首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-nitrosodiethylamine (NDEA) is a potent carcinogenic agent that induces liver cancer. To evaluate the chemopreventive function of melatonin in this experimental model, Wistar male rats received a single i.p. injection of NDEA or vehicle followed by weekly s.c. injections of carbon tetrachloride or vehicle for 6 weeks. Melatonin (5 mg/kg body weight) or its vehicle (0.5 mL saline) was given i.p. on a daily basis 2 hr before lights off for 20 wk. At the end of this period the rats were killed and liver and blood samples were taken for histological and biochemical studies. As markers for liver function, the activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein were measured in serum. To assess lipid peroxidation and the antioxidant status in liver and blood, the levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured. The activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) was assessed in liver and erythrocyte fraction of NDEA-treated rats. NDEA administration inhibited body weight, macro- and microscopically detectable liver tumors and increased levels of plasma AST, ALT and alpha-fetoprotein. NDEA treatment decreased liver TBARS levels and CAT and SOD activities and increased liver GSH levels and GST and GPx activities. Plasma TBARS were augmented, while plasma GSH levels and the activities of erythrocyte CAT, SOD, GST and GPx decreased, in NDEA-treated rats. Melatonin administration significantly curtailed tumor development and counteracted all the biochemical effects.  相似文献   

2.
In an attempt to define the role of the pineal secretory melatonin and an analogue, 6-hydroxymelatonin (6-OHM), in limiting oxidative stress, the present study investigated the cisplatin (CP)-induced alteration in the renal antioxidant system and nephroprotection with the two indolamines. Melatonin (5 mg/kg), 6-OHM (5 mg/kg), or an equal volume of saline were administered intraperitoneally (i.p.) to male Sprague Dawley rats 30 min prior to an i.p. injection of CP (7 mg/kg). After CP treatment, the animals each received indolamine or saline every day and were sacrificed 3 or 5 days later and plasma as well as kidney were collected. Both plasma creatinine and blood urea nitrogen increased significantly following CP administration alone; these values decreased significantly with melatonin co-treatment of CP-treated rats. In the kidney, CP decreased the levels of GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio, an index directly related to oxidative stress. When animals were treated with melatonin, the reduction in the GSH/GSSG ratio was prevented. Treatment of CP-enhanced lipid peroxidation in the kidney was again prevented in animals treated with melatonin. The activity of the antioxidant enzyme, glutathione peroxidase (GSH-Px), decreased as a result of CP administration, which was restored to control levels with melatonin co-treatment. Upon histological analysis, damage to the proximal tubular cells was seen in the kidneys of CP-treated rats; these changes were prevented by melatonin treatment. 6-OHM has been shown to have some antioxidative capacity, however, the protective effects of 6-OHM against CP-induced nephrotoxicity were less than those of melatonin. The residual platinum concentration in the kidney of melatonin co-treated rats was significantly lower than that of rats treated with CP alone. It is concluded that administration of CP imposes a severe oxidative stress to renal tissue and melatonin confers protection against the oxidative damage associated with CP. This mechanism may be reasonably attributed to its radical scavenging activity, to its GSH-Px activating property, and/or to its regulatory activity for renal function.  相似文献   

3.
It has been suggested that oxidative stress is a feature of aging. The goal of the present study was to assess the oxidant effects related to aging and the protective role of exogenous melatonin in senescence-accelerated mice (SAMP8). Two groups of SAMP8 mice (males and females) were compared with their respective control groups of SAMR1 mice (senescence-resistant inbred strain) to determine their oxidative status without melatonin treatment. Four other groups of the same characteristics were treated with melatonin (10 mg/kg/day) in their drinking water. The melatonin concentration in the feeding bottles was titrated according to water consumption and body weight (i.e. 0.06 mg/mL for 30 g of body weight and 5 mL/day of water consumption). The treatment began when animals were 1-month old and continued for 9 months. When mice were 10-month old, they were anesthetized and blood was obtained. Plasma and erythrocytes were processed to examine oxidative stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), and hemolysis. The results showed greater oxidative stress in SAMP8 than in SAMR1, largely because of a decrease in GSH levels and to an increase in GSSG and TBARS with the subsequent induction of the antioxidant enzymes GPX and GR. Melatonin, as an antioxidant molecule, improved the glutathione-related parameters, prevented the induction of GPX in senescent groups, and promoted a decrease in SOD and TBARS in almost all the groups.  相似文献   

