首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hu H  Wu L  Feng Y  Pan Q  Long Z  Li J  Dai H  Xia K  Liang D  Niikawa N  Xia J 《Journal of human genetics》2007,52(6):492-497
It has been shown that mutations in the SLC26A4 gene are involved in syndromic deafness characterized by congenital sensorineural hearing impairment and goitre (Pendred's syndrome), as well as in congenital isolated deafness (DFNB4), both of which are associated with enlarged vestibular aqueduct (EVA). The prevalence of SLC26A4 mutations in Pendred's syndrome is clearly established in many ethnic groups, but the data from Mainland Chinese patients with deafness and EVA remain poor. In this report, 15 patients from 13 unrelated Chinese families with deafness and EVA were analyzed for SLC26A4 using direct sequencing. A total of 15 pathogenic mutations were observed in 11 unrelated families, 4 of which were novel. One mutation, IVS7-2A>G, was most common, accounting for 22.3% (5/22) of all the mutant alleles, and H723R was infrequent. To date, a total of 23 mutations have been reported among the Chinese, 13 of which were unique. In conclusion, EVA could be a radiological marker for SLC26A4 analysis among Mainland Chinese hearing-loss patients, and the SLC26A4 mutation spectrum in the Chinese was different from other reported populations.  相似文献   

2.
3.
Pendred syndrome is an autosomal‐recessive disorder characterized by congenital sensorineural hearing loss combined with goiter. This disorder may account for up to 10% of cases of hereditary deafness. The disease gene (PDS/SLC26A4) has been mapped to chromosome 7q22‐q31 and encodes a chloride‐iodide transport protein. Mutations in this gene are also a cause of non‐syndromic autosomal recessive hearing impairment (DFNB4). We have analyzed the PDS/SLC26A4 gene in Spanish and Italian families and we have detected five new mutations (X871M, T132I, IVS1‐2A>G, Y556H and 406del5). © 2001 Wiley‐Liss, Inc.  相似文献   

4.
The mutations of GJB2, SLC26A4, and mtDNA12SrRNA are the most common inherited causes of nonsyndromic sensorineural hearing loss (NSHL) in China, yet previous genetic screenings were mainly carried on patients with moderate‐to‐profound impairment. We aimed to detect the mutation frequencies in NSHL population within a more specified range of severity. Patients with profound NSHL who had undergone cochlear implantation in the Shandong Provincial Hospital (Shandong, China) were recruited. The majority (n = 472) were between 0.7 and 6 years old, and the remaining (n = 63) were between 6 and 70 years old. In total, 115 mutation alleles of the three genes were screened with SNP scan assay. Of the patients, 19.44% (104/535) were found to have GJB2 mutations, and the most common allele was c.235delC, followed by c.299_300delAT and c.109G>A. SLC26A4 mutations were detected in 13.46% patients (72/535), and the most common allele was c.919‐2A>G (IVS7‐2A>G), followed by c.1174A>T and c.2168A>G. Seven patients (1.31%) carried mutations in mtDNA12SrRNA, with the alleles of m.1555A>G and m.1494C>T. We found the allele frequency of c.109G>A (GJB2) was relatively lower in the profound NSHL population in comparison to the moderate‐to‐profound ones, and the c.1174A>T (SLC26A4) relatively higher. It suggests those mutations may be connected with the degree of deafness, which needs more observations and analyses to support.  相似文献   

5.
目的 对携带SLC26A4基因IVS7-2A>G单杂合突变感音神经性耳聋患者进行 SLC26A4基因的全序列检测,以期发现除IVS7-2A>G以外的其他突变.方法 应用直接测序法对80例携带IVS7-2A>G单杂合突变的感音神经性耳聋患者进行SLC26A4基因进行全序列测序.结果 80例患者中47例发现另1个突变位点,其余33例未发现复合杂合突变,IVS7-2A>G单杂合突变找到另外1个突变的比例为58.8%(47/80).发现了 3个新的突变,分别是5+2T>A、14-2A>G和1825del G,最为常见的5种突变为H723R(20%)、T410M(5%)、15+5G>A(5%)、L676Q(5%)、N392Y(3.75%).第17外显子是突变发生种类最多的外显子.结论 SLC26A4基因IVS7-2A>G单杂合突变者应该进行其他突变的筛查,SLC26A4基因复合突变可以解释部分的耳聋原因.  相似文献   

