共查询到20条相似文献,搜索用时 31 毫秒
1.
Longevity of total joints has been compromised by wear and fatigue of ultrahigh molecular weight polyethylene (UHMWPE) components. Crosslinking reduces UHMWPE wear, but combined with postirradiation melting, also reduces its fatigue strength, therefore limiting its use in high-stress applications. We hypothesized that a lipophilic antioxidant (alpha-tocopherol, alpha-T) can protect UHMWPE against oxidation eliminating the need for postirradiation melting of crosslinked UHMWPE and improve its fatigue strength. To test these hypotheses, 65- and 100-kGy irradiated, alpha-T-doped and subsequently gamma-sterilized UHMWPE were used. (I) alpha-T-doped irradiated UHMWPEs showed significantly lower oxidation levels (0.48+/-0.25 and 0.44+/-0.06) compared to 100-kGy irradiated UHMWPE (3.74+/-0.16) after 5 weeks of accelerated aging at 80 degrees C in air. (II) Wear rate of alpha-T-doped irradiated UHMWPE (1.9+/-0.5, and 0.9+/-0.1mg/million cycles (MC) for 65- and 100-kGy irradiated UHMWPE, respectively) were comparable to that of 100-kGy irradiated/melted UHMWPE (1.1+/-0.7mg/million cycles). (III) The stress intensity factor at crack inception ( DeltaKi) of 100-kGy irradiated UHMWPE increased significantly upon doping with alpha-T from 0.74 to 0.87MPam(1/2) ( p<0.01 ). The DeltaKi for the 100-kGy irradiated and melted UHMWPE, currently in clinical use, was 0.55MPam(1/2). Doping with alpha-T eliminated the need for postirradiation melting to protect irradiated UHMWPE against long-term oxidation. The fatigue strength was improved by 58% for alpha-T-doped 100-kGy irradiated UHMWPE compared to irradiated and melted UHMWPE. The increase in oxidative stability of alpha-T-doped UHMWPE is attributed to the ability of alpha-T to react with peroxy free radicals on lipid chains and arrest the oxidation reactions. The improved fatigue strength is attributed to the increase in plasticity of UHMWPE due to the lipophilic nature of alpha-T. 相似文献
2.
Crosslinked ultrahigh molecular weight polyethylene (UHMWPE) has been recently approved by the Food and Drug Administration for use in orthopedic implants. The majority of commercially available UHMWPE orthopedic components are crosslinked using e-beam or gamma radiation. The level of crosslinking is controlled with radiation dose and free radicals are eliminated through heat treatments to prevent long-term degradation associated with chain scission or oxidation mechanisms. Laboratory studies have demonstrated a substantial improvement in the wear resistance of crosslinked UHMWPE. However, a concern about the resistance to fatigue damage remains in the clinical community, especially for tibial components that sustain high cyclic contact stresses. The objective of this study was to investigate both the initiation and propagation aspects of fatigue cracks in radiation crosslinked medical-grade UHMWPE. This work evaluated three levels of radiation, which induced three crosslink densities, on the fatigue crack propagation and total fatigue life behavior. Both as-received UHMWPE, as well as those that underwent an identical thermal history as the crosslinked UHMWPE were used as controls. Fractured crack propagation specimens were examined using scanning electron microscopy to elucidate fatigue fracture mechanisms. The results of this work indicated that a low crosslink density may optimize the fatigue resistance from both a crack initiation and propagation standpoint. 相似文献
3.
