首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to describe the anatomical, histological and mucinous histochemical characteristics of the tongue in the Persian squirrel. This species is a rodent distributed all over the Middle East and recently has been considered a companion animal. Anatomical observations showed the median sulcus on the apex and absence of a lingual prominence in the body. Light and scanning electron microscopy showed that the filiform papillae cover the entire dorsal surface of the tongue, and their sizes increased approaching the root. The fungiform papillae, which contained 1–4 taste buds, were scattered on the apex, margin, body and root of the tongue. Three vallate papillae were observed on the root, each one surrounded by a groove and crescent pad with taste buds on its lateral walls. The foliate papillae on both margins of the tongue contained several laminae with taste buds. The core of the tongue was composed of lingual glands, skeletal muscles and connective tissues. These glands were confined to the body and root, which were composed of serous cells located anteriorly and mucosal and seromucosal cells placed posteriorly. The mucin histochemistry using the periodic acid-Schiff (PAS), alcian blue (AB) (pH 1.0 and 2.5), PAS–AB (pH 2.5) and aldehyde fuchsin-AB (pH 2.5) techniques showed that the mucosal content included both carboxylated and sulfated acidic mucins with neutral mucins. The results of this study could contribute to the knowledge of the morphological characteristics of the wild animal tongue and provide data for comparison with other rodents.  相似文献   

2.
The large bamboo rat (Rhizomys sumatrensis) is a fossorial rodent found throughout Indochina that has a distinct habitat dominated by bamboo thickets. In the study reported here, the lingual biology of this rodent is described in detail, based on characteristic features of the tongue and lingual papillae as determined by light and scanning electron microscopy studies. The tongue was found to be elongated with a rounded apex and possessed a median groove and a well-developed intermolar prominence. Three types of the papillae were found on the dorsal lingual surface: filiform, fungiform and vallate papillae. The most abundant papillae were the filiform papillae, the majority of which had a wide base and fork-like processes. Rounded fungiform papillae with one to four taste buds were randomly distributed among the filiform papillae, with a high density found at the anterior tongue, particularly the apex. Two oval vallate papillae were observed on the posterior part of the tongue, surrounded by a circumferential groove into which their numerous gustatory pores opened. The lingual radix had no papillae but contained mucus-secreting Weber’s salivary glands. Structural adaptations of the tongue to meet the functional demands of food ingestion and food manipulation in the oral cavity are also discussed.  相似文献   

3.
The dorsal lingual surfaces of a newborn panther (Panthera pardus) and two newborn asian black bears (Selenarctos thibetanus) were examined by scanning electron microscopy (SEM). The tongues of the panther and asian black bear were about 40 mm in length and about 20 mm in width. Filiform, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue. In the panther, the filiform papillae on margin of the lingual apex were divided into two shapes which were horny or club-shaped papillae. The filiform papillae on the midportion were larger than those on the lateral region in size. The fungiform papillae also were divided into two shapes which were hemispherical or club-shaped papillae. In the asian black bear, the filiform papillae on the margin of the lingual apex were larger than those on margin of the panther tongue. The vallate papillae in the animals of two species were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by a groove and crescent pad.  相似文献   

4.
This research aimed to reveal the general morphology and topographic distribution of lingual papillae, epithelial characteristics, mucosal structure, and glands with their mucin content in the sheep tongue, with consideration of species‐specific characteristics. The tongues of ten sheep were analyzed for this purpose. Filiform and fungiform papillae existed within the borders of the ventral surface of the lingual apex. The majority of the filiform papillae had multiple secondary projections. Fungiform papillae were also seen on the lingual torus among lenticular papillae, as well as 6 to 10 circumvallate papillae arranged on its caudal border. The species‐specific details of the general anatomical structure of the tongue were determined and, in general, the papillary organization in the sheep was similar to goats, while the papillary organization also was similar to features with deer species, specifically the filiform papilla from the mechanical papillae and fungiform papilla from the gustatory papillae. Neutral and weak sulfated mucins and N‐acetyl sialomucins were located in seromucous glands, salivary duct epithelium and von Ebner's glands. Carboxylated acid mucins and N‐acetyl sialomucins were not present in seromucous and von Ebner's glands. In seromucous glands, MUC1, MUC5AC, and MUC6 localized only in epithelial cells of ducts, whereas MUC2 localized in both glandular and ductal epithelial cells. All MUCs were present in both von Ebner's glands and salivary ducts. We showed that this mucin composition, may serve as a physical barrier in the initial section of the digestive system. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.  相似文献   

