首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For molecular targeted cancer therapies to fulfill their promise in cancer treatment, innovative approaches are required to overcome significant obstacles that exist in the clinical development of these agents. Positron emission tomography (PET) is a functional imaging technology that allows rapid, repeated, noninvasive, in vivo assessment and quantification of many biological processes and in some cases molecular pathways targeted by these therapies. It is highly sensitive, with the capacity to detect subnanomolar concentrations of radiotracer and provides superior image resolution to conventional nuclear medicine imaging with gamma cameras. Novel PET radiotracers have been developed that allow visualisation of a variety of processes including tumour metabolism, cell proliferation, apoptosis, hypoxia and blood flow. Furthermore, specific molecular targets including cellular receptors can be identified using radiolabelled receptor ligands or specific monoclonal antibodies. Improvements in imaging technology leading to the development of small-animal PET scanners, with resolution capable of imaging commonly used mouse models of cancer, will enable PET to play an important role in preclinical proof-of-principle drug studies. Such improvements will also facilitate the validation of imaging protocols that can be readily translated to studies in humans. The greatest utility of PET in the development of molecular targeted therapeutics, however, lies in clinical studies, where PET may play a valuable role in a number of situations. These include selection of patients for therapy through noninvasive identification of the presence of specific molecular targets, pharmacokinetic studies with labelled drugs and pharmacodynamic evaluations of biological parameters to select the optimal biological dose, and assessment of response to therapies.  相似文献   

2.
3.
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.  相似文献   

4.
The large use of target therapies in the treatment of gastrointestinal stromal tumors (GISTs) highlighted the urgency to integrate new molecular imaging technologies, to develop new criteria for tumor response evaluation and to reach a more comprehensive definition of the molecular target. These aspects, which come from clinical experiences, are not considered enough in preclinical research studies which aim to evaluate the efficacy of new drugs or new combination of drugs with molecular target. We developed a xenograft animal model GIST882 using nude mice. We evaluated both the molecular and functional characterization of the tumor mass. The mutational analysis of KIT receptor of the GIST882 cell lines and tumor mass showed a mutation on exon 13 that was still present after in vivo cell growth. The glucose metabolism and cell proliferation was evaluated with a small animal PET using both FDG and FLT. The experimental development of new therapies for GIST treatment requires sophisticated animal models in order to represent the tumor molecular heterogeneity already demonstrated in the clinical setting and in order to evaluate the efficacy of the treatment also considering the inhibition of tumor metabolism, and not only considering the change in size of tumors. This approach of cancer research on GISTs is crucial and essential for innovative perspectives that could cross over to other types of cancer.  相似文献   

5.
The widespread application of positron emission tomography (PET) in clinical oncology has driven this imaging technology into a number of new research and clinical arenas. Increasing numbers of patient scans have led to an urgent need for efficient data handling and the development of new image analysis techniques to aid clinicians in the diagnosis of disease and planning of treatment. Automatic quantitative assessment of metabolic PET data is attractive and will certainly revolutionize the practice of functional imaging since it can lower variability across institutions and may enhance the consistency of image interpretation independent of reader experience. In this paper, a novel automated system for the segmentation of oncological PET data aiming at providing an accurate quantitative analysis tool is proposed. The initial step involves expectation maximization (EM)-based mixture modeling using a k-means clustering procedure, which varies voxel order for initialization. A multiscale Markov model is then used to refine this segmentation by modeling spatial correlations between neighboring image voxels. An experimental study using an anthropomorphic thorax phantom was conducted for quantitative evaluation of the performance of the proposed segmentation algorithm. The comparison of actual tumor volumes to the volumes calculated using different segmentation methodologies including standard k-means, spatial domain Markov Random Field Model (MRFM), and the new multiscale MRFM proposed in this paper showed that the latter dramatically reduces the relative error to less than 8% for small lesions (7 mm radii) and less than 3.5% for larger lesions (9 mm radii). The analysis of the resulting segmentations of clinical oncologic PET data seems to confirm that this methodology shows promise and can successfully segment patient lesions. For problematic images, this technique enables the identification of tumors situated very close to nearby high normal physiologic uptake. The use of this technique to estimate tumor volumes for assessment of response to therapy and to delineate treatment volumes for the purpose of combined PET/CT-based radiation therapy treatment planning is also discussed.  相似文献   