Puértolas JA Medel FJ Cegoñino J Gomez-Barrena E Ríos R 《Journal of biomedical materials research. Part B, Applied biomaterials》2006,76(2):346-353
Electron beam irradiation at doses below 150 kGy is a widely used technique to obtain highly crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). Its current use in total joint replacement components may improve wear resistance and decrease UHMWPE particle debris. However, currently used post-irradiation thermal treatments, which aim to decrease the free radicals within the material, introduce microstructural changes that affect UHMWPE mechanical properties, particularly the fatigue strength. This influence may be crucial in total knee replacements, where fatigue-related damage limits the lifespan of the prosthesis. Therefore, more studies are required to understand UHMWPE fatigue after current crosslinking protocols. This study was planned to evaluate the influence of UHMWPE remelting after irradiation on the material fatigue resistance. The remelting was achieved at 150 degrees C for 2 h on UHMWPE previously irradiated at 50, 100, and 150 kGy. Fatigue evaluation included short-term tests under cyclic tensile stress with zero load ratio, R = 0, and 1 Hz. In addition, stress-life testing was performed using 12% yield as the criterion for failure. Near-threshold fatigue crack propagation experiments were also performed at a frequency of 5 Hz, and crack length was measured in nonthermally treated and remelted irradiated UHMWPE. Crystallinity percentage was calculated from DSC measurements. The results pointed out that irradiation positively contributed to total life analysis, but the further remelting process decreased the flaw initiation resistance. On the other hand, both processes negatively affected the fatigue resistance of notched components. From a clinical point of view, the results suggest that the material fatigue behavior should be carefully studied in new UHMWPE to avoid changes related to material processing. 相似文献
4.
The oxidation resistance of irradiated ultra-high molecular weight polyethylene (UHMWPE) components used in total joint arthroplasty can be improved by adding alpha-tocopherol (vitamin E) through diffusion. To ensure long-term oxidative stability, a minimum alpha-tocopherol concentration needs to be maintained throughout these components. Migration of alpha-tocopherol out of the components is one mechanism that could compromise long-term oxidative stability. We hypothesized that alpha-tocopherol could elute out during standard implant fabrication steps such as cleaning as well as during in vivo use. We doped 85 kGy irradiated UHMWPE with alpha-tocopherol at 120 degrees C and homogenized at 120 degrees C. We determined the extent of elution of alpha-tocopherol or its effect on oxidative stability following cleaning in isopropyl alcohol (IPA) and following 5 million cycles (MC) of simulated normal gait in bovine serum. There was no significant elution of alpha-tocopherol in repeated and prolonged cleaning in IPA as measured by average surface and bulk alpha-tocopherol concentrations. There was no change in the oxidative stability following 5 MC of hip simulator testing, indicating minimal elution during simulated normal gait. 相似文献
5.
The anti-oxidative properties of alpha-tocopherol in gamma-irradiated UHMWPE with respect to fatigue and oxidation resistance 总被引:2,自引:0,他引:2
Although addition of an antioxidant (alpha-tocopherol) is reported to prevent delamination in ultrahigh molecular weight polyethylene (UHMWPE) knee components, contribution of alpha-tocopherol as an antioxidant to the improvement of long-term fatigue performance of UHMWPE is an unknown mechanism. To solve this problem, bi-directional sliding fatigue tests were performed for gamma-irradiated (25 kGy), gamma-irradiated (25 kGy) with 0.3 wt% alpha-tocopherol added, and gamma-irradiated (25 kGy) with 0.3 wt% tocopheryl acetate added UHMWPE specimens. Internal defect initiation was quantified with scanning acoustic tomography (SAT). Also, oxidation index and crystallinity were obtained from infrared absorption spectra measured using Fourier transform infrared (FT-IR) microscopy. Only gamma-irradiated UHMWPE specimens resulted in severe fatigue fractures. alpha-Tocopherol-added UHMWPE specimens showed significantly lower projected area ratio of defects (1.80+/-0.82) than did gamma-irradiated (7.0+/-2.29) and tocopheryl acetate-added ones (8.50+/-2.01). The oxidation index of gamma-irradiated UHMWPE specimens (0.111+/-0.0052) was extremely higher compared to those of doped ones; 0.0179+/-0.0026 and 0.0144+/-0.0069 for alpha-tocopherol-added and tocopheryl acetate-added ones, respectively. The crystallinity of gamma-irradiated UHMWPE specimens (57.5+/-1.16) was lower compared to those of doped ones; 60.3+/-0.72 and 60.4+/-1.38 for alpha-tocopherol-added and tocopheryl acetate-added ones, respectively. The incorporation of alpha-tocopherol significantly improves the long-term fatigue performance of gamma-irradiated UHMWPE with oxidation stability. Also, the addition of alpha-tocopherol controls macromolecular structures resulting in the improvement of fatigue performance of UHMWPE. 相似文献
6.