5.
Light and scanning electron microscopical demonstrations were carried out on the tongues of adult Japanese weasels (Mustela itatsi). Four types of papillae are present on the mucous membrane of the tongue; filiform, fungiform, vallate and foliate papillae. The vallate and foliate papillae are furnished with taste buds. Three types of lingual glands are present in the tongue; mucous (Weber's), serous (Ebner's) and mixed glands. Weber's glands are compound tubular glands which are well developed near the radix. Ebner's glands are compound tubular glands connected with the vallate papillae. Mixed glands are compound tubulo-alveolar glands and present in the lower half of the tongue, near the apex.  相似文献   

6.
Neural control of ectopic filiform spines in adult tongue   总被引:4,自引:0,他引:4  
The tongue surface directly above a fungiform taste bud is flat, thinly keratinized, and free of filiform spines. We examined fungiform papillae in serial sections of rat and gerbil tongues after unilateral transection of the chorda-lingual nerve had caused many fungiform taste buds to degenerate. Such empty fungiform papillae often formed a solitary keratinized outgrowth that closely resembled the spine of an ordinary filiform papilla. By six months an ectopic spine was found on 61% of empty fungiform papillae, but never on fungiform papillae that contained a taste bud. Experimental innervation of the tongue reduced the incidence of ectopic filiform spines in proportion to the cross-sectional area of the trigeminal nerve branches tested (the mylohyoid nerve, the lingual nerve, lingual + mylohyoid or lingual + auriculotemporal nerves). The chorda tympani nerve was 60 times more effective than trigeminal nerves in preventing ectopic filiform spines. We suggest that positive and negative trophic actions are normal characteristics of taste axons, for they promote the formation of taste buds and prevent the expression of ectopic filiform spines. By preventing the outgrowth of ectopic spines on fungiform papillae, taste axons maintain a thinly keratinized apical surface that can be breached by the taste receptor cells.  相似文献   

7.
The lingual papillae and the connective tissue cores (CTC) of the American beaver were examined by light and scanning electron microscopy. The tongue of American beaver was about 9 cm in length, 3.5 cm in width, and has a lingual prominence. Four types of papillae (filiform, fungiform, vallate and foliate papillae) were observed. The filiform papillae can be classified into three types (filiform, large filiform and dorm-like papillae). Filiform papillae distributed on the anterior tongue and posterior of the lingual prominence consisted of a posterior thick main process and several small accessory processes. After removal of the epithelium, the CTCs of the filiform papillae had U-shaped, horseshoe-like primary cores with 10-15 rod-shaped small accessory cores. Large filiform papillae were distributed at the anterior margin of the lingual prominence. Dome-like papillae were distributed at the top of lingual prominence. Fungiform papillae were observed two types. Fungiform papillae, which were distributed at the anterior tongue, were round shaped. Fungiform papillae of the posterior of the lingual prominence were large and surrounded with a papillary groove. At the posterior of the tongue, three vallate papillae were arranged in a triangular pattern. Foliate papillae were on 22 to 25 parallel ridges and grooves.  相似文献   

8.
The lingual papillae and their connective tissue cores (CTCs) of the northern goshawk were examined by scanning electron microscopy (SEM). The length of the tongue was approximately 2.5 cm. The median groove divided the body of the tongue into symmetrical parts. At a point approximately 2/3 of the length, there were large conical papillae between the body and the root of the tongue, the apices of which were pointed towards the posterior part of the tongue. Under the light microscopy, the filiform papillae of the dorsal surface in the lingual body showed the desquamate cells of non-keratinized epithelium. There were openings of the lingual glands on the anterior part and root of the tongue. The lingual papillae and their CTCs of the northern goshawk had a structure similar to those of the white tailed eagle and black kite.  相似文献   

9.
Morphology of the lingual papillae in the raccoon dog and fox   总被引:1,自引:0,他引:1  
The dorsal lingual surfaces of the raccoon dogs (Nyctereutes procyonoides) and fox (Vulpes vulpes japonica) were examined by scanning electron microscopical (SEM) observations. The distribution and type of the lingual papillae found in the raccoon dog were similar to those in the fox. Filiform, fungiform, foliate and vallate papillae were observed. The filiform papillae were distributed over the entire dosal surface of the tongue. Each filiform papilla on the apical surface of the tongue had several pointed processes. The filiform papillae of the lingual body consisted of a main papilla and some secondary papillae. The fungiform papillae were present rounded bodies, and more densely distributed on the lingual apex. The foliate papillae were seen on the dorsolateral aspect of the tongue. The vallate papillae were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by groove and crescent pad. On the periphery of the papillae, large conical papillae were observed.  相似文献   

