首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The recently discovered apical calcium channels CaT1 (TRPV6) and ECaC (TRPV5) belong to a family of six members called the 'TRPV family'. Unlike the other four members which are nonselective cation channels functioning as heat or osmolarity sensors in the body, CaT1 and ECaC are remarkably calcium-selective channels which serve as apical calcium entry mechanisms in absorptive and secretory tissues. CaT1 is highly expressed in the proximal intestine, placenta and exocrine tissues, whereas ECaC expression is most prominent in the distal convoluted and connecting tubules of the kidney. CaT1 in the intestine is highly responsive to 1,25-dihydroxyvitamin D3 and shows both fast and slow calcium-dependent feedback inhibition to prevent calcium overload. In contrast, ECaC only shows slow inactivation kinetics and appears to be mostly regulated by the calcium load in the kidney. Outside the calcium-transporting epithelia, CaT1 is highly expressed in exocrine tissues such as pancreas, prostate and salivary gland. In these tissues it probably mediates re-uptake of calcium following its release by secretory vesicles. CaT1 also contributes to store-operated calcium entry in Jurkat T-lymphocytes and prostate cancer LNCaP cells, possibly in conjunction with other cellular components which link CaT1 activity to the filling state of the calcium stores. Finally, CaT1 expression is upregulated in prostate cancer and other cancers of epithelial origin, highlighting its potential as a target for cancer therapy.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The recent availability of activators of the mitochondrial Ca2+ uniporter allows direct testing of the influence of mitochondrial Ca2+ uptake on the overall Ca2+ homeostasis of the cell. We show here that activation of mitochondrial Ca2+ uptake by 4,4',4"-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histamine-induced Ca2+ release from the endoplasmic reticulum (ER) and that this effect is enhanced if the mitochondrial Na+–Ca2+ exchanger is simultaneously inhibited with CGP37157. This suggests that both Ca2+ uptake and release from mitochondria control the ability of local Ca2+ microdomains to produce feedback inhibition of inositol 1,4,5-trisphosphate receptors (InsP3Rs). In addition, the ability of mitochondria to control Ca2+ release from the ER allows them to modulate cytosolic Ca2+ oscillations. In histamine stimulated HeLa cells and human fibroblasts, both PPT and kaempferol initially stimulated and later inhibited oscillations, although kaempferol usually induced a more prolonged period of stimulation. Both compounds were also able to induce the generation of Ca2+ oscillations in previously silent fibroblasts. Our data suggest that cytosolic Ca2+ oscillations are exquisitely sensitive to the rates of mitochondrial Ca2+ uptake and release, which precisely control the size of the local Ca2+ microdomains around InsP3Rs and thus the ability to produce feedback activation or inhibition of Ca2+ release.  相似文献   

14.
The functionality of the endoplasmic reticulum (ER) as a Ca2+ storage organelle is supported by families of Ca2+ pumps, buffers and channels that regulate Ca2+ fluxes between the ER lumen and cytosol. Although many studies have identified heterogeneities in Ca2+ fluxes throughout the ER, the question of how differential functionality of Ca2+ channels is regulated within proximal regions of the same organelle is unresolved. Here, we studied the in vivo dynamics of an ER subdomain known as annulate lamellae (AL), a cytoplasmic nucleoporin-containing organelle widely used in vitro to study the mechanics of nuclear envelope breakdown. We show that nuclear pore complexes (NPCs) within AL suppress local Ca2+ signalling activity, an inhibitory influence relieved by heterogeneous dissociation of nucleoporins to yield NPC-denuded ER domains competent at Ca2+ signalling. Consequently, we propose a novel generalized role for AL – reversible attenuation of resident protein activity – such that regulated AL (dis)assembly via a kinase/phosphatase cycle allows cells to support rapid gain/loss-of-function transitions in cellular physiology.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号