4.
Melatonin, the chief product secreted by pineal gland, is capable of reducing free radical damage by acting directly as a free radical scavenger, and indirectly, by stimulating of antioxidant enzymes. Cyclosporine A (CsA) is the most widely used immunosuppressive drug, but its therapeutic use has several side effects including, i.e. nephrotoxicity and cardiotoxicity. This study was designed to examine the beneficial effects of melatonin in preventing CsA-induced cardiotoxicity. Additionally, we investigated the ability of melatonin to protect the rat heart via melatonin receptor. In one group of Wistar rats, melatonin (1 mg/kg/day i.p.) was administered concurrently with CsA (15 mg/kg/day s.c.) for 21 days. In another group of animals, melatonin was injected with CsA and luzindole, an antagonist of melatonin receptors. Oxidative stress in heart tissue homogenates was estimated using thiobarbituric acid reactive substances (TBARS), reduced glutathione levels and antioxidant enzyme activities including catalase and superoxide dismutase. CsA administration for 21 days produced elevated levels of TBARS, marked depletion of cardiac antioxidant enzymes and caused morphological alterations in myocardial fibers. Melatonin markedly reduced TBARS levels, increased the antioxidant enzyme levels and normalized altered cardiac morphology. The protective effects of melatonin were lost when the animals received the melatonin receptor antagonist. In conclusion our study shows that, (a) melatonin significantly reduces CsA cardiotoxicity, and (b) the reduction in CsA-induced cardiotoxicity was mediated by the binding of melatonin to its membrane receptors.  相似文献   

5.
Protective effect of melatonin against adriamycin toxicity in the rat   总被引:1,自引:0,他引:1  
Adriamycin, an anthracyclinic antibiotic frequently used in quimioterapeutic treatments is highly toxic; it inhibits protein synthesis and provokes prooxidant effects. Melatonin has recently been shown to have high antioxidative properties. We tested if melatonin is able to neutralize the oxidative damage induced by a single dose (20 mg/kg, i.p.) of adriamycin preceded (3 days) and followed (7 days) by a low pharmacological dose (50 microg/kg, i.p.) of melatonin. After the administration of a single dose of adriamycin (20 mg/kg i.p.) to male Wistar rats, the reduced to oxidized glutathione (GSH/GSSG) ratio and the glutathione peroxidase (GPx, E.C. 1.11.1.9.) activity in the brain, intestine, heart, kidney, and lung were significantly reduced. When the treatment of adriamycin was preceded and followed by low pharmacological doses of melatonin, the decrease in the GSH/GSSG ratio was significantly reduced but the reduction in GPx activity was not attenuated. A significant increase in lipid peroxidation products was observed in brain, heart, and kidney tissues after a single administration of adriamycin, which was attenuated by pre- and post-treatment with a low pharmacological dose of melatonin. Our results demonstrate that oxidative damage induced by the antitumor drug, adriamycin, can be reduced by low pharmacological doses of melatonin.  相似文献   

6.
Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.  相似文献   

7.
The pro-oxidant activity of aluminum (Al), the protective role of exogenous melatonin, as well as the mRNA levels of some antioxidant enzymes, were determined in cortex and cerebellum of rats following exposure to Al and/or melatonin. Two groups of male rats received intraperitoneal injections of Al lactate or melatonin at doses of 7 mg Al/kg/day and 10 mg/kg/day, respectively, for 11 wk. A third group of animals received concurrently Al lactate (7 mg Al/kg/day) plus melatonin (10 mg/kg/day) during the same period. A fourth group of rats was used as control. At the end of the treatment, the cerebral cortex and cerebellum were removed and processed to examine the following oxidative stress markers: glutathione transferase (GST), reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), glutathione reductase, glutathione peroxidase (GPx), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as protein content. Moreover, gene expression of Cu-ZnSOD, MnSOD, GPx and CAT was evaluated by real-time RT-PCR. On the other hand, Al, Fe, Mn, Cu and Zn concentrations were determined in cortex and cerebellum of rats. Oxidative stress was promoted in both neural regions following Al administration, resulting from the pro-oxidant activity related with an increase in tissue Al concentrations. In contrast, melatonin exerted an antioxidant action which was related with an increase in the mRNA levels of the antioxidant enzymes evaluated. The results of the present investigation emphasize the potential use of melatonin as a supplement in the therapy of neurological disorders in which oxidative stress is involved.  相似文献   

