首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AIM: To investigate the mechanism of bombesin-induced circular smooth muscle cell contraction in cat esophagus. METHODS: Specific G protein or phospholipase C involved in cat esophagus contraction was identified, muscle cells were permeabilized with saponin. After per-meabilization of muscle cells, the Gi3 antibody inhibited bombesin-induced smooth muscle cell contraction. RESULTS: Incubation of permeabilized circular muscle cells with PLC-β3 antibody could inhibit bombesin-induced contraction. H-7, chelerythrine (PKC inhibitor) and genistein (protein tyrosine kinase inhibitor) inhibited bombesin-induced contraction, but DAG kinase inhibitor, R59949, could not inhibit it. To examine which mitogen-activated protein kinase (MAPK) was involved in bombesin-induced contraction, the specific MAPK inhibitors (MEK inhibitor, PD98059 and p38 MAPK inhibitor, SB202190) were used. Preincubation of PD98059 blocked the contraction induced by bombesin in a concentration-dependent manner. However, SB202190 had no effects on contraction. CONCLUSION: Bombesin-induced circular muscle cell contraction in cat esophagus is madiated via a PKC or a PTK-dependent pathway or p44/p42 MAPK pathway.  相似文献   

3.

Objective

Exposure of skeletal muscle to high levels of testosterone or estrogen induces insulin resistance, but evidence regarding the direct role of either sex hormone on metabolism is limited. Therefore, the aim of this study was to investigate the direct effect of acute sex hormone exposure on glucose metabolism in skeletal muscle.

Materials/Methods

Differentiated human skeletal myotubes were exposed to either 17β-estradiol or testosterone and metabolic characteristics were assessed. Glucose incorporation into glycogen, glucose oxidation, palmitate oxidation, and phosphorylation of key signaling proteins were determined.

Results

Treatment of myotubes with either 17β-estradiol or testosterone decreased glucose incorporation into glycogen. Exposure of myotubes to 17β-estradiol reduced glucose oxidation under basal and insulin-stimulated conditions. However, testosterone treatment enhanced basal palmitate oxidation and prevented insulin action on glucose and palmitate oxidation. Acute stimulation of myotubes with testosterone reduced phosphorylation of S6K1 and p38 MAPK. Exposure of myotubes to either 17β-estradiol or testosterone augmented phosphorylation GSK3βSer9 and PKCδThr505, two negative regulators of glycogen synthesis. Treatment of myotubes with a PKC specific inhibitor (GFX) restored the effect of either sex hormone on glycogen synthesis. PKCδ silencing restored glucose incorporation into glycogen to baseline in response to 17β-estradiol, but not testosterone treatment.

Conclusion

An acute exposure to supraphysiological doses of either 17β-estradiol or testosterone regulates glucose metabolism, possibly via PKC signaling pathways. Furthermore, testosterone treatment elicits additional alterations in serine/threonine kinase signaling, including the ribosomal protein S6K1 and p38 MAPK.  相似文献   

4.
杨大春  张鑫  杨永健  肖贞良 《心脏杂志》2007,19(3):269-271,276
目的探讨钙调神经磷酸酶(CaN)、丝裂素活化蛋白激酶(MAPK)、蛋白激酶C(PKC)信号通路在醛固酮(aldosterone,ALD)诱导的乳鼠心肌成纤维细胞(fibroblasts,FBs)增殖中的作用。方法以培养的FBs为模型,以3H-亮氨酸及3H-胸腺嘧啶掺入量作为反映FBs增殖的指标,用ALD诱导FBs增殖,并检测FBsCaN、MAPK、PKC活性。结果ALD呈浓度依赖性增高FBs蛋白及核酸合成速率;螺旋内酯(spironolactone,SPI)能明显阻断ALD诱导的FBs蛋白及核酸合成。ALD诱导组FBsCaN、MAPK、PKC活性明显升高,与对照组相比差异显著(P<0.05或P<0.01)。SPI能阻断ALD诱导的FBsCaN、MAPK、FBsPKC活性增高。结论CaN、MAPK、PKC信号通路均参与了ALD诱导的FBs增殖。  相似文献   

