首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation functions of the reactions (nat)Sb(alpha,xn)(123,124,125,126)I and (121)Sb(alpha,xn)(123,124)I were measured from their respective thresholds up to 26 MeV, with particular emphasis on data for the production of the medically important radionuclide (124)I. The conventional stacked-foil technique was used, and the samples for irradiation were prepared by a sedimentation process. The measured excitation curves were compared with the data available in the literature. From the experimental data the theoretical yields of the investigated radionuclides were calculated as a function of the alpha-particle energy. The calculated yield of (124)I from the (nat)Sb(alpha,xn)(124)I process over the energy range E(alpha) = 22-->13 MeV amounts to 1.02 MBq/microA x h and from the (121)Sb(alpha,n)(124)I reaction over the same energy range to 2.11 MBq/microA x h. The radionuclidic impurity levels are discussed. Use of (nat)Sb as target material would not lead to high-purity (124)I. Using highly enriched (121)Sb as target, production of (124)I of high radionuclidic purity is possible; the batch yield, however, is low.  相似文献   

2.
Excitation functions of the nuclear reactions 125Te(p, xn) (119,120m, 120g, 121,122,123,124,125)I were measured for the first time from their respective thresholds up to 100 MeV using the stacked-foil technique. Thin samples were prepared by electrolytic deposition of 98.3% enriched 125Te on Ti-backing. In addition to experimental studies, excitation functions were calculated by the modified hybrid model code ALICE-IPPE. The experimental and theoretical data generally showed good agreement. From the measured cross section data, integral yields of (123,124,125)I were calculated. The energy range Ep 21 --> 15 MeV appears to be very suitable for the production of the medically interesting radionuclide 124I (T(1/2) = 4.18 d; I(beta)+ = 25%). The thick target yield of 124I amounts to 81 MBq/microA h and the level of 125I-impurity to 0.9%. The 125Te(p,2n)124I reaction gives 124I yield about four times higher than the commonly used 124Te(p,n)124I and 124Te(d,2n)124I reactions. The proposed production energy range is too high for small cyclotrons but large quantities of 124I can be produced with medium-sized commercial machines.  相似文献   

3.
Excitation functions of the nuclear reactions 124Te(d,xn)124-125I were measured from their respective thresholds up to 14.0 MeV via the stacked-foil technique. Thin samples were prepared by electrolytic deposition of 99.8% enriched 124Te on Ti-backing. The excitation function of the 124Te(d,n)125I reaction was measured for the first time. The present data for the 124Te(d,2n)124I reaction are by an order of magnitude higher than the literature experimental data but are in good agreement with the results of a hybrid model calculation. From the measured cross sections, integral yields of 124,125I were calculated. The energy range Ed = 14 --> 10 MeV appears to be the best compromise between 124I-yield and 1251-impurity. The calculated 124I-yield amounts to 17.5 MBq/microA h and the 125I-impurity to 1.7%. A critical evaluation of the three nuclear routes for the production of 124I, viz. 124Te(d,2n)-, 124Te(p,n)- and 125Te(p,2n)-processes, is given. The reaction studied in this work proved to be least suitable. The 124Te(p,n)-reaction gives 124I of the highest radionuclidic purity, and a small-sized cyclotron is adequate for production purposes. The 125Te(p,2n)-reaction is more suitable at a medium-sized cyclotron: the yield of 124I is four times higher than in the other two reactions but the level of 0.9% 125I-impurity is relatively high.  相似文献   

4.
Excitation functions were measured for (p, 2n) and (p, pn) reactions on 99.9% enriched 124Xe from threshold up to 44 MeV. The (p, 2n) reaction is much stronger than the (p, pn) channel; above 36 MeV, however, the two processes have almost equal cross sections. Differential yields of 123I were measured experimentally as a function of proton energy and were also calculated from the excitation functions. Our experimental and theoretical yield data are consistent within 15%, but are lower by a factor of 2 than the literature experimental values. Our studies show that the optimum energy range for the production of 123I is Ep = 29 → 23 MeV. The theoretically expected thick target yield of 123I at 6.6 h after EOB is 11.2 mCi/μAh, and is in agreement with the high-current experimental production yields.  相似文献   