8.
The role of oxidative stress has been evaluated in experimental models of acute pancreatitis (AP). The aim of this study is to investigate the effect of melatonin on the ultrastructural changes in cerulein-induced AP in rats. Acute pancreatitis was induced by two i.p. injections of cerulein at 2-hr intervals (50 microg/kg BW). One group received additionally melatonin (20 mg/kg BW) i.p. before each injection of cerulein. The rats were sacrificed 12 hr after the last injection. Pancreatic oxidative stress markers were evaluated by changes in the amount of lipid peroxides and changes in the antioxidant enzyme levels, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total glutathione (GSH) levels. Ultrastructural examination was performed using a transmission electron microscope. Formation of numerous, large autophagosomes, mitochondrial damage, dilatation of rough endoplasmic reticulum (RER) and Golgi apparatus, margination and clumping of nuclear chromatin were the major ultrastructural alterations observed in the AP group. Melatonin administration prevented mitochondrial and nuclear changes and dilatation of RER and Golgi apparatus. Rare, small autophagosomes were present within the cytoplasm of some of the acinar cells. Pancreatic damage was accompanied by a significant increase in tissue MDA levels (P < 0.05) and a significant decrease in CAT, SOD, GPx activities and GSH levels (P < 0.005). Melatonin administration significantly reduced MDA levels but increased CAT, SOD, GPx activities and GSH levels (P < 0.005). Melatonin also reduced serum amylase and lipase activities, which were significantly elevated in AP (P < 0.05 and P < 0.005 respectively). These results suggest that oxidative injury is important in the pathogenesis of AP. Melatonin is potentially capable of limiting pancreatic damage produced during AP by protecting the fine structure of acinar cells and tissue antioxidant enzyme activities.  相似文献   

9.
Naja haje envenomation is one of the leading causes of death due to snakebite. Antiserum therapy sometimes fails to provide enough protection against venom toxicity. In this study, we investigated the protective effects of melatonin against N. haje venom in rats. The animals were injected with venom (0.25 mg/kg) and/or melatonin (10 mg/kg) and compared with vehicle-treated rats. There was oxidative/nitrosative damage and apoptosis in the liver, heart, and kidneys of venom-injected rats. Melatonin counteracted the increased lipoperoxidation and nitric oxide, prevented decreased glutathione peroxidase and reductase activity, reduced the glutathione disulfide/glutathione (GSSG/GSH) ratio, and maintained the GSH pool. Furthermore, melatonin administration was associated with a reduction of apoptosis, which was increased in venom-injected rats. Overall, these results suggest that melatonin mitigates oxidative/nitrosative stress in venom-induced cardio-hepato-renal injury in rats. Our results suggest that melatonin treatment may ameliorate some of the effects of N. haje envenomation.  相似文献   

10.
Random pattern skin flaps are still widely used in plastic surgery. However, necrosis in the distal portion resulting from ischemia is a serious problem, increasing the cost of treatment and hospitalization. Free oxygen radicals and increased neutrophil accumulation play an important role in tissue injury and may lead to partial or complete flap necrosis. To enhance skin flap viability, a variety of pharmacological agents have been intensively investigated. The aim of this study is to test the effects of melatonin, the chief secretory product of the pineal gland and a highly effective antioxidant, on random pattern skin flap survival in rats. Herein, to investigate the physiological and pharmacological role of melatonin on dorsal skin flap survival. Pharmacological (0.4, 4 and 40 mg/kg) levels of melatonin were given intraperitoneally (i.p.). For this, pinealectomized (Px) and sham operated (non-Px) rats were used. The effects of melatonin on levels of malondialdehyde (MDA), nitric oxide (NO), glutathione (GSH) and the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were measured in the skin flap. The ratio of skin flap necrosis was compared among the experimental groups by using planimetry. MDA and NO levels were found to be higher in Px than non-Px rats; while GSH levels and GSH-Px, and SOD activities were reduced. Melatonin administration to Px rats reduced MDA and NO levels and increased GSH, GSH-Px, SOD levels. Melatonin also reduced the ratio of flap necrosis determined by using planimetry and supported through the photography. In conclusion, these results show that both physiological and pharmacological concentrations of melatonin improve skin flap viability.  相似文献   