6.
Recessive mutations of SLC26A4 (PDS) are a common cause of Pendred syndrome and non-syndromic deafness in western populations. Although south and east Asia contain nearly one half of the global population, the origins and frequencies of SLC26A4 mutations in these regions are unknown. We PCR amplified and sequenced seven exons of SLC26A4 to detect selected mutations in 274 deaf probands from Korea, China, and Mongolia. A total of nine different mutations of SLC26A4 were detected among 15 (5.5%) of the 274 probands. Five mutations were novel and the other four had seldom, if ever, been identified outside east Asia. To identify mutations in south Asians, 212 Pakistani and 106 Indian families with three or more affected offspring of consanguineous matings were analysed for cosegregation of recessive deafness with short tandem repeat markers linked to SLC26A4. All 21 SLC26A4 exons were PCR amplified and sequenced in families segregating SLC26A4 linked deafness. Eleven mutant alleles of SLC26A4 were identified among 17 (5.4%) of the 318 families, and all 11 alleles were novel. SLC26A4 linked haplotypes on chromosomes with recurrent mutations were consistent with founder effects. Our observation of a diverse allelic series unique to each ethnic group indicates that mutational events at SLC26A4 are common and account for approximately 5% of recessive deafness in south Asians and other populations.  相似文献   

7.
Sensorineural hearing loss is the most frequent sensory deficit of childhood and is of genetic origin in up to 75% of cases. It has been shown that mutations of the SLC26A4 (PDS) gene were involved in syndromic deafness characterized by congenital sensorineural hearing impairment and goitre (Pendred's syndrome), as well as in congenital isolated deafness (DFNB4). While the prevalence of SLC26A4 mutations in Pendred's syndrome is clearly established, it remains to be studied in large cohorts of patients with nonsyndromic deafness and detailed clinical informations. In this report, 109 patients from 100 unrelated families, aged from 1 to 32 years (median age: 10 years), with nonsyndromic deafness and enlarged vestibular aqueduct, were genotyped for SLC26A4 using DHPLC molecular screening and sequencing. In all, 91 allelic variants were observed in 100 unrelated families, of which 19 have never been reported. The prevalence of SLC26A4 mutations was 40% (40/100), with biallelic mutation in 24% (24/100), while six families were homozygous. All patients included in this series had documented deafness, associated with EVA and without any evidence of syndromic disease. Among patients with SLC26A4 biallelic mutations, deafness was more severe, fluctuated more than in patients with no mutation. In conclusion, the incidence of SLC26A4 mutations is high in patients with isolated deafness and enlarged vestibular aqueduct and could represent up to 4% of nonsyndromic hearing impairment. SLC26A4 could be the second most frequent gene implicated in nonsyndromic deafness after GJB2, in this Caucasian population.  相似文献   

8.
目的了解婚前聋人基因检测及婚配生育情况,为预防耳聋提供依据。方法对自愿接受基因检测的情侣耳聋基因突变进行检测。结果聋人婚配模式是15对聋人与聋人婚配的9对占60%;聋人与健听人婚配占26.67%;聋人与重听人结婚的占13.33%。其中9对聋与聋在婚前进行遗传咨询占60.O%,接受致聋基因检测的仅有3对占20.0%。生育正常12例后代,1例听力正常的女孩为GJB2235delc杂合突变携带者,1例男婴,重度耳聋为SLC26A4IVS7—2A〉G杂合突变。结论婚前进行常见耳聋基因检测,是对耳聋预防与出生缺陷干预的有效措施。  相似文献   

9.
目的研究4个耳聋易感基因GJB2、GJB3、SLC26A4、线粒体12SrRNA在湖州市聋哑学校68名聋哑学生中的突变类型分布情况。方法应用飞行时间质谱技术,对68名聋哑学生进行GJB2、GJB3、SLC26A4、线粒体12SrRNA 4个耳聋易感基因检测,检测位点包含以上基因的20个热点突变。结果68名聋哑学生中共检出耳聋基因突变27例,阳性率39.71%,其中GJB2基因突变19例,占70.37%;GJB3基因突变l例,占3.7%;SLC26A4基因突变5例,占18.52%;线粒体12SrRNA基因突变2例,占7.41%。结论在湖州市聋哑学校中,GJB2是最常见的耳聋突变基因,235delC是GJB2基因最常见的突变位点。  相似文献   