Adhesive/abrasive wear in ultra-high molecular weight polyethylene (UHMWPE) has been minimized by radiation cross-linking. Irradiation is followed by melting to eliminate residual free radicals and avoid long-term oxidative embrittlement. However, post-irradiation melting reduces the crystallinity of the polymer and hence its strength and fatigue resistance. We proposed an alternative to post-irradiation melting to be the incorporation of the antioxidant alpha-tocopherol into UHMWPE prior to consolidation. alpha-Tocopherol is known to react with oxygen and oxidized lipids, stabilizing them against further oxidative degradation reactions. We blended GUR 1050 UHMWPE resin powder with alpha-tocopherol at 0.1 and 0.3 wt% and consolidated these blends. Then we gamma-irradiated these blends to 100-kGy. We characterized the effect of alpha-tocopherol on the cross-linking efficiency, oxidative stability, wear behavior and mechanical properties of the blends. (I) The cross-link density of virgin, 0.1 and 0.3 wt% alpha-tocopherol blended, 100-kGy irradiated UHMWPEs were 175+/-19, 146+/-4 and 93+/-4 mol/m3, respectively. (II) Maximum oxidation indices for 100-kGy irradiated UHMWPE previously blended with 0, 0.1 and 0.3 wt% alpha-tocopherol that were subjected to accelerated aging at 80 degrees C in air for 5 weeks were 3.32, 0.09, and 0.05, respectively. (III) The pin-on-disc wear rates of 100-kGy irradiated UHMWPE previously blended with 0.1 and 0.3 wt% alpha-tocopherol that were subjected to accelerated aging at 80 degrees C in air for 5 weeks were 2.10+/-0.17 and 5.01+/-0.76 mg/million cycles, respectively. (IV) Both accelerated aged, alpha-tocopherol-blended 100-kGy irradiated UHMWPEs showed higher ultimate tensile strength, higher yield strength, and lower elastic modulus when compared to 100-kGy irradiated, virgin UHMWPE. These results showed that alpha-tocopherol-blended 100-kGy irradiated UHMWPEs were not cross-linked to the same extent as the 100-kGy irradiated, virgin UHMWPE. 相似文献
7.
Ultra High Molecular Weight Polyethylene (UHMWPE) total joint replacement components under certain conditions are at risk of fatigue fracture. Thus, the fatigue crack inception/propagation resistance of UHMWPE is of interest. During fatigue crack propagation tests of UHMWPE, crack growth is often followed visually; however, this approach can be time consuming and requires that the specimen be accessible during testing. The objective of this study was to demonstrate the applicability of the compliance method for fatigue crack propagation tests of UHMWPE. We hypothesized that the standard calibration coefficients developed for metals may not be appropriate for UHMWPE and that different UHMWPE materials would require different compliance calibration coefficients. Three UHMWPE materials: sterilized (30 kGy); highly crosslinked and annealed (100 kGy, 130 degrees C); and highly crosslinked and remelted (100 kGy, 150 degrees C) were examined under ambient conditions. The results support the applicability of the compliance method for determination of crack length during fatigue crack propagation testing of UHMWPE. As hypothesized, the standard calibration coefficients were found to be inaccurate for UHMWPE. New UHMWPE-specific calibration coefficients were determined which predicted the crack growth behavior accurately. Also, as hypothesized, the compliance calibration coefficients for the three materials were significantly different. This is the first reported study to demonstrate the applicability of a compliance method to measure crack length in UHMWPE. 相似文献
8.