11.
Abstract:  Oxidative stress is believed to contribute to functional and histopathologic disturbances associated with chronic cerebral hypoperfusion (CCH) in rats. Melatonin has protective effects against cerebral ischemia/reperfusion injury. This effect has mainly been attributed to its antioxidant properties. In the present study, we evaluate the effects of melatonin on chronic cerebral hypoperfused rats and examined its possible influence on oxidative stress, superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels, and heat shock protein (HSP) 70 induction. CCH was induced by permanent bilateral common carotid artery occlusion in ovariectomized female rats. Extensive neuronal loss in the hippocampus at day 14 following CCH was observed. The ischemic changes were preceded by increases in malondialdehyde (MDA) concentration and HSP70 induction as well as reductions in GSH and SOD. Melatonin treatment restored the levels of MDA, SOD, GSH, and HSP70 induction as compared to the ischemic group. Histopathologic analysis confirmed the protective effect of melatonin against CCH-induced morphologic alterations. Taken together, our results document that melatonin provides neuroprotective effects in CCH by attenuating oxidative stress and stress protein expression in neurons. This suggests melatonin may be helpful for the treatment of vascular dementia and cerebrovascular insufficiency.  相似文献   

12.
To investigate whether melatonin reduces the susceptibility of the fetal rat brain to oxidative damage of lipids and DNA, we created a model of fetal ischemia/reperfusion using rats at day 19 of pregnancy. Fetal ischemia was induced by bilateral occlusion of the utero-ovarian artery for 20 min. Reperfusion was achieved by releasing the occlusion and restoring the circulation for 30 min. A sham operation was performed in control rats. Melatonin (10 mg/kg) or vehicle was injected intraperitoneally 60 min prior to the occlusion. We measured the concentration of thiobarbituric acid reactive substances (TBARS) in fetal brain homogenates, as well as levels of deoxyguanosine (dG) and 8-hydroxydeoxyguanosine (8-OHdG) in DNA extracted from those homogenates. Ischemia for 20 min did not significantly alter the levels of dG, 8-OHdG, and TBARS. Subsequent reperfusion, however, led to a significant reduction in the dG level (P < 0.05) and to significant increases in the levels of 8-OHdG (P < 0.05) and TBARS (P < 0.05), and in the 8-OHdG/dG ratio (P < 0.005). Melatonin administration prior to ischemia significantly reduced the ischemia/reperfusion-induced increases in the levels of 8-OHdG (14.33 +/- 6.52-5.15 +/- 3.28 pmol/mg of DNA, P < 0.001) and TBARS (11.61 +/- 3.85-4.73 +/- 3.80 nmol/mg of protein, P < 0.001) as well as in the 8-OHdG/dG ratio (7.19 +/- 2.49-1.61 +/- 0.98, P < 0.001). Furthermore, melatonin significantly increased the dG level (210.19 +/- 49.02-299.33 +/- 65.08 nmol/mg of DNA, P < 0.05). Results indicate that melatonin administration to the pregnant rat may prevent the ischemia/reperfusion-induced oxidative lipid and DNA damage in fetal rat brain.  相似文献   

13.
The effect of melatonin on bleomycin-induced pulmonary fibrosis in rats   总被引:6,自引:0,他引:6  
The present investigation was designed to determine the protective effects of melatonin against bleomycin (BLM)-induced oxidant lung toxicity. Wistar-albino rats were divided into four groups: saline (SA, 0.4 mL/animal), 1% ethanol-saline (ALC, 0.4 mL/animal), bleomycin sulphate (BLM, 10 mg/kg), or bleomycin sulphate + melatonin (BLM, 10 mg/kg + MLT, 10 mg/kg). All injections were given intraperitoneally (i.p.), twice weekly for a period of 3 wk (a total of seven injections for each group). Twenty-five days after BLM treatment, pulmonary fibrosis was assessed as hydroxyproline content in lung homogenates. Findings show that BLM-induced pulmonary injury resulted in increases in bronchoalveolar lavage fluid (BALF) biomarkers including total protein, lactate dehydrogenase (LDH), glutathione-peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT). Additionally, the levels of thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation (LPO), were also increased in BALF. Conversely, the level of glutathione (GSH) was reduced in BALF of BLM-treated rats. Melatonin provided protection against BLM-induced pulmonary fibrosis by suppressing oxidative stress. It abolished BLM-stimulated LPO and reversed the imbalance between oxidants and antioxidants in the BALFs. Results thus indicate that melatonin inhibits BLM-induced lung toxicity associated with oxidative damage.  相似文献   