5.
Excitation functions were measured by the stacked-foil technique for (p, xn) reactions up to Ep = 20 MeV on natural tellurium and enriched 123Te. Thick target yields were calculated for the formation of 121I, 123I, 124I, 126I, 128I and 130I from natural tellurium, and 122I and 123I from enriched 123Te. The optimum energy range for the production of 123I via the 123Te(p, n)123I reaction is Ep = 14.5 → 11.0 MeV, and the theoretical thick target yield 4 mCi/μAh. The levels of the three major impurities 124I, 126I and 130I are directly dependent on the 124Te, 126Te and 130Te contents, respectively, in enriched 123Te. The levels of impurities determined experimentally under high-current production conditions agree with those calculated from the cross section data. A comparison of the three direct methods of 123I-production, viz. 124Te(p, 2n)123I, 123Te(p, n)123I and 122Te(d, n)123I, under optimum conditions for each reaction, is given. The yield and impurity-level data suggest that the 123Te(p, n)123I reaction has a great potential for production in a low-energy cyclotron, if highly enriched 123Te (>91%) is used.  相似文献   

6.
The production of high-purity (123)I that utilizes an isotopically enriched (124)Xe target and bombardment with 30MeV protons, through the reactions (124)Xe (p, 2n) (123)Cs-->(123)Xe-->(123)I and (124)Xe (p, pn) (123)Xe-->(123)I, is described. The aim of this work was to improve the production parameters, such as (124)Xe load pressure, beam current, decay time and target heating to recover (123)I to obtain high-production (123)I yield at low cost.  相似文献   

7.
The binary compound, aluminum telluride (Al(2)Te(3)), was investigated as a target material for the production of (124)I by way of the (124)Te(p,n)(124)I reaction on a low-energy cyclotron. The high melting point and formation of a glassy matrix upon heating provided a stable target material at irradiations up to 20 microA of 11 MeV protons. The 87% tellurium mass fraction and 95% iodine separation yield led to significantly higher quantities of iodine compared to traditional TeO(2)/6%Al(2)O(3) admixtures. Radiochemical analysis of distilled samples using ion chromatography showed that the product remained in the iodide form while supported in weak buffer solutions. Stable Te impurities in the radioiodine product were less than 0.5 microg following purification by ion exchange chromatography. Average thick target yields of 229+/-18 microCi/microAh were achieved, and typical production runs at 18 microA for three hours yielded 12 mCi at the end-of-bombardment. Total losses of the target material after each irradiation and distillation cycle were approximately 2%.  相似文献   

8.
Excitation functions were measured by the stacked-foil technique for (nat)Rb(alpha,xn)(87m,87m+g,88)Y and (nat)Sr(alpha,xn)(86,88,89)Zr reactions from their respective thresholds up to 26 MeV. The samples for irradiation were prepared by sedimentation and pellet pressing techniques. The measured data were compared with those available in the literature. From the excitation functions, integral yields of the products were calculated. The suitable energy ranges for the production of (87)Y and (88)Y via (nat)Rb(alpha,xn) processes and of (89)Zr via the (nat)Sr(alpha,xn) process are E(alpha)=26-->20 MeV, E(alpha)=26-->5 MeV and E(alpha)=20-->8.5 MeV, respectively. The respective yields amount to 8.2, 0.08 and 0.9 MBq/microA h. Production of (88)Y is feasible if a waiting time of about 2 months is allowed to let the impurities decay out. Also, (87)Y can be produced with a relatively low impurity of (88)Y. The yields of both (88)Y and (87)Y via the present routes are, however, appreciably lower than those via the (nat)Sr(p,xn) processes. There is a possibility to produce (89)Zr via the alpha-particle irradiation of (nat)Sr. The yield is rather low but would be considerably increased if enriched (86)Sr would be used as target material. The radionuclidic impurity levels in all the three products are discussed.  相似文献   

9.
Cross-section data for the production of medically important radionuclide 124I via five proton and deuteron induced reactions on enriched tellurium isotopes were evaluated. The nuclear model codes, STAPRE, EMPIRE and TALYS, were used for consistency checks of the experimental data. Recommended excitation functions were derived using a well-defined statistical procedure. Therefrom integral yields were calculated. The various production routes of 124I were compared. Presently the 124Te(p,n)124I reaction is the method of choice; however, the 125Te(p,2n)124I reaction also appears to have great potential.  相似文献   

10.
Iodine-124 was produced via the (124)Te(p,n)(124)I reaction by 15 MeV proton irradiation of an in-house solid mass tellurium dioxide target, using the Tübingen PETtrace (General Electric Medical Systems) cyclotron. 1-(2-Deoxy-beta-D-ribofuranosyl)-2,4-difluoro-5-iodobenzene (dRFIB), a stable, non-polar thymidine mimic nucleoside, was synthesized in 5 steps following a literature method, for radioiodination with [(124)I] iodide via isotope exchange in the presence of copper sulphate and ammonium sulphate in methanol-water. The radiolabelling procedure was optimized with respect to temperature, amount of dRFIB, amount of sodium hydroxide and reaction time, to produce radiochemical yields of up to 85% with a 1-h reaction at 140 degrees C. With routine I-124 production of 30 MBq/run, relatively high specific activities, approaching 100 MBq/mmol, can be expected. The activation energy for dRFIB radioiodination was calculated from temperature-time RCY data to be approximately 100 kJ/mol using no-carrier-added [(124)I]iodide.  相似文献   

