in IL-10-/- mice by anti-IL-12 mAb was accompanied by the inhibition in the expression of LIX, lymphotactin, MCP-1, MIG, MIP-3alpha, MIP-3beta, TCA-3, CCR2 and CCR4, whereas the increased mRNA levels of MIP-1beta, RANTES, TARC and CCR6 were unaffected. Second, to investigate which chemokines and receptors were up-regulated during the inductive phase of colitis, we employed the CD4+CD45RBhigh T cell transfer model. At 4 and 8 weeks after reconstitution of Rag-2-/- mice the mRNA levels of IP-10, MCP-1, MDC, MIG, TARC, RANTES, CCR4 and CCR5 were significantly increased prior to the appearance of macroscopic lesions. Other chemokines and chemokine receptors were clearly associated with the acute phase of the disease when lesions were evident. The sum of our studies with these two models identifies chemokines that are expressed at constant levels, irrespective of inflammatory responses, and those that are specifically associated with acute and/or chronic stages of Th1-driven colitis.  相似文献   

5.
Current design strategies for vaccines against certain microbial pathogens, including Chlamydia trachomatis, require the induction and targeting of specific immune effectors to the local sites of infection known as the mucosal effector sites. Chemokines and their receptors are important mediators of leukocyte trafficking and of the controlled recruitment of specific leukocyte clonotypes during host defense against infections and during inflammation. We analyzed the dynamics of chemokine and chemokine receptor expression in genital mucosae during genital chlamydial infection in a murine model to determine how these molecular entities influence the development of immunity and the clearance of infection. A time course study revealed an increase of up to threefold in the levels of expression of RANTES, monocyte chemotactic protein 1 (MCP-1), gamma-interferon-inducible protein 10 (IP-10), macrophage inflammatory protein 1alpha (MIP-1alpha), and intercellular adhesion molecule type 1 (ICAM-1) after genital infection with the C. trachomatis agent of mouse pneumonitis. Peak levels of expression of RANTES, MCP-1, and MIP-1alpha occurred by day 7 after primary infection, while those of IP-10 and ICAM-1 peaked by day 21. Expression levels of these molecules decreased by day 42 after primary infection, by which time all animals had resolved the infection, suggesting an infection-driven regulation of expression. A rapid upregulation of expression of these molecules was observed after secondary infection. The presence of cells bearing the chemokine receptors CCR5 and CXCR3, known to be preferentially expressed on Th1 and dendritic cells, was also synchronous with the kinetics of immune induction in the genital tract and clearance of infection. Results demonstrated that genital chlamydial infection is associated with a significant induction of chemokines and chemokine receptors that are involved in the recruitment of Th1 cells into the site of infection. Future studies will focus on how selective modulation of chemokines and their receptors can be used to optimize long-term immunity against CHLAMYDIA:  相似文献   

6.
Chemokines and their receptors are important mediators of leukocyte trafficking and recruitment and sometimes work as modulators of T-cell responses during infections and inflammation. Modulating the biological activity of chemokines has been found to influence the course of diseases. However, little is known about the role of chemokine responses during chlamydial lung infections. We therefore analyzed the dynamics of multiple chemokines, which are frequently associated with type 1 (Th1) T cell immune responses, and their receptors for their expression in the lungs during Chlamydia muridarum (Cm) infections. We also examined the relationship between chemokine responses and the development of Th1 responses as well as the clearance of infection. Our results showed that in parallel with the high levels of gamma interferon (IFN-γ) and IL-12 production in the lungs and draining lymph nodes, and the expansion of IFN-γ-producing CD4 and CD8+ T cells, the production of the cell-related chemokines RANTES, IFN-γ-inducible protein-10 (IP-10) and macrophage inflammatory protein-1α (MIP-1α) and their receptor CCR1 was elevated in the lung tissues after infection. Interestingly, in a later phase of infection, the expression of RANTES and IP-10 remained elevated but the expression of MIP-1α and CCR1 decreased to a low level, which suggests a closer association with the pattern of Th1 cytokine responses in the process of infection. These results suggest a close association between the MIP-1α response and the Th1-type T-cell responses in chlamydial lung infections.  相似文献   