14.
Melatonin is a powerful scavenger of oxygen free radicals. In humans, melatonin is rapidly transferred from the maternal to the fetal circulation. To investigate whether or not maternal melatonin administration can protect the fetal rat brain from radical-induced damage by increasing the activities of antioxidant enzymes, we administered melatonin to pregnant rats on day 20 of gestation. Melatonin (10 mg/kg) was injected intraperitoneally at daytime (14:00 hr) and, to remove the fetuses, a laparotomy was performed at 1, 2, or 3 hr after its administration. We measured the melatonin concentration in the maternal serum and in fetal brain homogenates and determined the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in fetal brain homogenates. Melatonin administration markedly increased melatonin concentrations in the maternal serum and fetal brain homogenates, with peak levels achieved 1 hr after melatonin administration (serum: 538.2+/-160.7 pM/mL; brain homogenates: 13.8+/-2.8 pM/mg protein). Between 1 and 3 hr after melatonin administration, GSH-Px activity in fetal brain homogenates increased significantly (P<0.01). Similarly, SOD activity increased significantly between 1 and 2 hr after melatonin administration (P<0.01). These results indicate that melatonin administration to the mother increases antioxidant enzyme activities in the fetal brain and may thereby provide indirect protection against free radical injury. Thus, melatonin may potentially be useful in the treatment of neurodegenerative conditions that may involve excessive free radical production, such as fetal hypoxia and preeclampsia.  相似文献   

15.
Acute renal failure is a major complication of gentamicin (GEN), which is widely used in the treatment of gram-negative infections. A large body of in vitro and in vivo evidence indicates that reactive oxygen metabolites (or free radicals) are important mediators of gentamicin nephrotoxicity. In this study we investigated the role of free radicals in gentamicin-induced nephrotoxicity and whether melatonin, a potent antioxidant could prevent it. For this purpose female Sprague-Dawley rats were given intraperitoneally either gentamicin sulphate (40 mg/kg), melatonin (10 mg/kg), gentamicin plus melatonin or vehicle (control) twice daily for 14 days. The rats were decapitated on the 15th day and kidneys were removed. Blood urea nitrogen (BUN) and creatinine levels were measured in the blood and malondialdehyde (MDA) and glutathione (GSH) levels, protein oxidation (PO) and myeloperoxidase (MPO) activity were determined in the renal tissue. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of BUN and creatinine levels. The significant decrease in GSH and increases in MDA levels, PO and MPO activity indicated that GEN-induced tissue injury was mediated through oxidative reactions. On the other hand simultaneous melatonin administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GEN treatment.  相似文献   

16.
Preventive effect of melatonin on bleomycin-induced lung fibrosis in rats   总被引:4,自引:0,他引:4  
Oxidative stress has an important role in the pathogenesis of idiopathic pulmonary fibrosis. Melatonin has direct and indirect free radical-detoxifying activity. The present study investigated whether melatonin treatment attenuates bleomycin-induced lung fibrosis in rats. A group of rats was given one dose of bleomycin while the control animals were given saline. The first dose of melatonin (4 mg/kg/day) was given 2 days before the bleomycin injection. At day 14, fibrotic changes were evaluated using Aschoft's criteria and lung hydroxyproline content. Bleomycin produced a 2.7-fold rise in the fibrosis score that was decreased 65% by melatonin (P < 0.05) and a 1.4-fold increase in hydroxyproline content which was completely prevented by melatonin. Protein carbonyl and thiobarbituric acid reactive substances levels, which were significantly elevated in the bleomycin treated rats, were significantly attenuated by melatonin. Bleomycin administration significantly reduced the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in lung tissue. The reduction in CAT activity was prevented by melatonin but SOD and GSH-Px were not influenced. These results revealed that melatonin may prevent the development of bleomycin-induced lung fibrosis via the repression of protein and lipid peroxidation.  相似文献   