Oonishi H Clarke IC Yamamoto K Masaoka T Fujisawa A Masuda S 《Journal of biomedical materials research. Part A》2004,68(1):52-60
Higher levels of UHMWPE crosslinking currently are being advocated for improved wear resistance of acetabular cups. Pioneering Japanese studies, begun in 1971, have achieved good clinical results with UHMWPE irradiated to 1000 kGy for use with a cemented-cup design. The objective of our study was to use contemporary simulator techniques to determine the in vitro wear performance of such high-dose irradiated cups. Extruded UHMWPE cups were processed with 500, 1000, and 1500 kGy of gamma-radiation doses under vacuum, annealed, and machined to shape. The cups were mated with 26-mm alumina heads and run in a multidirectional simulator with bovine serum. Over a 6-million cycle (Mc) study, the weight loss of the nonirradiated control cups averaged 52.8 mg/Mc + 1.4% (wear = 57.2 mm(3)/Mc). In contrast, the irradiated wear cups had a consistent weight gain. Thus cups with irradiation of 500-1500 kGy had no detectable wear in this study. The original machining marks still were partially evident in the wear zones, along with some macrofissures in the 1000- and 1500-kGy cups. Areas adjacent to the fissures showed delaminating plaques of 100-300 microm in size. It also was noted that the wear cups systematically gained more weight than their corresponding soak controls. Each 200-kGy radiation gain increased the fluid sorption ratio by 10%. The increased fluid sorption and evidence of some surface deterioration may indicate that such high-dose irradiated cups are more susceptible to mechanical damage. This indicates that we should take care to ensure that our desire to reduce the wear debris to a zero amount does not result in a modified UHMWPE that lacks the necessary mechanical properties for contemporary metal-backed cup designs. 相似文献
9.
An evaluation of the fatigue crack resistance of human dentin was conducted to identify the degree of degradation that arises with aging and the dependency on tubule orientation. Fatigue crack growth was achieved in specimens of coronal dentin through application of Mode I cyclic loading and over clinically relevant lengths (0 ≤ a ≤ 2 mm). The study considered two directions of cyclic crack growth in which the crack was either in-plane (0°) or perpendicular (90°) to the dentin tubules. Results showed that regardless of tubule orientation, aging of dentin is accompanied by a significant reduction in the resistance to the initiation of fatigue crack growth, as well as a significant increase in the rate of incremental extension. Perpendicular to the tubules, the fatigue crack exponent increased significantly (from m=14.2 ± 1.5 to 24.1 ± 5.0), suggesting an increase in brittleness of the tissue with age. For cracks extending in-plane with the tubules, the fatigue crack growth exponent does not change significantly with patient age (from m=25.4 ± 3.03 to 22.9 ± 5.3), but there is a significant increase in the incremental crack growth rate. Regardless of age, coronal dentin exhibits the lowest resistance to fatigue crack growth perpendicular to the tubules. While there are changes in the cyclic crack growth rate and mechanisms of cyclic extension with aging, this tissue maintains its anisotropy. 相似文献
10.
E. Apel J. Deubener A. Bernard M. Hland R. Müller H. Kappert V. Rheinberger W. Hland 《Journal of the Mechanical Behavior of Biomedical Materials》2008,1(4):313-325
Lithium disilicate, leucite and apatite glass-ceramics have become state-of-the-art framework materials in the fabrication of all-ceramic dental restorative materials. The goal of this study was to examine the crack propagation behaviour of these three known glass-ceramic materials after they have been subjected to Vickers indentation and to characterize their crack opening profiles ( vs. (a−r)). For this purpose, various methods of optical examination were employed. Optical microscopy investigations were performed to examine the crack phenomena at a macroscopic level, while high-resolution techniques, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM), were employed to investigate the crack phenomena at a microscopic level. The crack patterns of the three glass-ceramics vary from fairly straightforward to more complex, depending on the amount of residual glass matrix present in the material. The high-strength lithium disilicate crystals feature a high degree of crosslinking, thereby preventing crack propagation. In this material, the crack propagates only through the residual glass phase, which constitutes 30%–40% by volume. Having a high glass content of more than 65% by volume, the leucite and apatite glass-ceramics show far more complex crack patterns. Cracks in the leucite glass-ceramic propagate through both the glass and crystal phase. The apatite glass-ceramic shows a similar crack behaviour as an inorganic–organic composite material containing nanoscale fillers, which are pulled out in the surroundings of the crack tip. The observed crack behaviour and the calculated values of the three types of glass-ceramics were compared to the KIC values determined according to the SEVNB method. 相似文献
11.