5.
Aims/hypothesis p38 mitogen activated protein kinase (MAPK) is generally thought to facilitate signal transduction to genomic, rather than metabolic responses. However, recent evidence implicates a role for p38 MAPK in the regulation of glucose transport; a site of insulin resistance in Type 2 diabetes. Thus we determined p38 MAPK protein expression and phosphorylation in skeletal muscle from Type 2 diabetic patients and non-diabetic subjects.Methods In vitro effects of insulin (120 nmol/l) or AICAR (1 mmol/l) on p38 MAPK expression and phosphorylation were determined in skeletal muscle from non-diabetic (n=6) and Type 2 diabetic (n=9) subjects.Results p38 MAPK protein expression was similar between Type 2 diabetic patients and non-diabetic subjects. Insulin exposure increased p38 MAPK phosphorylation in non-diabetic, but not in Type 2 diabetic patients. In contrast, basal phosphorylation of p38 MAPK was increased in skeletal muscle from Type 2 diabetic patients.Conclusion/interpretation Insulin increases p38 MAPK phosphorylation in skeletal muscle from non-diabetic subjects, but not in Type 2 diabetic patients. However, basal p38 MAPK phosphorylation is increased in skeletal muscle from Type 2 diabetic patients. Thus, aberrant p38 MAPK signalling might contribute to the pathogenesis of insulin resistance.Abbreviations AICAR 5-aminoimidazole-4-carboxamide ribonucleoside - AMPK 5-AMP activated protein kinase - ERK 1/2 extracellular regulated kinase - GIR glucose infusion rate - IRS-1 insulin receptor substrate 1 - MAPK mitogen-activated protein kinase - PI phosphatidylinositol - VO2max maximal oxygen uptake  相似文献   

6.
The inhibition of glycogen synthase kinase-3beta (GSK-3beta) via phosphorylation by Akt or protein kinase C (PKC), or the activation of mitogen-activated protein kinase (MAPK) cascades can play a pivotal role in left ventricular remodeling following myocardial infarction. Our previous data showed that MAPK and phosphatidylinositol-3-kinase/Akt pathways could be modulated by poly(ADP-ribose)polymerase (PARP) inhibition raising the possibility that cardiac hypertrophic signaling responses may be favorably influenced by PARP inhibitors. A novel PARP inhibitor (L-2286) was tested in a rat model of chronic heart failure following isoproterenol-induced myocardial infarction. Subsequently, cardiac hypertrophy and interstitial collagen deposition were assessed; additionally, mitochondrial enzyme activity and the phosphorylation state of GSK-3beta, Akt, PKC and MAPK cascades were monitored. PARP inhibitor (L-2286) treatment significantly reduced the progression of postinfarction heart failure attenuating cardiac hypertrophy and interstitial fibrosis, and preserving the integrity of respiratory complexes. More importantly, L-2286 repressed the hypertrophy-associated increased phosphorylation of panPKC, PKC alpha/betaII, PKC delta and PKC epsilon, which could be responsible for the activation of the antihypertrophic GSK-3beta. This work provides the first evidence that PARP inhibition beneficially modulates the PKC/GSK-3beta intracellular signaling pathway in a rat model of chronic heart failure identifying a novel drug target to treat heart failure.  相似文献   