17.
Chronic renal failure (CRF) is associated with oxidative stress that promotes production of reactive oxygen species (ROS). Melatonin, the chief secretory product of the pineal gland, was recently found to be a potent free radical scavenger and antioxidant. The aim of this study was to examine the role of melatonin in protecting the aorta, heart, corpus cavernosum, lung, diaphragm, and kidney tissues against oxidative damage in a rat model of CRF, which was induced by five of six nephrectomy. Male Wistar albino rats were randomly assigned to either the CRF group or the sham-operated control group, which had received saline or melatonin (10 mg/kg, i.p.) for 4 wk. CRF was evaluated by serum blood urea nitrogen (BUN) level and creatinine measurements. Aorta and corporeal tissues were used for contractility studies, or stored along with heart, lung, diaphragm, and kidney tissues for the measurement of malondialdehyde (MDA, an index of lipid peroxidation), protein carbonylation (PC, an index for protein oxidation), and glutathione (GSH) levels (a key antioxidant). Plasma MDA, PC, and GSH levels and erythrocytic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in CRF. In the CRF group, the contraction and the relaxation of aorta and corpus cavernosum samples decreased significantly compared with controls (P < 0.05-0.001). Melatonin treatment of the CRF group restored these responses. In the CRF group, there were significant increases in tissue MDA and PC levels in all tissues with marked reductions in GSH levels compared with controls (P < 0.05-0.001). In the plasma, while MDA and PC levels increased, GSH, SOD, CAT, and GSH-Px activities were reduced. Melatonin treatment reversed these effects as well. In this study, the increase in MDA and PC levels and the concomitant decrease in GSH levels of tissues and plasma and also SOD, CAT, GSH-Px activities of plasma demonstrate the role of oxidative mechanisms in CRF-induced tissue damage, and melatonin, via its free radical scavenging and antioxidant properties, ameliorates oxidative organ injury. CRF-induced dysfunction of the aorta and corpus cavernosum of rats was reversed by melatonin treatment. Thus, supplementing CRF patients with adjuvant therapy of melatonin may have some benefit.  相似文献   

18.
Regarding the mechanisms of methotrexate (MTX) hepatotoxicity and nephrotoxicity, several hypotheses have been put forward, among which oxidative stress (including depletion of glutathione) is likely. This investigation elucidates the role of free radicals in MTX-induced toxicity and the protection by melatonin. Wistar albino rats were injected with MTX intraperitoneally. Following a single dose of MTX (20 mg/kg), either saline (MTX group) or melatonin (10 mg/kg, MTX + Mel group) was administered for 5 days. In other rats, physiologic saline (control group) or melatonin (10 mg/kg, Mel group) was injected for 5 days, following a single injection of saline. On the sixth day, rats were killed to obtain blood, liver, and kidney tissue samples. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH), a key antioxidant, levels were evaluated in blood and tissue homogenates. Reactive oxygen metabolite-induced inflammatory changes in kidney and liver tissues were evaluated by measuring myeloperoxidase (MPO) activity, an index of neutrophil infiltration. MTX administration resulted in increased MDA levels and MPO activity and decreased GSH levels in the blood, liver, and kidney whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin may be of therapeutic benefit when used with MTX.  相似文献   

19.
Manda K  Bhatia AL 《Biogerontology》2003,4(3):133-139
The ever-increasing understanding of oxygen radical-linked diseases, including the biological process of aging, has stimulated general interest in modulating these biological events. Melatonin has been reported to have antioxidant properties in addition to its known hormonal activities. However, reports on low-level chronic administration with its anti-aging influence are scanty. Hence, the present study was aimed to investigate the influence of low-dose chronic administration (0.10 mg/kg bodyweight/day for 3 months) of melatonin again stage-induced oxidative stress in mice tissues, namely brain, liver, spleen and kidney. Sixteen-month-old mice were supplemented with melatonin (0.10 mg/kg body weight/day) for three months and then autopsied (at the age of19 months) for the biochemical estimation of lipid peroxidation, reduced glutathione (GSH), glutathione disulphide (GSSG), glutathione peroxidase (GSH-Px) and serum phosphatase activity. Results indicate that age-induced augmentation (compared to 6–8-week-old mice)in the level of lipid peroxidation, GSSG and acid phosphatase is significantly (P < 0.001)ameliorated in melatonin-treated mice. Age-induced decline in the level of GSH, GSH-Px and alkaline phosphatase activity is inhibited significantly by the long-term administration of melatonin. The findings indicate that low-dose chronic administration of melatonin acts as a free radical scavenger and anti-aging agent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Oxygen free radicals are considered to be important components involved in the pathophysiological tissue alterations observed during ischemia-reperfusion (I/R). In this study, we investigated the putative protective effects of melatonin treatment on renal I/R injury. Wistar albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 1, 3, 6, 24, 48 hr or 1 wk of reperfusion. Melatonin (10 mg/kg, s.c.) or vehicle was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the reperfusion periods, rats were decapitated. Kidney samples were taken for histological examination or the determination of renal malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and protein oxidation (PO). Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for the evaluation of renal function. The results revealed that I/R induced nephrotoxicity, as evidenced by increases in BUN and creatinine levels at each time point, was reversed by melatonin treatment. The decrease in GSH and increases in MDA, MPO and PO induced by I/R indicated that renal injury involves free radical formation. As melatonin administration reversed these oxidant responses, improved renal function and microscopic damage, it seems likely that melatonin protects kidney tissue against oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号