Visco AM Campo N Torrisi L Cristani M Trombetta D Saija A 《Bio-medical materials and engineering》2008,18(3):137-148
Ultra high molecular weight polyethylene, both pure and electron beam irradiated, was exposed to air and hyaluronic acid. Physical and mechanical analyses were performed in order to check the polymeric change due to the treatment. Pure UHMWPE, in fact, was modified by the hyaluronic acid that plasticizes the polymer. The electron irradiation cross links the chains and prevents their sliding in acid presence. A low irradiation dose is preferable rather than an high one. Low doses induce low amount of free radicals, witch react with oxygen and hyaluronic acid inducing low polymer degrade maintaining the initial mechanical performance. High doses degrade significantly the polymer properties.100 kGy irradiation in air can be applicable on the polyethylene as well as a compromise between the low mechanical performance improving and the material degradation. 相似文献
12.
We developed a radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) stabilized with alpha-tocopherol (Vitamin E) as a bearing material in total joint replacements. The stabilizing effect of alpha-tocopherol on free radical reactions in UHMWPE is not well understood. We investigated the effect of alpha-tocopherol on the oxidation and transformation of residual free radicals during real-time aging of alpha-tocopherol-doped, irradiated UHMWPE (alphaTPE) and irradiated UHMWPE (control). Samples were aged at 22 degrees C (room temperature) in air, at 40 degrees C in air and at 40 degrees C in water for 7 months. During the first month, alphaTPE showed some oxidation at the surface, which stayed constant thereafter. Control exhibited substantial oxidation in the subsurface region, which increased with time. The alkyl/allyl free radicals transformed to oxygen centered ones in both materials; this transformation occurred faster in alpha-TPE. In summary, the real-time oxidation behavior of alpha-TPE was consistent with that observed using accelerated aging methods. This new UHMWPE is oxidation resistant and is expected to maintain its properties in the long term. 相似文献
13.
Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene 总被引:1,自引:0,他引:1
To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups. 相似文献
14.
The double-torsion test technique was used to study slow crack propagation in a set of dental composite resins including two glass-filled and two microfilled materials. The microstructure within each pair was the same but one of the resins was selfcured and the other photocured. The fracture behavior was dependent on the filler concentration and the presence of absorbed water. Wet materials fractured by slow crack growth in the range of crack velocity studied (10(-7) to 10(-3) m/s), and the microfilled composites, which contain a lower concentration of inorganic filler, had lower stress intensity factors (K1c) than the glass-filled composites tested. Dry specimens of the microfilled materials and the selfcured, glass-filled composite also showed unstable, stick-slip fracture behavior indicative of a crack blunting mechanism which leads to an elevation of the stress intensity factor for crack initiation over K1c for stable crack growth. The plasticizing effect of water increased the viscoelastic response of the materials measured by the slope of curves of slow crack growth. Analysis of fracture surfaces showed that cracks propagated at low velocities (10(-7) to 10(-5) m/s) by the apparent failure of the filler/matrix interfacial bond, and absorbed water affected the strength or fracture resistance of the interface. At high crack velocities the properties of the composite depend on the properties of the polymeric matrix, the filler, and the filler volume fraction, but at low velocities the interface is the controlling factor in the durability of these composites exposed to an aqueous environment. 相似文献
15.