10.
The dorsal lingual surface of a bush dog (Speothos venaticus) was examined by scanning electron microscopy (SEM). The tongue was about 7 cm in length. Filiform, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue. Each filiform papillae on the apical surface of the tongue had several conical processes, in the midportion were larger than those on the apex in size. In the region of the vallate papillae, the filiform papillae had not the conical processes and more larger than those on the midportion of the tongue. The fungiform papillae were present rounded bodies and more densely distributed on the tip of the lingual apex. There were 5 vallate papillae on both sides. The vallate papillae were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by a groove and a crescent pad. In the dorsal surfaces of the papillae, small conical papillae were observed.  相似文献   

11.
The tongues of adult silver foxes were studied using scanning electron microscopy. Five types of lingual papillae were found on the dorsal surface of the tongue. The most numerous papillae were filiform papillae covering the apex and body of the tongue. The filiform papillae on the anterior part of the tongue are divided into 1 main and 10-12 accessory processes. In the posterior part of the body of the tongue the number of accessory processes is reduced. Fungiform papillae are located between the filiform papillae. A cluster of 12 large fungiform papillae was found on the apex of the tongue. Conical papillae are located in the area of the vallate papillae and cover the posterior part of the root of the tongue. Their size increases towards the pharynx, where they are distributed more sparsely. In the silver foxes there were two pairs of vallate papillae. The wall surrounding each papilla and its gustatory trench forms partly connected 6-8 conical papillae. The foliate papillae on both margins of the tongue body are small and consist of 4-5 laminae. The distribution and type of lingual papillae found in the silver fox are similar to those in the other species belonging to the family Canidae.  相似文献   

12.
We examined the epithelial surface and connective tissue cores (CTCs) of each lingual papilla on the Paenungulata, Cape hyrax (Procavia capensis), by scanning electron microscopy and light microscopy. The tongue consisted of a lingual apex, lingual body and lingual root. Filiform, fungiform and foliate papillae were observed on the dorsal surface of the tongue; however, fungiform papillae were quite diminished on the lingual prominence. Moreover, no clearly distinguishable vallate papillae were found on the tongue. Instead of vallate papillae, numerous dome-like large fungiform papillae were arranged in a row just in front of the rather large foliate papillae. Foliate papillae were situated in the one-third postero-lateral margin of the lingual body. The epithelium of filiform papillae was covered by a keratinized layer with kerato-hyaline granules, whereas weak keratinization was observed on the interpapillary epithelium. The external surface of the filiform papillae was conical in shape. CTCs of the filiform papillae were seen as a hood-like core with a semicircular concavity in the anterior portion of each core. Large filiform papillae were distributed on the lingual prominence. The CTCs of large filiform papillae after exfoliation of their epithelium consisted of a concave primary core and were associated with several small protrusions. The surface of fungiform papillae was smooth and dome-like. After removal of the epithelium, CTCs appeared as a flower bud-like primary core and were associated with several protrusions that were arranged on the rim of the primary core. Several taste buds were found on the top of the dorsal part of the epithelium of both fungiform and large fungiform papillae. Well-developed foliate papillae were seen and numerous taste buds could be observed in the lateral wall of the epithelium in a slit-like groove. The morphological characteristics of the tongue of the Cape hyrax had similarities with other Paenungulata such as Sirenia. However, three-dimensional characteristics, especially CTCs of lingual papillae, exhibited multiple similarities with rodents, insectivores and artiodactyls.  相似文献   

13.
14.
Tongues were removed from rat fetuses on d 16 of gestation (E16) and from newborn (P0) and juvenile rats on d 7 (P7) and d 21 (P21) postnatally for examination by light and transmission electron microscopy. In the fetuses at E16, no rudiments of filiform papillae were visible on the dorsal surface of the tongue. No evidence of keratinisation could be recognised over the entire dorsal lingual epithelium. At P0, rudiments of filiform papillae showed a similar distribution to that seen in the adult, but had a more rounded appearance. The columnar structure of cells in the epithelium, with the different degrees of keratinisation as observed in the mature adult, was indistinct, but a keratinised layer was clearly located at the tip of each filiform papilla. In juveniles at P7, the filiform papillae on the anterior part of the tongue were long and slender, and the anterior and posterior cell columns of the filiform papillae and the interpapillary cell columns were clearly distinguishable. In juveniles at P21, the structure of filiform papillae was identical to that in the adult. These results indicate that, in rats, the morphogenesis of filiform papillae advances in parallel with keratinisation of the lingual epithelium from just before birth to a few weeks after birth.  相似文献   