10.
We report two cases in which the probands presented with deafness and a family history of a dominantly inherited auditory pigmentary syndrome, yet the cause of deafness in each proband was not associated with the pigmentary abnormalities but was a result of mutations in SLC26A4, the gene mutated in Pendred's syndrome. The first case is a young woman with congenital sensorineural hearing loss and a family history of piebaldism. Despite showing no pigmentary abnormalities, the proband was found to harbor the same KIT mutation as her relatives affected by piebaldism, as well as two mutations in the SLC26A4 gene. In the second case, 2-year-old identical twin boys born to deaf parents presented with congenital sensorineural deafness and an extensive maternal family history of Waardenburg's syndrome type I (WSI). Their father had recessively inherited deafness associated with dilated vestibular aqueducts and a clinical diagnosis of Pendred's syndrome was made in him, which was confirmed molecularly. As the twin boys did not have features of WSI, both the mother and children were tested for mutations in SLC26A4 which showed the mother to be a carrier of a single mutation and both boys to be compound heterozygotes, illustrating pseudodominant inheritance of the condition.  相似文献   

11.
Mutations in SLC26A4 cause Pendred syndrome (PS) – hearing loss with goitre – or DFNB4 – non‐syndromic hearing loss (NSHL) with inner ear abnormalities such as Enlarged Vestibular Aqueduct (EVA) or Mondini Dysplasia (MD). We tested 303 unrelated Czech patients with early hearing loss (298 with NSHL and 5 with PS), all GJB2‐negative, for SLC26A4 mutations and evaluated their clinical and radiological phenotype. Among 115 available HRCT/MRI scans we detected three MD (2.6%), three Mondini‐like affections (2.6%), 16 EVA (13 bilateral – 19.2% and 15.6% respectively) and 61 EVA/MD‐negative scans (73.4%). We found mutation(s) in 26 patients (8.6%) and biallelic mutations in eight patients (2.7%) out of 303 tested. In 18 of 26 (69%) patients, no second mutation could be detected even using MLPA. The spectrum of SLC26A4 mutations in Czech patients is broad without any prevalent mutation. We detected 21 different mutations (four novel). The most frequent mutations were p.Val138Phe and p.Leu445Trp (18% and 8.9% of pathogenic alleles respectively). Among 13 patients with bilateral EVA, six patients (50%) carry biallelic mutations. In EVA ‐negative patients no biallelic mutations were found but 4.9% had monoallelic mutations. SLC26A4 mutations are present mostly in patients with EVA/MD and/or progressive HL and those with affected siblings.  相似文献   

12.
Deleterious mutations of SLC26A4 cause Pendred syndrome (PS), an autosomal recessive disorder comprising goitre and deafness with enlarged vestibular aqueducts (EVA), and nonsyndromic hearing loss (NSHL). However, the SLC26A4 hyperactivity was recently associated with the emergence of autoimmune thyroid diseases (AITD) and asthma among human and mouse model. Here, by direct sequencing, we investigate the sequences of the 20 coding exons (2 to 21) of SLC26A4 and their flanking intron-exon junctions among patients affected with Graves' disease (GD) hyperthyroidism. Ten mono-allelic variants were identified, seven of which are intronic and previously unreported. Two, c.898A>C (p.I300L) and c.1061T>C (p.F354S), of the three exonic variants are non synonymous. The p.F354S variant is already described to be involved in PS or NSHL inheritances. The exploration by PCR-RFLP of p.I300L and p.F354S variants among 132 GD patients, 105 Hashimoto thyroiditis (HT), 206 Healthy subjects and 102 families with NSHL have shown the presence of both variants. The p.F354S variation was identified both among patients (1~HT and 3 GD) and healthy subjects (n=5). Whereas, the p.I300L variant was identified only in GD patients (n=3). Our studies provide evidence of the importance of systematic analysis of SLC26A4 gene sequences on models other than deafness. This approach allows the identification of new variants and the review of the pathogenic effects of certain mono-allelic variants reported responsible for PS and NSHL development.  相似文献   

13.

Background

Mutations in SLC26A4 cause Pendred syndrome (hearing loss with goiter) or DFNB4 (non-syndromic hearing loss with inner ear malformation, such as enlarged vestibular aqueduct or Mondini deformity). The relationship between mutations in SLC26A4 and Mondini deformity without enlarged vestibular aqueduct has not been studied in any Chinese deaf population. The purpose of this study was to assess whether mutations in the SLC26A4 gene cause Mondini deformity without an enlarged vestibular aqueduct (isolated Mondini deformity) in a Chinese population.

Methods

In total, 144 patients with sensorineural hearing loss were included and subjected to high-resolution temporal bone CT. Among them, 28 patients with isolated Mondini dysplasia (MD group), 50 patients with enlarged vestibular aqueduct with Mondini dysplasia (EVA with MD group), 50 patients with enlarged vestibular aqueduct without Mondini dysplasia (EVA group), and 16 patients with other types of inner ear malformations (IEM group) were identified. The coding exons of SLC26A4 were analyzed in all subjects.

