首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The connections between the subiculum (SUB) and the entorhinal cortex (EC) were studied in the cat with retrograde and anterograde tracing techniques. Injections of the retrogradely transported tracer WGA-HRP at different levels along the septotemporal axis of the subiculum result in labeled neurons predominantly in the medial entorhinal cortex (MEA) in the superficial layers II and III. In the deep layers labeled cells are found more widespread over the EC. The superficially located labeled EC neurons are topographically distributed in a lateromedial gradient, which corresponds to a septotemporal gradient along the longitudinal axis of the subiculum. This organization of the EC-SUB projection system could be substantiated by the use of injections anterogradely transported radioactively labeled amino acids in EC. The SUB to EC projections were investigated with the anterograde transport of WGA-HRP and with radioactively labeled amino acids that were injected at different levels along the septotemporal axis of the subiculum. This results in a patch of anterogradely labeled fibers and terminals in MEA, predominantly in layers II and III, with a wider band of label in the deep layers. Again, a topographical distribution along the lateromedial axis of the EC corresponding to the septotemporal axis of the SUB was observed. Contralateral reciprocal connections between EC and SUB are also present, and exhibit a similar topographical organization.  相似文献   

2.
Hippocampal area CA1 provides the major cortical output of the hippocampus, but only its projections to the subiculum and lateral septal nucleus are well characterized. The present study reexamines these extrinsic projections by using anterograde and retrograde tracing techniques. Injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in the septal one-third of CA1 label axons and terminals in subicular, postsubicular, retrosplenial, perirhinal, and entorhinal cortices, lateral septal nucleus, and diagonal band of Broca. The septal CA1 injections also label terminal fields in contralateral CA1, and in contralateral subicular, postsubicular, perirhinal, and entorhinal cortices. Injections into the splenial one-third of CA1 label axons and terminals in subiculum, postsubiculum, ventral area infraradiata, and lateral septal nucleus, but they do not label axons and terminals on the contralateral side of the brain. Injections in the temporal one-third of CA1 label axons and terminals in subicular, parasubicular, entorhinal, and infraradiata cortices, anterior olfactory nucleus, olfactory bulb, lateral septal nucleus, nucleus accumbens, amygdala, and hypothalamus. The temporal CA1 injections label no axons on the contralateral side of the brain. These data demonstrate that CA1 has more widespread projections than previously appreciated, and they provide the first clear evidence that CA1 projects to the contralateral cortex and to the ipsilateral olfactory bulb, amygdala, and hypothalamus. The results also demonstrate a heterogeneity in the efferent projections originating in different septotemporal levels of CA1.  相似文献   

3.
Two sets of experiments were carried out to examine the organization of associational connections within the rat entorhinal cortex. First, a comprehensive analysis of the areal and laminar distribution of intrinsic projections was performed by using the anterograde tracers Phaseolus vulgaris–leuocoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Second, retrograde tracers were injected into the dentate gyrus and PHA-L and BDA were injected into the entorhinal cortex to determine the extent to which entorhinal neurons that project to different septotemporal levels of the dentate gyrus are linked by intrinsic connections. The regional distribution of intrinsic projections within the entorhinal cortex was related to the location of the cells of origin along the mediolateral axis of the entorhinal cortex. Cells located in the lateral regions of the entorhinal cortex gave rise to intrinsic connections that largely remained within the lateral reaches of the entorhinal cortex, i.e., within the rostrocaudally situated entorhinal band of cells that projected to septal levels of the dentate gyrus. Cells located in the medial regions of the entorhinal cortex gave rise to intrinsic projections confined to the medial portion of the entorhinal cortex. Injections made into mid-mediolateral regions of the entorhinal cortex mainly gave rise to projections to mid-mediolateral levels, although some fibers did enter either lateral or medial portions of the entorhinal cortex. These patterns were the same regardless of whether the projections originated from the superficial (II–III) or deep (V–VI) layers of the entorhinal cortex. This organizational scheme indicates, and our combined retrograde/anterograde labeling studies confirmed, that laterally situated entorhinal neurons that project to septal levels of the dentate gyrus are not in direct communication with neurons projecting to the temporal portions of the dentate gyrus. These results suggest that entorhinal intrinsic connections allow for both integration (within a band) and segregation (across bands) of entorhinal cortical information processing. J. Comp. Neurol. 398:49–82, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