15.
The dorsal lingual surfaces of two adult Japanese marten (Martes melampus) were examined by scanning electron microscopy (SEM). Filiform, fungiform, vallate and foliate papillae were observed. A small filiform papilla on the apical surface of the tongue had several pointed processes. A small filiform papilla contained the connective tissue core consisting of several small processes. A large filiform papilla of the lingual body consisted of a main papilla and some secondary papillae. A large filiform papilla contained the connective tissue core consisting of processes of various size. The fungiform papillae are round in shape. The connective tissue core of the fungiform papilla had a top with several round depressions. The four vallate papillae were located on both sides of the posterior end of the lingual body and each papilla was surrounded by groove and crescent pad. A zigzag surface structure appeared on the connective tissue core of the vallate papilla. The foliate papillae were seen on the dorsolateral aspect of the tongue and some ridges and grooves were exposed reciprocally. A zigzag surface structures appeared on the connective tissue cores of the ridges of the foliate papillae.  相似文献   

16.
The dorsal lingual surface of a barbary sheep (Ammotragus lervia) was examined by scanning electron microscopy (SEM). The tongue was about 20 cm in length. There were about 30 vallate papillae on both sides. Filiform, conical, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue, excepted for the lingual torus where conical papillae were present. The fungiform papillae were present rounded bodies, and more densely distributed as compared to that of the lingual body on the tip and ventral surface of lingual apex. No foliate papillae were seen on the dorsal surface. The vallate papillae were located on both sides of the midline in the caudal part. Each papilla was surrounded by a groove. These findings indicate that the tongue of the barbary sheep is similar to that of the formosan serow, japanese serow and blackbuck.  相似文献   

17.
To our knowledge there are no histomorphological studies examining the lingual papillae in pregnancy. Therefore, this present study was planned. The purpose of this study was to clarify different physiological results and to investigate whether there are any changes on the dorsal surface of the rat tongue during pregnancy. On days 7 and 14 of pregnancy, superficial epithelial configurations of the lingual papillae (circumvallate, fungiform, filiform) in pregnant rats were examined by scanning electron microscopy (SEM). It was found that there were some differences in topographic configurations of these papillae in pregnant rats compared with controls. The obtained changes by SEM may reflect something which occurs in the lingual papillae during pregnancy in rat. There may be a correlation between the alterations of some hormone levels in pregnancy and some morphological changes of the lingual papillae.  相似文献   

18.
The dorsal lingual surfaces of an adult tiger (Panthera tigris altaica) was examined by macroscopical and scanning electron microscopical observations. Filiform, fungiform and vallate papillae were observed. The filiform papillae were distributed over the entire dosal surface of the tongue. The fungiform papillae were present rounded bodies, and more densely distributed on the lingual apex. There were 4 vallate papillae in total on borderline between the lingual body and lingual radix. Each papilla was surrounded by a groove. No foliate papillae were seen on the dorsal surface. Openings of the glandular ducts on the regions of the vallate papillae were found.  相似文献   

19.
The stereo structure of each lingual papilla of the koala has a similar structure to that of various other animal species: the koala has a lingual prominence (intermolar prominence) with larger filiform papillae. (A lingual prominence is a characteristic in herbivorous animals.) The external form and connective tissue core (CTC) of the filiform papillae of koalas consist of one large main process and several smaller accessory processes. (These are similar to carnivorous animals.) Fungiform CTC have a thick dome-like structure, with several taste buds on the top. There are three vallate papillae: one central midline and two laterally located vallate papillae. The central vallate papilla has a posterior pouch lined with ciliated and non-ciliated epithelial cells. Long conical papillae are distributed in the posterior lateral area where foliate papillae are distributed in many other animal species. (Finger-like papillae are seen in dog and cat instead of foliate papillae.) It may be suggested that the tongue of the koala evolved in a special environment in Australia. Even though it has still retained special features similar to those of carnivorous cats and dogs it has evolved to resemble the tongues of herbivorous animals.  相似文献   

20.
The dorsal lingual surface of a blackbuck (Antilope cervicapra) was examined by scanning electron microscopy (SEM). The tongue was about 125 mm in length. There were about 30 vallate papillae on both sides. Filiform, conical, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue, excepted for the lingual torus where conical papillae were present. The fugiform papillae were present rounded bodies, and more densely distributed on the tip and ventral surface of ligual apex. No foliate papillae were seen on the dorsal surface. The vallate papillae were located on both sides of the midline in the caudal part. Each papilla was surrounded by a groove. These findings indicate that the tongue of the blackbuck is similar to that of the formosan and japanese serow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号