Age, dehydration and fatigue crack growth in dentin 总被引:3,自引:0,他引:3
A preliminary study of the effects from age and dehydration on fatigue crack growth in human dentin was conducted. Compact tension (CT) fatigue specimens of coronal dentin were prepared from extracted molars and subjected to high cycle fatigue (10(5)相似文献
16.
Villarraga ML Kurtz SM Herr MP Edidin AA 《Journal of biomedical materials research. Part A》2003,66(2):298-309
Previous observations of reduced uniaxial elongation, fracture resistance, and crack propagation resistance of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) have contributed to concern that the technology may not be appropriate for systems undergoing cyclic fatigue loading. Using a "total life" approach, we examined the influence of radiation crosslinking on the fatigue response of UHMWPE under cyclic loading via the small punch test. Our goal in this study was to evaluate the suitability of the small punch test for conducting miniature-specimen, cyclic loading, and fatigue experiments of conventional and highly crosslinked UHMWPE. We subjected four types of conventional and highly crosslinked UHMWPE to cyclic loading at 200 N/s and at body temperature in a small punch test apparatus. After failure, the fracture surfaces were characterized with the use of field emission scanning electron microscopy to evaluate the fatigue mechanisms. Cyclic small punch testing under load control was found to be an effective and repeatable method for relative assessment of the fatigue resistance of conventional and highly crosslinked UHMWPE specimens under multiaxial loading conditions. For each of the four conventional and highly crosslinked UHMWPE materials evaluated in this study, fatigue failures were consistently produced according to a power law relationship in the low cycle regimen, corresponding to failures below 10000 cycles. The fatigue failures were all found to be consistent with a single source of initiation and propagation to failure. Our long-term goal in this research is to develop miniature-specimen fatigue testing techniques for characterization of retrieved UHMWPE inserts. 相似文献
17.
Cracks and craze lines are often observed in the enamel of human teeth, but they rarely cause tooth fracture. The present study evaluates fatigue crack growth in human enamel, and compares that to the fatigue response of sintered hydroxyapatite (HAp) with similar crystallinity, chemistry and density. Miniature inset compact tension (CT) specimens were prepared that embodied a small piece of enamel (N=8) or HAp (N=6). The specimens were subjected to mode I cyclic loads and the steady state crack growth responses were modeled using the Paris Law. Results showed that the fatigue crack growth exponent (m) for enamel (m=7.7+/-1.0) was similar to that for HAp (m=7.9+/-1.4), whereas the crack growth coefficient (C) for enamel (C=8.7 E-04 (mm/cycle)x(MPa m(0.5))(-m)) was significantly lower (p<0.0001) than that for HAp (C=2.0 E+00 (mm/cycle)x(MPa m(0.5))(-m)). Micrographs of the fracture surfaces showed that crack growth in the enamel occurred primarily along the prism boundaries. In regions of decussation, the microstructure promoted microcracking, crack bridging, crack deflection and crack bifurcation. Working in concert, these mechanisms increased the crack growth resistance and resulted in a sensitivity to crack growth (m) similar to bone and lower than that of human dentin. These mechanisms of toughening were not observed in the crack growth response of the sintered HAp. While enamel is the most highly mineralized tissue of the human body, the microstructural arrangement of the prisms promotes exceptional resistance to crack growth. 相似文献
18.
Arola D Zheng W Sundaram N Rouland JA 《Journal of biomedical materials research. Part A》2005,73(2):201-212
An experimental study of fatigue crack growth in dentin was conducted, and the influence of stress ratio (R) on the crack growth rate and mechanisms of cyclic extension were examined. Double Cantilever Beam (DCB) fatigue specimens were sectioned from bovine molars and then subjected to high cycle fatigue loading (10(5) < N < 10(6)) under hydrated conditions. The evaluation consisted of Mode I loads with stress ratios that ranged from -0.5 to 0.5. The fatigue crack growth rates were measured and used to estimate the crack growth exponent (m) and coefficient (C) according to the Paris Law model. The fatigue crack growth rates for steady-state extension (Region II) ranged from 1E-7 to 1E-4 mm/cycle. It was found that the rate of cyclic extension increased significantly with increasing R, and that the highest average crack growth rate occurred at a stress ratio of 0.5. However, the crack growth exponent decreased with increasing R from an average of 4.6 (R = 0.10) to 2.7 (R = 0.50). The stress intensity threshold for crack growth decreased with increasing R as well. Results from this study suggest that an increase in the cyclic stress ratio facilitates fatigue crack growth in dentin and increases the rate of cyclic extension, both of which are critical concerns in minimizing tooth fractures and maintaining lifelong oral health. 相似文献
19.