11.
(124)I was produced, via (124)Te(p,n)(124)I reaction, in greater than 3.7GBq (100 mCi, EOB) amount by bombarding (124)TeO(2) targets at 24 microA current for about 8h. This was achieved by keeping the target at 37 degrees relative to the beam during irradiation, by sweeping the beam across the target and by keeping the incident energy of the proton at 14.1MeV. The time-averaged yield of our 8h run was 21.1 MBq/microAh (0.57 mCi/microAh), which was 90% of the theoretical yield calculated using thick target yield data obtained from the reported excitation function for the reaction. At the end of bombardment, the level of (125)I and (126)I impurities, co-produced with (124)I, were 0.03% and 0.007%, respectively.  相似文献   

12.
For the production of therapy-relevant radionuclides (193m)Pt (T(1/2)=4.33 d) and (195m)Pt (T(1/2)=4.03 d) with a high specific activity, the (192)Os(alpha,n)(195m)Pt and (192)Os(alpha,3n)(193m)Pt nuclear reactions were investigated for the first time from their respective thresholds up to 28 MeV. Thin samples of enriched (192)Os were prepared by electrodeposition on Ni, and the conventional stacked-foil technique was used for cross-section measurements. The calculated thick target yields were found to be 0.013 MBq/microA h for the (192)Os(alpha,n)(195m)Pt reaction in the energy range of E(alpha)=24-->18 MeV, and 0.25 MBq/microA h for the (192)Os(alpha,3n)(193m)Pt reaction in the energy range of E(alpha)=28-->24 MeV. The two radionuclides could not be detected in the interactions of (3)He particles with (192)Os. A production method involving high-current alpha-particle irradiation of enriched (192)Os and efficient chemical separation of radioplatinum was developed. Batch yields of about 1 MBq (195m)Pt and 8.7 MBq (193m)Pt were achieved. Compared to the reactor production these batch yields are very low, but the (192)Os(alpha,n)(195m)Pt and (192)Os(alpha,3n)(193m)Pt reactions are superior with respect to the specific activity of the products which is higher by two orders of magnitude.  相似文献   

13.
The 4.15-d radionuclide 124I is produced via the nuclear reaction 124Te(d, 2n) 124I by irradiation of 96% enriched 124TeO2 with 14 MeV deuterons, followed by thermodistillation. In order to minimise the loss of 124I, the quartz distillation tube was fitted to a stainless steel helix capillary trap directly behind the end of the furnace. Using this device, distillation yields of more than 80% were routinely obtained, and the activity was concentrated in markedly less than 100 microL solution. The 124I produced by this method proved to be useful for labelling proteins and IUdR.  相似文献   

14.
Excitation functions were measured for 75As(p, xn) 72, 73, 75Se reactions over the energy range of 3–45 MeV and for 75As(d, xn) 72, 73, 75Se reactions from 5 to 56 MeV. Thin targets were prepared by electrolytic deposition of arsenic on Cu-, or Al-backing. The optimum energy ranges for the production of 73Se were found to be Ep = 40 → 30 MeV and Ed = 45 → 33 MeV; theoretical thick target yields of 73Se amount to 38 and 17.6 mCi/μAh, respectively, and the levels of 72, 75Se impurities to <0.2%. An anion-exchange method was developed to separate no-carrier-added radioselenium. Irradiations of As2O3 for 2 h at nominal currents of 2 μA lead to batch yields of 73Se (at EOB) of about 70 mCi in the case of the (p, 3n) reaction and about 35 mCi in the (d, 4n) reaction.  相似文献   

15.
Calculations for the excitation functions of the 121Sb(3He, xn) 121,122,123I, and 123Sb(3He xn) 122,123,124,125I reactions have been carried out using statistical and pre-equilibrium nuclear reaction models in 10−34 MeV energy range. These excitation functions have been used to derive the excitation functions of the natSb(3He, xn)121,123,124I reactions and compared with reported measurements. For studying the improvement with measurements two values of the diffuseness parameter aw equal to 0.9 and 0.7 fm have been used in the calculations. The dependence of pre-equilibrium calculations on the initial exciton numbers has also been considered.  相似文献   