In order to study the morphological substrate of possible thalamic influence on the cells of origin and area of termination of the projection from the entorhinal cortex to the hippocampal formation, we examined the pathways, terminal distribution, and ultrastructure of the innervation of the hippocampal formation and parahippocampal region by the nucleus reuniens of the thalamus (NRT). We employed anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L). Injections of PHA-L in the NRT produce fiber and terminal labeling in the stratum lacunosum-moleculare of field CA1 of the hippocampus, the molecular layer of the subiculum, layers I and III/IV of the dorsal subdivision of the lateral entorhinal area (DLEA), and layers I and III-VI of the ventral lateral (VLEA) and medial (MEA) divisions of the entorhinal cortex. Terminal labeling is most dense in the stratum lacunosum-moleculare of field CA1, the molecular layer of the ventral part of the subiculum, MEA, and layer I of the perirhinal cortex. In layer I of the caudal part of DLEA and in MEA, terminal labeling is present in clusters. Injections in the rostral half of the NRT produce the same distribution in the hippocampal region as those in the caudal half of the NRT, although the projections from the rostral half of the NRT are much stronger. A topographical organization is present in the projections from the head of the NRT, so that the dorsal part projects predominantly to dorsal parts of field CA1 and the subiculum and to lateral parts of the entorhinal cortex, whereas the ventral part projects in greatest volume to ventral parts of field CA1 and the subiculum and to medial parts of the entorhinal cortex. The distribution of the reuniens fibers coursing in the cingulate bundle was determined by comparing cases with and without transections of this bundle. The fibers carried by the cingulate bundle exclusively innervate field CA1 of the hippocampus, the dorsal part of the subiculum, and the presubiculum and parasubiculum. They participate in the innervation of the ventral part of the subiculum and MEA. Electron microscopy was used to visualize the axon terminals of PHA-L-labeled reuniens fibers. These terminals possess spherical synaptic vesicles and form asymmetric synaptic contacts with dendritic spines or with thin shafts of spinous dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The connections of the amygdala with the insular and temporal cortices were examined by injecting wheat germ agglutinin conjugated to HRP (WGA-HRP) into the rat cortex. Following injections into the posterior agranular insular area (AIp) or perirhinal cortex (PR), bands of labeled neurons extending across nuclear boundaries were observed in the amygdala. These neuronal bands involved cells in the lateral, basolateral, and basomedial nuclei as well as the periamygdaloid cortex. Other nuclei of the corticomedial amygdala and the ventral endopiriform nucleus also exhibited retrogradely labeled cells. Anterograde label was observed in nuclei containing labeled neurons and in the central nucleus. Injections into gustatory, somatosensory, and auditory neocortical areas located dorsal to AIp and PR labeled small numbers of cells in the lateral and basolateral nuclei. Injections into AIp, PR, and, to a lesser extent, dorsally adjacent neocortical areas produced both retrograde and anterograde labeling in the contralateral amygdala. The main nuclei with contralateral insular and temporal projections are the basomedial nucleus, ventral endopiriform nucleus, and nucleus of the lateral olfactory tract. The contralateral central nucleus and to a lesser extent the lateral nucleus exhibited anterograde labeling. The pattern of retrograde labeling seen with injections at different rostrocaudal levels of the AIp-PR continuum indicates that amygdalocortical projections to these areas exhibit an overlapping topographical organization. Comparison of the results of this study with findings on amygdaloprefrontal cortical efferents suggests that amygdaloid projections to the entire fronto-insulo-temporal mesocortical field are topographically organized.  相似文献   

6.