6.
Drug resistance is the main cause of the failure of chemotherapy of malignant tumors, resistance being either preexisting (intrinsic resistance) or induced by the drugs (acquired resistance). At present, resistance is usually diagnosed during treatment after a long period of drug administration.In the present paper, methods for a rapid assessment of drug resistance are described. Three main classes of test procedures can be found in the literature, i.e. fresh tumor cell culture tests, cancer biomarker tests and positron emission tomography (PET) tests. The methods are based on the evaluation of molecular processes, i.e. metabolic activities of cancer cells. Drug resistance can be diagnosed before treatment in-vitro with fresh tumor cell culture tests, and after a short time of treatment in-vivo with PET tests. Cancer biomarker tests, for which great potential has been predicted, are largely still in the development stage. Individual resistance surveillance with tests delivering rapid results signifies progress in cancer therapy management, by providing the possibility to avoid drug therapies that are ineffective and only harmful.  相似文献   

7.
Despite several major advances in breast cancer diagnosis and treatment, the American Cancer Society has estimated that in the US alone 43300 women and 400 men will die from breast cancer in 2007. Breast cancer typically is a multi-focal, multi-faceted disease, with the major cause of mortality being complications due to metastasis. Whereas a decade ago genetic alterations were the primary focus in cancer research, it is now apparent that the physiological tumor microenvironment, interactions between cancer cells and stromal cells such as endothelial cells, fibroblasts and macrophages, the extracellular matrix, and a multitude of secreted factors and cytokines influence progression, aggressiveness, and response of the disease to treatment. Prevention, early diagnosis, and treatment are the three broad challenges for MR molecular and functional imaging in reducing mortality from this disease. Multi-parametric molecular and functional MRI provides unprecedented opportunities for identifying novel targets for imaging and therapy at the bench, as well as for accurate diagnosis and monitoring response to therapy at the bedside. Here we provide an overview of the current status of molecular and functional MRI of breast cancer, outlining some key developments, as well as identifying some of the important challenges facing this field in the future.  相似文献   

8.
Gene-based therapy is a promising and flexible therapeutic approach to manage diverse types of cancer. The lack of convincing therapeutic success of current gene therapy protocols in part, can be attributed to the inability to monitor gene expression at the targeted site in the living subject. Linking molecular imaging to gene therapy will enable real-time assessment of the therapeutic process and the refinement of treatment protocols. This review will cover two common imaging modalities, positron emission tomography (PET) and bioluminescence imaging (BLI), used in pre-clinical and clinical gene therapy applications. Strategies to develop more specific and robust cancer gene therapy and imaging approaches will be discussed. Coupling PET to gene therapy of cancer has already been implemented in several clinical studies. This approach would help to improve the efficacy and safety of future gene therapy clinical trials.  相似文献   

9.
The integration of chemistry and molecular biology with imaging is providing some of the most exciting opportunities in the treatment of cancer. The field of theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. Using this information, theranostic agents can be shaped for personalized treatment to target specific compartments, such as the tumor microenvironment (TME), whilst minimizing damage to normal tissue. These theranostic agents can also be used to target multiple pathways or networks by incorporating multiple small interfering RNAs (siRNAs) within a single agent. A decade ago genetic alterations were the primary focus in cancer research. Now it is apparent that the tumor physiological microenvironment, interactions between cancer cells and stromal cells, such as endothelial cells, fibroblasts and macrophages, the extracellular matrix (ECM), and a host of secreted factors and cytokines, influence progression to metastatic disease, aggressiveness and the response of the disease to treatment. In this review, we outline some of the characteristics of the TME, describe the theranostic agents currently available to target the TME and discuss the unique opportunities the TME provides for the design of novel theranostic agents for cancer therapy.  相似文献   