7.
Chemokines and their receptors play an important role in site-directed migration and activation of leukocytes. To understand how viral infections may impair this function, we analyzed chemokine receptor expression and responsiveness of human monocytes after infection with influenza A virus. Whereas treatment with infectious virus induced a rapid down-regulation of the CCL2/monocyte chemoattractant protein-1 (MCP-1)-specific receptor CCR2, inactivated virus did not significantly alter CCR2 surface expression. In parallel, the response to CCL2/MCP-1 was lost after infection with active virus: Neither a CCL2/MCP-1-induced shift of intracellular calcium concentrations nor the chemotactic response to CCL2/MCP-1 was detectable. In striking contrast, the presence of CCR1 and CCR5 on the cell surface remained unchanged or was even slightly up-regulated after viral infection. However, the remaining expression of CCR1 and CCR5 correlated reciprocally with an ongoing unresponsiveness to the CCR1 and CCR5 agonists CCL3/macrophage-inflammatory protein-1alpha (MIP-1alpha), CCL4/MIP-1beta, and CCL5/regulated on activation, normal T expressed and secreted (RANTES), all chemokines binding to these two receptors. The CCL3/MIP-1alpha-induced shifts of intracellular calcium concentrations declined gradually to almost undetectable levels, and most conspiciuously, the chemotactic response to CCL3/MIP-1alpha, CCL4/MIP-1beta, and CCL5/RANTES was lost after infection with active influenza virus. Inactivated virus particles did not significantly alter the responsiveness induced by CCR1 and CCR5 agonists. Despite the inability of chemokine receptors to elicit migration, phosphorylation of protein kinase B was not altered in virus-infected monocytes. Thus, influenza A virus infection rapidly abolishes the functional responsiveness of monocytes and prevents an adequate response of the infected cells to chemokine stimulation.  相似文献   

8.
9.
Recently, certain chemokines and chemokine receptors have been preferentially associated with the selective recruitment in vitro of type 1 T cells, such as IP-10 and its receptor CXCR3, or type 2 T cells such as monocyte-derived chemokine (MDC) and eotaxin and their receptors CCR4 and CCR3. Very few models have provided confirmation of these findings in vivo. Taking advantage of the humanized SCID mouse model grafted with autologous human skin, the ability of the chemokines IP-10, MDC, eotaxin, and RANTES to stimulate cell recruitment was investigated. Intradermal IP-10 injection resulted in an influx of CD4+ T lymphocytes but also surprisingly in the recruitment of dendritic cells. MDC recruited mainly CD8+ T lymphocytes, and had little effect on eosinophils. As predicted, eotaxin was a potent inducer of eosinophil and basophil migration, also recruiting CD4+ T cells. RANTES, a ubiquitous chemokine associated with both type 1 and type 2 profiles, was able to recruit all cell types. CXCR3-positive cells were preferentially recruited by IP-10, whereas CCR3- and CCR4-positive cells were predominantly found after injection of eotaxin and MDC. Thus, in a human environment in vivo, some chemokines have the ability to recruit cells expressing chemokine receptors preferentially expressed on type 1 or type 2 cells. Further investigations revealed that MDC and eotaxin induced the recruitment of type 2, but not type 1, cytokine-producing cells. RANTES, on the other hand, induced the migration of both type 1 and type 2 cytokine-secreting cells, whereas IP-10 did not induce the recruitment of either subtype. These studies provide detailed information on the properties of MDC, eotaxin, IP-10, and RANTES as chemotactic molecules in skin in vivo. The use of the humanized SCID mouse model grafted with human skin is validated as a useful model for the evaluation of chemokine function in the inflammatory reaction, and suggests that therapeutic targeting of certain chemokines might be of interest in diseases associated preferentially with a type 1 or type 2 profile.  相似文献   

10.
According to a previous report, the degree of the host immune response highly correlates with severity of the disease in the murine model for neurocysticercosis. In wild-type mice, Mesocestoides corti infection induced a rapid and extensive accumulation of gamma delta T cells and macrophages in the brain. NK cells, dendritic cells, alpha beta T cells, and B cells were also recruited to the brain but at lower levels. In contrast, gamma delta T-cell-deficient mice exhibited decreased cellular infiltration and reduced central nervous system (CNS) pathology. To understand the mechanisms of leukocyte recruitment into the CNS, chemokine expression was analyzed in infected brains in the present study. MCP-1 (CCL2), MIP-1 alpha (CCL3), and MIP-1 beta (CCL4) were up-regulated within 2 days after M. corti infection. Protein expression of RANTES (CCL5), eotaxin (CCL11), and MIP-2 was detected later, at 1 week postinfection. Correlating with the decreased cellular infiltration, delta chain T-cell receptor-deficient (TCR delta(-/-)) mice exhibited substantially reduced levels of most of the chemokines analyzed (with the exception of eotaxin). The results suggest that gamma delta T cells play an important role in the CNS immune response by producing chemokines such as MCP-1 and MIP-1 alpha, enhancing leukocyte trafficking into the brain during murine neurocysticercosis.  相似文献   