The nucleus incertus is located caudal to the dorsal raphe and medial to the dorsal tegmentum. It is composed of a pars compacta and a pars dissipata and contains acetylcholinesterase, glutamic acid decarboxylase, and cholecystokinin-positive somata. In the present study, anterograde tracer injections in the nucleus incertus resulted in terminal-like labeling in the perirhinal cortex and the dorsal endopyriform nucleus, the hippocampus, the medial septum diagonal band complex, lateral and triangular septum medial amygdala, the intralaminar thalamic nuclei, and the lateral habenula. The hypothalamus contained dense plexuses of fibers in the medial forebrain bundle that spread in nearly all nuclei. Labeling in the suprachiasmatic nucleus filled specifically the ventral half. In the midbrain, labeled fibers were observed in the interpeduncular nuclei, ventral tegmental area, periaqueductal gray, superior colliculus, pericentral inferior colliculus, pretectal area, the raphe nuclei, and the nucleus reticularis pontis oralis. Retrograde tracer injections were made in areas reached by anterogradely labeled fibers including the medial prefrontal cortex, hippocampus, amygdala, habenula, nucleus reuniens, superior colliculus, periaqueductal gray, and interpeduncular nuclei. All these injections gave rise to retrograde labeling in the nucleus incertus but not in the dorsal tegmental nucleus. These data led us to conclude that there is a system of ascending projections arising from the nucleus incertus to the median raphe, mammillary complex, hypothalamus, lateral habenula, nucleus reuniens, amygdala, entorhinal cortex, medial septum, and hippocampus. Many of the targets of the nucleus incertus were involved in arousal mechanisms including the synchronization and desynchronization of the theta rhythm.  相似文献   

7.
The afferents to the parahippocampal area of the rat were studied with retrograde transport of horseradish peroxidase injected into the medial entorhinal cortex, lateral entorhinal cortex, parasubiculum, presubiculum, or a large injection which stained all these structures as well as the ventral hippocampus. Control rats were injected with horseradish peroxidase into the overlying visual cortex. Labeled neurons in brains with injections into the medial entorhinal cortex and the adjacent parasubicular region were found in the ipsilateral and contralateral presubicular region, the medial septal nucleus, the thalamic nucleus reuniens, the dorsal part of the lateral nucleus of thalamus, the anterior periventricular nucleus of the thalamus, and the dorsal raphe nucleus. Brains with injections into the lateral entorhinal cortex yielded labeled neurons in the medial septal nucleus, nucleus reuniens, dorsal raphe nucleus, and nucleus locus ceruleus. Injections into the presubiculum resulted, in addition, in labeling of neurons in the lateral nucleus of the thalamus. Control injections aimed at the sensory cortex overlying the parahippocampal area yielded labeled neurons in the medial septal nucleus, the dorsal lateral geniculate nucleus, and the nucleus locus ceruleus.  相似文献   

8.