10.
Cancer immunogene therapy.   总被引:3,自引:0,他引:3  
The establishment of cancer in a host involves at least two major events: the escape of tumor cells from normal growth control and their escape from immunological recognition. Because of this nature of their development, cancer cells seem to be predominatly poorly immunogenic. In contrast to the previous idea that cancer cells express no recognizable antigens, recent progress in the identification and characterization of tumor antigens, as well as the expansion of knowledge on the cellular and molecular mechanisms of antigen recognition by the immune system, have raised the possibility of using immunotherapy to treat certain tumors. Information on these mechanisms has been obtained in three crucial areas: 1) the role of cytokines in the regulation of the immune response, 2) the molecular characterization of tumor antigens in both mouse and human tumors, and 3) the molecular mechanisms of T cell activation and antigen presentation. Such information has provided new insight into tumor immunology and immunotherapy. Furthermore, recombinant DNA technology allows for modification of the genome of mammalian cells for therapeutic purposes in several diseases. Several novel strategies have been developed to derive genetically modified tumor cells and use them as cellular vaccines to induce antitumor immunity in animal tumor models. This combined modality of genetically modified tumor cells and immunotherapy has been termed immunogene therapy of tumors. Crucial to this approach has been the ability to transfer into normal or neoplastic cells genes known to increase the immunogenicity of cells, which subsequently can be used to augment immune reactions in tumor-bearing mice or cancer patients. While there has been success in inducing antitumor immunity in some tumor models, there are difficulties and limitations in the application of these gene-modified tumor cells for the treatment of preexisting tumors. In this review, recent progress in cancer immunogene therapy is discussed.  相似文献   

11.
Noninvasive evaluation of hepatic tumor response is necessary to improve the survival rate and quality of life of cancer patients. Among radiologic imaging modalities, MRI plays a significant role in the management of patients with hepatic tumor and is crucial for diagnosis, treatment planning and assessment of response or recurrence, because of its high contrast resolution, lack of ionizing radiation and the possibility of performing functional imaging sequences. This review provides an overview of the MRI findings after various treatments in patients with primary and secondary focal liver malignancies. The imaging methods described focus on the recent trends of using MRI techniques as biomarkers for disease. We also describe the appearance of successful and incomplete response for the various forms of treatment, including transcatheter arterial chemoembolization, ablative therapy, systemic chemotherapy and radiation therapy. Dynamic contrast-enhanced MRI is regarded as an established noninvasive method and potential biomarker for tumor detection, as well as for the characterization of the tumor response. Diffusion-weighted MRI, perfusion-weighted MRI and MRS are also promising functional biomarkers to help select patients for various therapies and to assess the response to treatments. However, further validation and standardization should be performed before their widespread use as imaging biomarkers.  相似文献   

12.
13.
CT cannot provide useful information in a timely manner after neoadjuvant treatment. To evaluate the role of (18)F FDG PET after neoadjuvant chemoradiation for early therapy response and its effect on survival as compared to histopathologic tumor response, findings in 32 patients were analyzed prospectively in an ongoing multicenter trial (LUCAS-MD).Inclusion criteria: histologically confirmed NSCLC stage IIIA/IIIB. Neoadjuvant treatment: 2-3 cycles with paclitaxel/carboplatin and a block of chemoradiation followed by surgery. Pretherapeutic staging: PET scan in addition to a spiral CT and/or MRI. Second PET scan after completion of neoadjuvant therapy prior to surgery. Documentation of lymph node involvement. Assessment of SUV and the metabolic tumor index for primary tumor and metastatic lymph nodes. Image fusion of PET with CT data followed by molecular radiation treatment planning. Evaluation of histologic regression grade and correlation with PET for primary tumor and each lymph node location.All patients (10/32) with complete response in lymph node metastases detected by PET prior to surgery, had no vital tumor cells (i.e. histologic regression grade/RG III, sensitivity 100%). In primary tumors showing complete response, the RG was IIb or III, in one patient IIa (false negative in PET). False positive findings in PET are due to inflammation (5 patients, histologically confirmed). Univariate analyses: actuarial tumor-specific survival for complete metabolic remission vs. incomplete remission after 24 months: 76 vs. 20% (p=0,0079); for RG III/IIb vs. RG IIa/I after 24 months: 63 vs. 36% (p=0,0123).(18)F FDG PET precedes CT in measuring the tumor response and may predict (long term) therapeutic outcome in stage III NSCLC. Histologic regression grade correlates well with metabolic remission as detected by PET.  相似文献   

14.
An outlook on future design of hybrid PET/MRI systems   总被引:1,自引:0,他引:1  
Zaidi H  Del Guerra A 《Medical physics》2011,38(10):5667-5689
  相似文献   