11.
12.
West Nile (WN) virus is a mosquito-borne flavivirus that can cause lethal encephalitis in humans and horses. The WN virus endemic in New York City (NY) in 1999 caused large-scale mortality of wild birds that was not evident in endemic areas in other parts of the world, and the pathogenesis of the WN virus strain isolated in NY (NY strain) appears to differ from that of previously isolated strains. However, the pathogenesis of NY strain infection remains unclear. This study examined CC (RANTES/CCL5, MIP-1 alpha/CCL3, MIP-1 beta/CCL4) and CXC (IP-10/CXCL10, B lymphocyte chemoattractant (BLC/CXCL13), and B cell- and monocyte-activating chemokine (BMAC/CXCL14)) chemokine expression during lethal NY strain and non-lethal Eg101 strain infection in mice. We found that the mRNA of the CC chemokines, RANTES, MIP-1 alpha, MIP-1 beta, and IP-10 was highly up-regulated in the brain of NY strain-infected mice. By contrast, BLC mRNA was not detected in either group of mice, and BMAC mRNA was highly up-regulated in late stage of infection with the non-lethal Eg101 strain relative to levels in NY strain-infected mice.  相似文献   

13.
14.
Product R (Reticulose(TM)) is a peptide-nucleic acid immunomodulator with broad-spectrum antiviral activity that was recently shown to increase expression of mRNAs encoding the proinflammatory cytokines, IFN-gamma, IL-1beta, IL-6 and TNF-alpha. Since these cytokines induce expression of the chemokines, MIP-1alpha, MIP-1beta, RANTES, and SDF-1, all of which inhibit viral infectivity, we were interested to determine if Product R also alters chemokine expression. In addition, the finding, that Product R decreases HIV-1 RNA and extracellular p24 antigen in H9 T-lymphoma cells, suggested to us that this drug may block viral infection by reducing the expression of chemokine receptors on target cells. We have therefore utilized H9 cells to test the effects of Product R on expression of mRNAs encoding the chemokine receptors, CD4, CXCR4 and CCR5, as well as their ligands, IL-16, SDF-1, MIP-1alpha, MIP-1beta, and RANTES, by RT-PCR. We also assayed the effect of Product R on surface receptor expression by flow cytometry, and on the chemotactic activity of these cells towards the CXCR4 ligand, SDF-1, and the CCR5 ligands, MIP-1alpha and RANTES. H9 cells were cultured for 3-21 days in medium containing 5% or 10% Product R, or 5% or 10% PBS. We found that, compared to control cultures, cells cultured in media containing Product R expressed lower amounts of CXCR4 and CCR5 mRNA and surface antigen at all time points. Culture for 3 days in media containing Product R also reduced the ability of cells to migrate towards 10-20 ng/ml SDF-1 and 100-250 ng/ml RANTES. In contrast, Product R had no effect on the expression of CD4 mRNA and receptor protein, or on expression of IL-16 mRNA. These findings suggest that Product R may have clinical efficacy in HIV-1-infected patients by downregulating viral coreceptors on target T-cells.  相似文献   

15.
16.
Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer’s disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer’s disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in Alzheimer’s disease, and the role of chemokine/chemokine receptors in the occurrence and development of Alzheimer’s disease. Clarification of the involvement of chemokines and their receptors, such as MCP-1/CCR2, fractalkine/CX3CR1, SDF-1α/CXCR4, MIP-1α/CCR5, IP-10/CXCR3, IL-8/CXCR1, CXCR2, and RANTES/CCR1, CCR3, CCR5, will provide a new strategy and more specific targets for the treatment of Alzheimer’s disease.  相似文献   