Connections of the parahippocampal cortex. I. Cortical afferents   总被引:5,自引:0,他引:5  
In the present study in the cat the parahippocampal cortex denotes the caudoventral part of the limbic lobe and is composed of the entorhinal and perirhinal cortices. The cytoarchitecture of these areas and their borders with adjacent cortical areas are briefly discussed. The organization of the cortical afferents of the parahippocampal cortex was studied with the aid of retrograde and anterograde tracing techniques. In order to identify the source of cortical afferents, injections of retrograde tracers such as wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP), or the fluorescent substances fast blue or nuclear yellow, were placed in different parts of the parahippocampal cortex. In an attempt to further disclose the topographical and laminar organization of the afferent pathways, injections of tritiated amino acids were placed in cortical areas that were found to project to the parahippocampal cortex. The results of these experiments indicate that fibers from olfactory-related areas, the hippocampus, and other parts of the limbic cortex project only to the entorhinal cortex. The afferents from olfactory structures terminate predominantly superficially, whereas hippocampal and limbic cortical afferents are directed mainly to layers deep to the lamina dissecans. Paralimbic areas, including the anterior cingulate and the prelimbic cortices on the medial aspect, and the orbitofrontal and granular and agranular insular cortices on the lateral aspect of the hemisphere, project to the entorhinal cortex and medial parts of area 35 of the perirhinal cortex. These mostly mesocortical afferents terminate in both the superficial and deep layers of the entorhinal and perirhinal cortices. Parasensory association areas, which form part of the neocortex, do not project farther medially in the parahippocampal cortex than the perirhinal areas 35 and 36. These afferents mainly stem from a rather wide rim of neocortex that lies directly adjacent to area 36 and extends from the posterior sylvian gyrus via the posterior ectosylvian gyrus into the posterior suprasylvian gyrus. There is a rostrocaudal topographical arrangement in these projections such that rostral cortical areas distribute more rostrally and caudal parts project to more caudal parts of the perirhinal cortex. The cortex of the posterior suprasylvian gyrus contains the paravisual areas 20 and 21. The posterior sylvian gyrus most probably represents a para-auditory association area, whereas the most ventral part of the posterior ectosylvian gyrus may constitute a convergence area for visual and auditory inputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
In order to examine whether the entorhinal-hippocampal-entorhinal circuit is reciprocal and topographic, the connections between the subiculum, the CA1 field, and the entorhinal cortex were studied with the carbocyanine dye (Dil), which moves in both retrograde and anterograde directions. We investigated the organization of reciprocal connections revealed by injections of Dil in the entorhinal cortex along the rhinal sulcus. Anterograde fluorescent labeling showed the same pattern reported in previous studies of the dorsal hippocampus. When the injection site of DiI extended into the deep layers (IV–VI) of the same cortical column, the anterograde labeling of the perforant path was accompanied by retrograde labeling of the subicular neurons and the CA1 neurons. The distribution of labeled cells overlapped the distribution of labeled fibers, and the distribution of labeled cells paralleled that of the labeled fibers in the CA1 field. DiI injection into the medial entorhinal cortex revealed fewer retrogradely labeled subicular neurons than injection into the lateral entorhinal cortex, whereas the number of labeled CA1 neurons was not dependent on the injection site. The number of labeled CA1 neurons was always several times greater than the number of subicular neurons. Thus, the amount of information conveyed by the CA1 projection might be higher than that conveyed by the subicular projection. These results indicate that the entorhinal cortex, CA1, and the subiculum are connected reciprocally and topographically. We believe that the framework of the major hippocampal circuit proposed in previous studies should be reconsidered. We propose that the CA1 projection, rather than the subicular projection, is the main projection that feeds back information from the hippocampus to the entorhinal cortex. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The organization of subcortical inputs to the parahippocampal cortex, which in the present study in the cat is considered to comprise the entorhinal and perirhinal cortices, was studied by using retrograde and anterograde tracing techniques. The results of the retrograde tracer horseradish peroxidase (HRP), HRP conjugated with wheat germ agglutinine (WGA-HRP), Fast Blue (FB) or Nuclear Yellow (NY] injections indicate that the entorhinal and perirhinal cortices receive inputs from the magnocellular basal forebrain and from distinct portions of the amygdaloid complex, the claustrum, and the thalamus. The two cortices are further projected upon by fibers from the supramamillary region of the hypothalamus, the ventral tegmental area of the mesencephalon, the dorsal raphe nucleus, the nucleus centralis superior, and the locus coeruleus. The entorhinal cortex, in addition, receives projections from the medial septum. As regards the projections from the amygdaloid complex, it was observed that the entorhinal cortex receives its heaviest input from the basolateral amygdaloid nucleus, whereas the perirhinal cortex receives a strong projection from the lateral nucleus and a weaker projection from the basomedial nucleus of the amygdala. Of the thalamic nuclei that project to the parahippocampal cortex, the nucleus reuniens is only connected with the entorhinal cortex, while fibers from the medial geniculate nucleus and the lateral posterior nucleus terminate in the perirhinal cortex. Injections of tritiated amino acid (3H-leucine) were placed in the medial septum, the dorsal and ventral claustrum, the basolateral and basomedial amygdaloid nuclei, and the nucleus reuniens of the thalamus. The results of these experiments demonstrate that, with the exception of the claustrum, these subcortical areas project mainly to the superficial layers I-III and the lamina dissecans of the parahippocampal cortex, and to a lesser degree to the deep layers V and VI.  相似文献   

11.