Results

DNA sequence analysis of SLC26A4 was performed in all 144 patients. In the different groups, the detection rate of the SLC26A4 mutation differed. In the isolated MD group, only one single allelic mutation in SLC26A4 was found in one patient (1/28, 3.6%). In the EVA with MD group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. Also, in the EVA group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. These percentages were identical to those in the EVA plus MD group. Only two patients carried monoallelic mutations of the SLC26A4 gene in the IEM group (2/16, 12.5%). There were significant differences in the frequency of SLC26A4 mutation among the groups (P < 0.001). The detection rate of SLC26A4 mutation in the isolated MD group was significantly lower than in the EVA group (with or without MD; P < 0.001), and there was no significant difference in the detection rate of SLC26A4 between the MD group and IEM group (P > 0.5).

Conclusion

Although mutations in the SLC26A4 gene were frequently found in Chinese EVA patients with and without MD, there was no evidence to show a relationship between isolated MD and the SLC26A4 gene in the Chinese population examined. Hearing impairment in patients with isolated MD may be caused by factors other than mutations in the SLC26A4 gene.
  相似文献   

14.
Pendred syndrome (PS) and DFNB4, a non-syndromic sensorineural hearing loss with enlargement of the vestibular aqueduct (EVA), are caused by mutations in the SLC26A4 gene. Both disorders are recessive, and yet only one mutated SLC26A4 allele, or no mutations, are identified in many cases. Here we present the genetic characterization of 105 Spanish patients from 47 families with PS or non-syndromic EVA and 20 families with recessive non-syndromic hearing loss, which segregated with the DFNB4 locus. In this cohort, two causative SLC26A4 mutations could be characterized in 18 families (27%), whereas a single mutated allele was found in a patient with unilateral hearing loss and EVA in the same ear. In all, 24 different causative mutations were identified, including eight novel mutations. The novel p.Q514K variant was the most prevalent mutation in SLC26A4, accounting for 17% (6/36) of the mutated alleles identified in this study, deriving from a founder effect. We also characterized a novel multiexon 14 kb deletion spanning from intron 3 to intron 6 (g.8091T_22145Cdel). This study also revealed the first case of a de novo recessive mutation p.Q413P causing PS that arose in the proband's paternal allele, the maternal one carrying the p.L445W. The relevance of our results for genetic diagnosis of PS and non-syndromic EVA hearing loss is discussed.  相似文献   

15.
Mutations in SLC26A4 cause Pendred syndrome, an autosomal-recessive disorder characterized by sensorineural deafness and goiter, and DFNB4, a type of autosomal recessive nonsyndromic deafness in which, by definition, affected persons do not have thyromegaly. The clinical diagnosis of these two conditions is difficult, making mutation screening of SLC26A4 a valuable test. Although screening can be accomplished in a variety of ways, all techniques are not equally accurate, timely or cost effective. We found single-strand conformational polymorphism analysis (SSCP) to be 63% effective in detecting mutations a panel of different SLC26A4 allele variants when compared to data from direct sequencing. Because direct sequencing can be time consuming and expensive, especially for a gene with 21 exons, we studied DHPLC as an alternative screening method. We found DHPLC as accurate and reliable as direct sequencing but to be more rapid and cost effective. In addition, we report 11 novel disease-causing allele variants of SLC26A4.  相似文献   

16.
Hearing loss is the most frequent sensory disorder involving a multitude of factors,and at least 50% of cases are due to genetic etiology.To further characterize the molecular etiology of hearing loss in the Chinese population,we recruited a total of 135 unrelated patients with nonsyndromic sensorineural hearing loss (NSHL) for mutational screening of GJB2,GJB3,GJB6,SLC26A4,SLC26A5 IVS2-2A>G and mitochondrial 12SrRNA,tRNA Ser(UCN) by PCR amplification and direct DNA sequencing.The carrier frequencies of deafness-causing mutations in these patients were 35.55% in GJB2,3.70% in GJB6,15.56% in SLC26A4 and 8.14% in mitochondrial 12SrRNA,respectively.The results indicate the necessity of genetic screening for mutations of these causative genes in Chinese population with nonsyndromic hearing loss.  相似文献   