15.
The role of molecular imaging in pre-clinical research is continuously evolving. Particularly in small animal models in biomedical research, optical imaging technologies are frequently used to visualize normal as well as aberrant cellular processes at a molecular-genetic or cellular level of function. Also in cancer metastasis research, whole body bioluminescent and fluorescent imaging techniques have become indispensable tools that allow non-invasive and real-time imaging of gene expression, tumor progression and metastasis, and response to therapeutic intervention. In this paper, we discuss the use of optical imaging strategies—either alone or in combination with CT- to study intrabone tumor growth, tumor progression and to monitor efficacy of therapeutic agents in metastatic bone disease.  相似文献   

16.
Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster (64Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide 64Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. 64Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, 64Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging.  相似文献   

17.
Lipids represent a diverse array of molecules essential to the cell's structure, defense, energy, and communication. Lipid metabolism can often become dysregulated during tumor development. During cancer therapy, targeted inhibition of cell proliferation can likewise cause widespread and drastic changes in lipid composition. Molecular imaging techniques have been developed to monitor altered lipid profiles as a biomarker for cancer diagnosis and treatment response. For decades, MRS has been the dominant non‐invasive technique for studying lipid metabolite levels. Recent insights into the oncogenic transformations driving changes in lipid metabolism have revealed new mechanisms and signaling molecules that can be exploited using optical imaging, mass spectrometry imaging, and positron emission tomography. These novel imaging modalities have provided researchers with a diverse toolbox to examine changes in lipids in response to a wide array of anticancer strategies including chemotherapy, radiation therapy, signal transduction inhibitors, gene therapy, immunotherapy, or a combination of these strategies. The understanding of lipid metabolism in response to cancer therapy continues to evolve as each therapeutic method emerges, and this review seeks to summarize the current field and areas of unmet needs.  相似文献   

18.
We previously identified the gene metastasis-associated in colon cancer-1 (MACC1) and demonstrated its important role for metastasis prediction in colorectal cancer. MACC1 induces cell motility and proliferation in vitro as well as metastasis in several mouse models. Here we report non-invasive real time imaging of inhibition of colorectal tumor progression and metastasis in xenografted mice by MACC1 shRNA. First, we demonstrated reduction of tumors and liver metastases by endpoint imaging of mice transplanted with MACC1 endogenously high expressing colorectal cancer cells and treated with shRNAs acting on MACC1 or Met. Next, we generated a novel bicistronic IRES vector simultaneously expressing the reporter gene firefly luciferase and MACC1 to ensure a direct correlation of bioluminescence signal with MACC1 expression. We transfected MACC1 endogenously low expressing colorectal cancer cells with this luciferase-IRES-MACC1 construct, transplanted them intrasplenically, and monitored MACC1 induced tumor growth and metastasis by in vivo imaging over time. Transfection of an IRES construct harboring the firefly luciferase reporter gene together with MACC1 lacking the SH3-domain reduced tumor growth and metastasis. Finally, we counteracted the luciferase-IRES-MACC1 induced effects by shRNA targeting MACC1 and monitored reduced tumor growth and metastasis by in vivo imaging over weeks. In summary, the new bicistronic luciferase-IRES-MACC1 construct is suitable for in vivo imaging of tumor progression and metastasis, and moreover, for imaging of therapy response such as treatment with MACC1 shRNA. Thereby, we provide proof-of-concept for employment of this MACC1-based in vivo model for evaluating therapeutic intervention strategies aiming at inhibition of tumor growth and metastasis.  相似文献   

19.
20.
During the past several years, it has become quite evident that positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) imaging can play a major role in the management of patients with suspected infection. Particularly, several groups have demonstrated that this powerful imaging methodology is very effective in the evaluation of osteomyelitis, infected prostheses, fever of unknown origin, and AIDS. In view of its extraordinary sensitivity in detecting disease activity and the ability to quantitate the degree of FDG uptake, PET might prove to be an appropriate modality for monitoring disease activity and evaluating response to therapy. FDG-PET has many advantages over existing imaging techniques for the diagnosis of infectious diseases. These include feasibility of securing diagnostic results within 1.5 to 2 h, excellent spatial resolution, and accurate anatomical localization of sites of abnormality. The availability of PET/computed tomography as a practical tool has further enhanced the role of metabolic imaging in many settings. In the future, this modality is very likely to be employed on a routine basis for detecting, characterizing, and monitoring patients with suspected and proven infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号