The aim of the present study was to relate the distribution of efferents of the dorsal subiculum to their origin along the proximodistal axis of the subiculum. The distribution of subicular projections was studied in detail by means of the sensitive anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), and the precise origin of these projections analysed with retrogradely transported fluorescent tracers, using double- and triple-labelling protocols. Injections of PHA-L in the proximal part of the dorsal subiculum, i.e. that part which borders field CA1, result in labelling of the infralimbic, entorhinal and perirhinal cortices, the nucleus accumbens and the lateral septal region, the interanteromedial nucleus of the thalamus, the core of the nucleus gelatinosus, and the mammillary nuclei, in particular in the rostral parts of the medial nucleus. In contrast, injections in the distal part of the dorsal subiculum, i.e. that part which borders the presubiculum, give rise to labelling in the retrosplenial and postrhinal cortices, the presubiculum, the anterior thalamic complex, the shell of the nucleus gelatinosus, and the mammillary nuclei, preferentially in the caudal part of the medial nucleus. The results of injections of different retrograde tracers, simultaneously placed in two or three targets of the subicular efferents, confirm the results of the anterograde tracing experiments. Moreover, they clearly demonstrate that the population of subicular neurons which, for example, projects to the nucleus accumbens and the interanteromedial nucleus of the thalamus is almost completely segregated from the population that projects to the retrosplenial cortex and the anterior complex of the thalamus. Thus within the dorsal subiculum, populations of neurons can be differentiated so that each population projects to a unique set of target structures. These cell populations are differentially positioned along the proximo-distal axis. In view of additional evidence indicating that some of the major afferents to the subiculum are organized along the same axis, we suggest that the heterogeneity of the dorsal subiculum along the proximo-distal axis reflects a general organizational characteristic of this hippocampal field.  相似文献   

12.
The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely innervated areas, labeling in layer V was also present. Comparably distributed, but much weaker projections reach the contralateral hemisphere. Our results show that in the rat, hippocampal output can reach widespread portions of the neocortex through a relay in a very restricted part of the entorhinal cortex. However, most of the hippocampal-cortical connections will be mediated by way of entorhinal-perirhinal-cortical connections. We conclude that, in contrast to previous notions, the overall organization of the hippocampal-cortical connectivity in the rat is largely comparable to that in the monkey. Hippocampus 7:146–183, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The present report deals with the projections from the entorhinal and perirhinal cortices to subcortical forebrain structures and the brainstem in the cat. By using anterograde and retrograde tracing techniques, it could be demonstrated that the entire mediolateral extent of the parahippocampal cortex issues prominent projections to the dorsal and ventral striatum, the amygdala, and the claustrum. In addition, the entorhinal cortex sends projections to the septum and the diagonal band of Broca. Only the perirhinal cortex gives rise to a weak projection to the dorsolateral periaquaductal gray and the ventral pontine region. The major proportion of the subcortical projections originates in the perirhinal cortex and the lateral entorhinal cortex, whereas the medial entorhinal cortex has a much sparser output and sends no fibers to the amygdala. The subcortical projections from both the entorhinal cortex and the perirhinal cortex arise mostly from their deep layers. It was further found that these projections are topographically organized along the mediolateral axis of the parahippocampal cortex. This mediolateral axis is related to a ventrolateral to dorsomedial axis in the septum, a mediolateral axis in the amygdala and the ventral striatum, and a ventrodorsal coordinate in the dorsal striatum and the claustrum. A further topography was observed in the projections from the perirhinal cortex to the lateral amygdaloid nucleus. A rostrocaudal axis in the perirhinal cortex corresponds to a mediolateral axis in the lateral amygdaloid nucleus. The present observations are compared with data concerning the connectivity of the parahippocampal cortex with the hippocampal formation and other cortical structures. It is suggested that the parahippocampal cortex in the cat may be conceptualized as an interface between the hippocampal formation and several subcortical structures in the realm of the limbic and motor systems.  相似文献   

14.