17.
Wang QJ  Zhao YL  Rao SQ  Guo YF  Yuan H  Zong L  Guan J  Xu BC  Wang DY  Han MK  Lan L  Zhai SQ  Shen Y 《Clinical genetics》2007,72(3):245-254
There is a worldwide interest in studying SLC26A4 mutations that are responsible for enlarged vestibular aqueduct (EVA) in different ethnic background and populations. The spectrum of SLC26A4 mutations in Chinese population is yet to be fully characterized. In this study, all the 21 exons of SLC26A4 were screened in 107 Chinese patients with hearing loss associated with EVA or both EVA and Mondini dysplasia (MD), taken from six multiplex and 95 simplex families. The two types of control populations consisted of 84 normal-hearing subjects and 46 sensorineural hearing loss subjects without inner ear malformations. Biallelic mutations were found in 12 patients from multiplex families and 84 patients (88.4%) from the simplex families. In addition, monoallelic variant was detected in nine patients in the remaining 11 simplex families. Overall, up to 97.9% patients were found having at least one possible pathogenic variant in SLC26A4 , with most having biallelic variants consistent with recessive inheritance of this disorder. A total of 40 mutations including 25 novel mutations were identified in the Chinese patients but were not detected in all the controls except for one normal subject. For the Chinese mutation spectrum of SLC26A4 gene, IVS7-2A>G mutation was the most common form accounting for 57.63% (102/177) of all the mutant alleles.  相似文献   

18.
We describe the genotypes of the complete cohort, from 1967 to 2014, of phenylketonuria (PKU) patients in Denmark, in total 376 patients. A total of 752 independent alleles were investigated. Mutations were identified on 744 PKU alleles (98.9%). In total, 82 different mutations were present in the cohort. The most frequent mutation c.1315+1G>A (IVS12+1G>A) was found on 25.80% of the 744 alleles. Other very frequent mutations were c.1222C>T (p.R408W) (16.93%) and c.1241A>G (p.Y414C) (11.15%). Among the identified mutations, five mutations; c.532G>A (p.E178K), c.730C>T (p.P244S), c.925G>A (p.A309T), c.1228T>A (p.F410I), and c.1199+4A>G (IVS11+4A>G) have not been reported previously. The metabolic phenotypes of PKU are classified into four categories; ‘classical PKU’, ‘moderate PKU’, ‘mild PKU’ and ‘mild hyperphenylalaninemia’. In this study, we assigned the phenotypic outcome of three of the five novel mutations and furthermore six not previously classified mutations to one of the four PKU categories.  相似文献   

19.
Pendred syndrome is an autosomal recessive disorder characterized by hearing loss and goiter and is caused by bi-allelic mutations (homozygous or compound heterozygous) of the PDS (SLC26A4) gene. The incidence of Pendred syndrome is 7.5–10/100,000 in the general population, and it carries a 1 % risk of developing thyroid carcinoma. Herein, we report a case of a patient with Pendred syndrome who developed a follicular variant of papillary thyroid carcinoma (FVPTC)—that is approximately at an odd of 1/1,000,000. Targeted next-generation sequencing with ThyroSeq v2 was performed on the tumor, and only a TP53 mutation (TP53 p.R175H) was identified. The mutation was limited to the tumor nodule of FVPTC as shown by immunohistochemistry. This report represents the first extensive molecular study of a Pendred syndrome-associated thyroid carcinoma. The evidences support that thyroid carcinomas arising from dyshormonogenetic goiter require additional genetic alteration in addition to the purported thyroid-stimulating hormone (TSH) overstimulation. It is intrigue to note that the mutant p53 is involved in the development of a low-grade malignant thyroid tumor as FVPTC in this patient.  相似文献   

20.
Prestin,a cochlear motor protein,is defective in non-syndromic hearing loss   总被引:10,自引:0,他引:10  
Prestin, a membrane protein that is highly and almost exclusively expressed in the outer hair cells (OHCs) of the cochlea, is a motor protein which senses membrane potential and drives rapid length changes in OHCs. Surprisingly, prestin is a member of a gene family, solute carrier (SLC) family 26, that encodes anion transporters and related proteins. Of nine known human genes in this family, three (SLC26A2, SLC26A3 and SLC26A4) are associated with different human hereditary diseases. The restricted expression of prestin in OHCs, and its proposed function as a mechanical amplifier, make it a strong candidate gene for human deafness. Here we report the cloning and characterization of four splicing isoforms for the human prestin gene (SLC26A5a, b, c and d). SLC26A5a is the predominant form of prestin whereas the others showed limited distribution associated with certain developmental stages. Based on the functional importance of prestin we screened for possible mutations involving the prestin gene in a group of deaf probands. We have identified a 5'-UTR splice acceptor mutation (IVS2-2A>G) in exon 3 of the prestin gene, which is responsible for recessive non-syndromic deafness in two unrelated families. In addition, a high frequency of heterozygosity for the same mutation was observed in these subjects, suggesting the possibility of semi-dominant influence of the mutation in causing hearing loss. Finally, the observation of this mutation only in the Caucasian probands indicated an association with a specific ethnic background. This study thereby reveals an essential function of prestin in human auditory processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号