16.
Radioactive isotopes of antimony could be produced from proton induced reactions on tin isotopes. At low energy, (p,n) reactions are the only open channels. Measurements are performed for proton reactions with 124Sn in the energy range between 9.0 and 18.0 MeV. Evaluations of the remaining possible reactions are performed and compared with each other. The cross sections are calculated theoretically by the EMPIRE-II code for 124Sn(p,n)124Sb reaction. However, the calculations failed to agree with the experimental results. A recommended evaluation is given and the thick target yields are calculated from the evaluated approximations.  相似文献   

17.
The existing cross section data of the natEu(d,x) and natEu(p,x) reactions relevant for the production of 147,149Gd were expanded up to 70.9 MeV and 44.8 MeV, respectively. Integral yields of radiogadolinium were calculated, showing production rates higher than for the earlier proposed irradiation of highly enriched 144Sm with α- or 3He-particles. The formation of radioisotopic impurities like 151Gd (T1/2=124 d) and 153Gd (T1/2=240 d) was below 5%. Production of 147,149Gd using enriched europium is also discussed.  相似文献   

18.
Excitation functions of the nuclear reactions 120Te(d,xn)121,120m,gI were measured for the first time from their respective thresholds up to 13.5 MeV. Thin samples prepared by electrolytic deposition of 99.0% enriched 120Te on Ti-backing were used. Integral yields of 121,120m,gI were calculated from the measured cross section data. A comparison of the 122Te(p,3n)-, 120Te(p,n)- and 120Te(d,2n)-processes for the production of 120gI is given. The 120Te(d,2n)-process is unsuitable for production purposes since the yield of 120gI is very low and the level of 121I impurity very high. The choice lies either on the 122Te(p,3n)- or the 120Te(p,n)-reaction and is governed by the available proton energy and the financial resources for procuring the enriched target material.  相似文献   

19.
Optimisation experiments on the production of the positron emitting radionuclides 124I(T(1/2) = 4.18d) and (120g)I (T(1/2) = 1.35 h) were carried out. The TeO(2)-target technology and dry distillation method of radioiodine separation were used. The removal of radioiodine was studied as a function of time and the loss of TeO(2) from the target as a function of oven temperature and time of distillation. A distillation time of 15 min at 750 degrees C was found to be ideal. Using a very pure source and comparing the intensities of the annihilation and X-ray radiation, a value of 22.0 +/- 0.5% for the beta(+) branching in 124I was obtained. Production of 124I was done using 200 mg/cm(2) targets of 99.8% enriched 124TeO(2) on Pt-backing, 16 MeV proton beam intensities of 10 microA, and irradiation times of about 8 h. The average yield of 124I at EOB was 470 MBq(12.7 mCi). At the time of application (about 70 h after EOB) the radionuclidic impurity 123I (T(1/2) = 13.2 h) was <1%. The levels of other impurities were negligible (126I < 0.0001%;125I = 0.01%). Special care was taken to determine the 125I impurity. For the production of (120g)I only a thin 30 mg target (on 0.5 cm(2) area) of 99.9% enriched 120TeO(2) was available. Irradiations were done with 16 MeV protons for 80 min at beam currents of 7 microA. The 120gI yield achieved at EOB was 700 MBq(19 mCi), and the only impurity detected was the isomeric state 120 mI(T(1/2) = 53 min) at a level of 4.0%. The radiochemical purity of both 124I and 120gI was checked via HPLC and TLC. The radioiodine collected in 0.02 M NaOH solution existed >98% as iodide. The amount of inactive Te found in radioiodine was <1 microg. High purity 124I and 120gI can thus be advantageously produced on a medium scale using the low-energy (p,n) reaction at a small-sized cyclotron.  相似文献   

20.
The radionuclides 64Cu (T1/2=12.7h) and 67Cu (T1/2=61.9h) are useful in internal therapy. In connection with production of 64Cu, excitation functions of the reactions natZn(d,x)64Cu, 66Zn(d,alpha)64Cu and 68Zn(p,alphan)64Cu were measured radiochemically using the stacked-foil technique. From the measured data, the thick target yields of 64Cu were calculated and compared with experimental data available in the literature. The three investigated processes are discussed in comparison to the commonly used 64Ni(p,n)64Cu reaction for the production of 64Cu. As regards 67Cu production, the technical feasibility of the 70Zn(p,alpha)67Cu process was investigated. An electroplated isotopically enriched 70Zn target was developed which can withstand slanting beams of 20MeV protons of currents up to 20 microA. Methods for chemical separation of 67Cu and efficient recovery of the enriched target material were worked out. The method is suitable only for small-scale production of 67Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号