The hippocampal commissural projection to the area dentata of the mouse was studied using the retrograde horseradish peroxidase (HRP) technique. Small volumes of HRP injected into the molecular layer of the fascia dentata or various subareas of regio inferior of the hippocampus (fields CA3a-c) resulted inlabeled perikarya in the contralateral hippocampus and area dentata. The commissural projection to the fascia dentata was observed to originate exclusively from cells within the hilus fasciae dentatae (CA4) of the contralateral area dentata. There was evidence of a considerable spread of commissural innervation along the septotemporal axis preferentially in the septal direction, confirming earlier observations. In contrast to the septotemporal spread, a sharp homotopic spatial organization was found in the mediolateral direction. For example, injections into the lateral portion of field CA3 (CA3a) resulted in HRP-positive cell bodies only in the contralateral field CA3a. When injections were made which apparently labeled all of the commissural fibers, the HRP reaction product was found in neurons both in the entire regio inferior and as far as the innermost point of the hilus fasciae dentatae; the majority of labeled cells were located in hippocampal subfield CA3c. No labeled cells were observed beyond the tip of the mossy fibers in regio superior.  相似文献   

15.
The organization of the magnocellular basal nucleus (MBN) projection to cerebral cortex in the rat has been studied by using cytoarchitectonic, immunohistochemical, and retrograde and anterograde transport methods. The distribution of retrogradely labeled basal forebrain neurons after cortical injections of wheat germ agglutinin-horseradish peroxidase conjugate was essentially identical to that of neurons staining immunohistochemically for choline acetyltransferase. These large (20-30 micrometers perikaryon diameter) multipolar neurons were found scattered through a number of basal forebrain cell groups: medial septal nucleus, nucleus of the diagonal band of Broca, magnocellular preoptic nucleus, substantia innominata, and globus pallidus. This peculiar distribution mimics the locations of pathways by which descending cortical fibers enter the diencephalon. Each cortical area was innervated by a characteristic subset of MBN neurons, always located in close association with descending cortical fibers. In many instances anterogradely labeled descending cortical fibers appeared to ramify into diffuse terminal fields among MBN neurons which were retrogradely labeled by the same cortical injection. Double label experiments using retrograde transport of fluorescent dyes confirmed that MBN neurons innervate restricted cortical fields. Anterograde autoradiographic transport studies after injections of 3H-amino acids into MBN revealed that MBN axons reach cerebral cortex primarily via two pathways: (1) The medial pathway, arising from the medial septal nucleus, nucleus of the diagonal band, and medial substantia innominata and globus pallidus MBN neurons, curves dorsally rostral to the diagonal band nucleus, up to the genu of the corpus callosum. Most of the fibers either directly enter medial frontal cortex or turn back over the genu of the corpus callosum into the superficial medial cingulate bundle. Many of these fibers enter anterior cigulate or retrosplenial cortex, but some can be traced back to the splenium of the corpus callosum, where a few enter visual cortex but most turn ventrally and sweep into the hippocampal formation. Here they are joined by other fibers which, at the genu of the corpus callosum, remain ventrally located and run caudally through the dorsal fornix into the hippocampus. (2) The lateral pathway arises in part from medial septal, diagonal band, and magnocellular preoptic neurons whose axons sweep laterally through the substantia innominata to innervate primarily piriform, perirhinal, and endorhinal cortex. Some of these fibers may also enter the hippocampal formation from the entorhinal cortex via the ventral subiculum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The lateral geniculate nucleus of the thalamus sends efferents to the hypothalamic suprachiasmatic nucleus, which is involved in generation and entrainment of several circadian rhythms. It seems reasonable to believe that the lateral geniculate conveys visual information about the length of the photoperiod to the circadian oscillator. In order to study in more detail the topographical relationship between the lateral geniculate and the suprachiasmatic