Mechanisms of zidovudine resistance in bacteria 总被引:2,自引:0,他引:2
Unlike their parent strains, zidovudine-resistant derivatives of Escherichia coli KL16 and Salmonella typhimurium NCTC 5710 were found to be incapable of incorporating radiolabelled thymidine into their chromosomal DNA. Since incorporation was still prevented in the presence of EDTA, resistance to zidovudine was not associated with a permeability barrier, but appeared to result from the loss of thymidine kinase activity, required for the phosphorylation of zidovudine. Pseudomonas aeruginosa, which is intrinsically zidovudine-resistant, was also shown to be incapable of incorporating thymidine into its DNA, but Staphylococcus epidermidis SK360 and Staph. aureus E3T, which are also intrinsically zidovudine-resistant, possessed thymidine kinase activity. This suggests that two distinct mechanisms of resistance to zidovudine exist in bacteria. Zidovudine resistance did not appear to confer resistance to other antibacterial agents. 相似文献
20.
目的: 观察钩藤碱对内毒素血症小鼠死亡率及器宫损伤的影响,并探讨其作用机制。方法: 雄性小鼠随机分为对照组、脂多糖(LPS)组、钩藤碱(Rhy)防治组和Rhy对照组,分别予以生理盐水、Rhy皮下注射,1 time/d,连续3 d,第3 d皮下注射后1 h,腹腔注射生理盐水或LPS(20 mg/kg)。观察各组小鼠的死亡率,肺、小肠组织病理改变;测定注射LPS后12 h各组肺湿/干重比值 (W/D)及血清丙氨酸氨基转移酶(ALT)、门冬氨酸氨基转移酶(AST)、尿素氮(BUN)和肌酐(Cr)的水平;用酶联免疫吸附法(ELISA)测定血清肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)及白细胞介素-10(IL-10)的含量,用硝酸还原酶法试剂盒测定血清一氧化氮(NO)的含量。进一步复制盲肠结扎穿孔的脓毒症模型, 观察钩藤碱对脓毒症小鼠生存率的影响。结果: LPS攻击后24 h小鼠的生存率明显低于对照组,8、16 mg/kg的钩藤碱防治组小鼠生存率高于LPS组。但钩藤碱并不能降低CLP小鼠的死亡率,而且,8 mg/kg钩藤碱治疗组小鼠的死亡率反而高于CLP小鼠的死亡率。LPS攻击后12 h病理检查发现LPS组小鼠肺及小肠组织均有严重的炎症表现;肺W/D、血清ALT、AST、BUN、Cr水平显著高于对照组;LPS攻击后2 h血清TNF-α、IL-1β及IL-10含量及8 h血清NO水平显著高于对照组。LPS攻击后12 h, Rhy防治组肺及小肠组织损伤无明显改善;肺W/D、血清ALT、AST、BUN、Cr水平与LPS组比较无显著差异;LPS攻击后2 h血清TNF-α水平显著低于LPS组,但2 h血清IL-1β及IL-10含量及8 h血清NO水平与LPS组比较无显著差异。结论: 钩藤碱能降低内毒素血症小鼠的死亡率,但不能降低脓毒症小鼠的死亡率,抑制TNF-α的生成可能是钩藤碱降低内毒素血症小鼠死亡率的机制之一。 相似文献