17.
Dendritic cells (DC) are highly motile antigen-presenting cells that are recruited to sites of infection and inflammation to antigen uptake and processing. Then, to initiate T cell-dependent immune responses, they migrate from non-lymphoid organs to lymph nodes and the spleen. Since chemokines have been involved in human DC recruitment, we investigated the role of chemokines on mouse DC migration using the mouse growth factor-dependent immature DC line (D1). In this study, we characterized receptor expression, responsiveness to chemoattractants and chemokine expression of D1 cells during the maturation process induced by lipopolysaccharide (LPS). MIP-1alpha and MIP-5 were found to be the most effective chemoattractants, CCR1 was the main receptor expressed and modulated during LPS treatment, and MIP-2, RANTES, IP-10 and MCP-1 were the chemokines modulated during DC maturation. Thus, murine DC respond to a unique set of CC and CXC chemokines, and the maturational stage determines the program of chemokine receptors and chemokines that are expressed. Since CCR1 is modulated during the early phases of DC maturation, our results indicate that the CCR1 receptor may participate in the recruitment and maintenance of DC at the inflammatory site.  相似文献   

18.
目的 使用5型腺病毒(AdS)感染小鼠模型来研究肝脏NKT细胞(natural killer Tcell)在肝损伤早期的免疫调节机制.方法 C57BL/6小鼠尾静脉注射1.5×109PFU和3×109PFUAdS病毒以构建两个剂量组病毒感染的小鼠肝损伤模型,通过观察病毒感染后5 d内小鼠肝组织病理学及小鼠血清丙氨酸转氨酶/天门冬氨酸转氨酶(ALT/AST)水平改变来判断肝损伤程度,使用流式细胞术(FACS)分析感染5 d内肝单个核细胞亚群比例、NKT细胞表面FasL表达水平以及NKT细胞合成IL-4和IFN-γ水平的变化,应用RT-PCR检测小鼠肝内趋化因子及趋化因子受体表达水平.结果 高滴度(3×109 PFU)的AdS病毒感染小鼠1 d后,小鼠肝脏内NKT细胞明显增加,其表面FasL表达上调,肝脏NKT细胞合成IL-4和IFN-γ的水平明显增加,肝组织内淋巴细胞浸润明显;低滴度AdS病毒(1.5×109PFU)感染小鼠后,肝脏NKT细胞比例变化不明显,CD8+T细胞在肝脏的浸润明显弱于高滴度AdS病毒感染;RT-PCR检测结果 显示:3×109PFU AdS病毒感染2 d后,小鼠肝内活化后可调节的及正常的T细胞分泌的趋化因子(RANTES)、人干扰素诱导蛋白10(IP-10)以及巨噬细胞炎症蛋白(MIP)-1β表达增加,3d后相关趋化因子受体CCR5、CCR1、CXCR3表达上调.结论 NKT细胞在淋巴细胞向肝脏趋化的过程中起重要的作用,这种作用与病毒感染诱导NKT细胞合成IL-4和IFN-γ及上调其表面的FasL,从而促进肝细胞内IP-10、Mig等趋化因子的产生有关.  相似文献   

19.
20.
I-TAC/CXCL11 is a natural antagonist for CCR5   总被引:5,自引:0,他引:5  
The selective CXC chemokine receptor 3 (CXCR3) agonists, monokine induced by interferon-gamma (IFN- gamma)/CXC chemokine ligand 9 (CXCL9), IFN-inducible protein 10/CXCL10, and IFN-inducible T cell alpha chemoattractant (I-TAC)/CXCL11, attract CXCR3+ cells such as CD45RO+ T lymphocytes, B cells, and natural killer cells. Further, all three chemokines are potent, natural antagonists for chemokine receptor 3 (CCR3) and feature defensin-like, antimicrobial activities. In this study, we show that I-TAC, in addition to these effects, acts as an antagonist for CCR5. I-TAC inhibited the binding of macrophage-inflammatory protein-1alpha (MIP-1alpha)/CC chemokine ligand 3 (CCL3) to cells transfected with CCR5 and to monocytes. Furthermore, cell migration evoked by regulated on activation, normal T expressed and secreted (RANTES)/CCL5 and MIP-1beta/CCL4, the selective agonist of CCR5, was inhibited in transfected cells and monocytes, respectively. In two other functional assays, namely the release of free intracellular calcium and actin polymerization, I-TAC reduced CCR5 activities to minimal levels. Sequence and structure analyses indicate a potential role for K17, K49, and Q51 of I-TAC in CCR5 binding. Our results expand on the potential role of I-TAC as a negative modulator in leukocyte migration and activation, as I-TAC would specifically counteract the responses mediated by many "classical," inflammatory chemokines that act not only via CCR3 but via CCR5 as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号