nucleus, anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and retrograde tracing with wheatgerm agglutinin coupled to horseradish peroxidase (WGA-HRP) were performed in the gerbil. After iontophoretic injections of PHA-L in the lateral geniculate, a large number of PHA-L-immunoreactive fibers and nerve terminals were observed in the ventrolateral part of the suprachiasmatic nucleus. Nerve fibers were also present in the ventromedial and dorsolateral portions, particularly in the caudal half of the nucleus. PHA-L-immunoreactive nerve fibers continued outside the borders of the suprachiasmatic nucleus to the adjacent anterior hypothalamic, the periventricular, and the subparaventricular areas. A moderate number of fibers entered the lateral hypothalamic area and the tuber cinerum via the optic tract and chiasm. Moreover, the paraventricular nucleus, the supraoptic nucleus, the medial preoptic area, the lateral preoptic area, and the supramammillary nucleus contained a few labeled fibers. In all parts of the hypothalamus receiving an input from the lateral geniculate, fine beaded immunoreactive fibers with varicosities and nerve terminals were observed, some of which were found in close apposition to hypothalamic neurons. Only after labeling of neurons in the intergeniculate leaflet of the lateral geniculate nucleus, fibers were found in the hypothalamus. This topographical organization of the geniculohypothalamic pathway was supported by retrograde tracing after injections of WGA-HRP in the suprachiasmatic area. In these experiments, retrograde labeled neurons were observed in the intergeniculate leaflet and, in agreement with the anterograde studies, most of labeling was observed in the ipsilateral side. These results confirm that the suprachiasmatic nucleus receives a substantial input from the intergeniculate leaflet of the lateral geniculate. Moreover, the present data demonstrate that the suprachiasmatic nucleus is not the only nucleus that receives a direct visual input. Thus other hypothalamic areas might be influenced by a direct rhythmic neuronal input as well.  相似文献   

17.
The purpose of the present study was to investigate, by means of anterograde tracing methods, the detailed organization of the parahippocampal-prefrontal projections in the rat brain. Efferents from the perirhinal cortex were found to terminate principally in both the ventromedial (prelimbic and infralimbic cortices) and lateral (agranular insular cortex) regions of the prefrontal cortex. Terminal fields were observed mainly in the superficial layers of the prefrontal cortex. Projections arising from the dorsolateral entorhinal cortex, which borders the perirhinal cortex along its ventral extent, were similarly directed to the ventromedial and lateral prefrontal cortices but also encompassed other frontal areas (dorsomedial and orbital prefrontal regions). Terminal fields of entorhinal projections were also found in the superficial layers of the prefrontal cortex. A third pathway, taking its source in the post-rhinal cortex, presented striking topographical differences with the two other output systems. Hence, post-rhinal efferences terminated only in the ventrolateral orbital area. The results indicate that two main routes originate from the parahippocampal region to reach the prefrontal cortex. One pathway involves the rostral and lateral portions of the parahippocampal region (perirhinal and dorsolateral entorhinal cortices), and the other relies on its most caudal region, the post-rhinal cortex. The presence of such different multiple parahippocampal-prefrontal pathways may have functional relevance for learning and memory processes.  相似文献   

18.
To study the cells of origin and area of termination of the projection from the nucleus reuniens thalami (NRe) to the piriform cortex (PC) we used anterograde and retrograde tracing with the B subunit of the cholera toxin. Tracer injections in the NRe resulted in anterogradely labeled fibers in the dorsolateral part of the PC layers I and III. Following injections in the PC, retrogradely labeled cells were observed primarily in the dorsal subdivision of the NRe. Moreover, a topographical organization was observed in this subdivision: its anterior part projects to the posterior part of the PC, whereas its middle part projects to the anterior part of the PC. The present findings suggest that the NRe may exert different modulatory influences on the dorsolateral part of both anterior and posterior PC areas. The possible role of the NRe in the olfactory information processing is discussed.  相似文献   

19.
An efferent projection from the perirhinal cortex (area 35) in the rat was studied using the anterograde transport of triated amino acids as well as horseradish peroxidase (HRP). Following injections of either tracer in either the dorsal or ventral parts of area 35, anterogradely transported label was observed in the molecular layer of the subiculum, adjacent prosubiculum and CAla. Regardless of the dorsoventral level of the injection, the label was most dense at mid-dorsoventral levels of the subiculum and decreased in density in both the septal and temporal directions. Small injections of the same tracers made into the surrounding entorhinal, ectorhinal or prepiriform cortices did not reproduce this pattern. While the entorhinal cortex is the main cortical source of afferent input to the molecular layer of the subiculum as well as the hippocampus and dentate gyrus, the perirhinal cortex appears to constitute a complementary cortical pathway for afferent input to the subiculum.  相似文献   

20.
The thalamocortical and corticothalamic connections of the second somatic sensory area (SII) and adjacent cortical areas in the cat were studied with anterograde and retrograde tracers. Injections consisted of horseradish peroxidase conjugated to wheat germ agglutinin (HRP-WGA) or a mixture of equal parts of tritiated leucine and proline. The cortical regions to be injected were electrophysiologically studied with microelectrodes to determine the localization of the selected components of the body representation in SII. The distribution of recording points was correlated in each case with the extent of the injection mass in the cortex. Distributions of retrograde and anterograde labeling in the thalamus were reconstructed from serial coronal sections. The results from cases with injections of tracers exclusively confined to separate parts of the body map in SII indicated a fairly precise topographical organization of projections from the ventrobasal complex (VB) to SII. The labeled cells and fibers were located within a series of lamella-like rods that curved throughout the dorsoventral and rostrocaudal axis of VB. The position and extent of these lamellae shifted from medial and ventral, in the medial subdivision of ventral posterior lateral nucleus (VPLm) for radial forelimb digit zones of SII, to dorsal, Posterior, and lateral, in the lateral subdivision of ventral posterior lateral nucleus (VPLl) for proximal leg and trunk regions in SII. For every injected area in SII the densest clustering of labeled cells and fibers was usually more posteriorly represented in VB. The distribution in these dense zones of labeling often extended through the central core of VB. SII projecting neurons were also consistently noted in the extreme rostral portion of the medial subdivision of the posterior nuclei (Pom) that lies dorsal to VB. Corticothalamic and thalamocortical connections for SII Were entirely reciprocal. Injections of tracers into cortical areas surrounding SII labeled other parts of the posterior complex but failed to label any part of VB except when the injection mass also diffused into SII. Injections into the somatic sensory cortex located lateral to SII, within the lips and depth of the upper bank of the anterior ectosylvian sulcus (AES), heavily labeled the central and posterior portions of Pom. Substantial labeling was noted in the lateral (Pol) and intermediate (Poi) divisions of Po only when the injections involved some part of the auditory area that occupies the most posterior part of the AEG and both banks of the immediately adjoining AES. The magnocellular nucleus of the medial geniculate (MGmc) was labeled only when some part of the auditory cortex was injected. The suprageniculate nucleus (SG) was labeled from the insula and lower bank of the AES. These results indicated that medial (rostral and caudal Pom) and lateral components (Poi, Pol, MGmc) of the Posterior complex have separate cortical projection zones to somatic sensory and auditory cortical regions, respectively. SIV and the lateral extent of area 5a located in the medial bank of the anterior suprasylvian sulcus sent projections to the deep layers of the supe- rior colliculus and the ventrolateral periaqueductal gray. No cortico-tectal projections were seen from SII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号