7.
OBJECTIVE: Basic fibroblast growth factor (bFGF)-stimulated proliferation of coronary smooth muscle cells (cSMC) contributes to the pathogenesis of arteriosclerosis and restenosis. However, the molecular mechanisms involved are not fully understood. We have shown previously that protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) are required for the bFGF-stimulated mitogenic process in bovine cSMC. In this study, we determined the PKC isoform(s) involved and investigated their functional role in the bFGF-stimulated signaling and cell cycle progression in human and bovine cSMC. METHODS AND RESULTS: Downregulation of PKC by phorbol 12-myristate 13-acetate (PMA) inhibited bFGF-induced DNA synthesis, the activation of MAPK, and the expression of c-myc, demonstrating the involvement of PMA-sensitive PKC isoforms in growth factor-induced proliferation and the MAPK pathway. The PMA-sensitive classical PKC isoforms alpha, beta, gamma and novel PKC isoforms delta and epsilon were found in human cSMC. Whereas blocking of the classical PKC isoforms had no influence, the suppression of PKC delta by genetic and pharmacological approaches inhibited the bFGF-stimulated c-Raf1-MEK-MAPK-c-myc signaling and DNA synthesis in cSMC. In contrast to PKC epsilon, our results showed that bFGF activated PKC delta by phosphorylation in a time-dependent manner. In addition, inhibition of PKC delta induced a hypophosphorylation of the retinoblastoma protein and suppression of the cyclins D1 and A, demonstrating the importance of PKC delta for bFGF-induced cell cycle progression through the G1 phase in cSMC. CONCLUSIONS: Our results show that PKC delta is required for the bFGF-stimulated c-Raf1-MEK-MAPK-c-myc signaling pathway involved in the proliferation of cSMC. Therefore, it may be an interesting therapeutic target for preventing proliferative vascular disorders.  相似文献   

8.
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKCalpha and PKCbetaII levels were increased in 25 mmol/L glucose. However, only PKCbetaII inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKCbetaII were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKCbetaII inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKCbetaII was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKCbetaII-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.  相似文献   

9.
Insulin action on target tissues is mediated by specific tyrosine kinase receptors. Upon ligand binding insulin receptors autophosphorylate and phosphorylate intracellular substrates on tyrosine residues. These early events of insulin action are followed by the activation of a number of enzymes, including protein kinase C (PKC). At least 14 PKC isoforms have been identified and cloned to date. PKCs appear to play dual roles in insulin signaling. For instance, they are involved in transduction of specific insulin signals but also contribute to the generation of insulin resistance. In this article, we will analyze the experimental evidence addressing the mechanism by which insulin might activate individual PKC isoforms as well as the role of single PKCs in insulin-induced bioeffects.  相似文献   

10.
动脉平滑肌细胞一氧化氮合酶与高血压发病的关系   总被引:2,自引:0,他引:2  
目的 探讨高血压病患者血管平滑肌细胞(VSMC)一氧化氮合酶(NOS)活性和NOS基因表达的特点及其与高血压发病的关系。方法 采用复合胶原酶法分离培养高血压病患者和血压正常者动脉VSMC,并以血红蛋白分光光度法、原位反转录聚合酶链反应检测VSMC的NOS活性和诱生型NOS(iNOS)mRNA表达量。结果 (1)高血压组VSMC的NOS活性和iNOS mRNA表达量均显著低于正常组(P〈0.01);  相似文献   

11.
We have shown previously that activation of protein kinase C-delta (PKC delta) is required for angiotensin II (Ang II)-induced migration of vascular smooth muscle cells (VSMCs). Here, we have hypothesized that PKC delta phosphorylation at Tyr(311) plays a critical role in VSMC hypertrophy induced by Ang II. Immunoblotting was used to monitor PKC delta phosphorylation at Tyr(311), and cell size and protein measurements were used to detect hypertrophy in VSMCs. PKC delta was rapidly (0.5 to 10.0 minutes) phosphorylated at Tyr(311) by Ang II. This phosphorylation was markedly blocked by an Src family kinase inhibitor and dominant-negative Src but not by an epidermal growth factor receptor kinase inhibitor. Ang II-induced Akt phosphorylation and hypertrophic responses were significantly enhanced in VSMCs expressing PKC delta wild-type compared with VSMCs expressing control vector, whereas the enhancements were markedly diminished in VSMCs expressing a PKC delta Y311F mutant. Also, these responses were significantly inhibited in VSMCs expressing kinase-inactive PKC delta K376A compared with VSMCs expressing control vector. From these data, we conclude that not only PKC delta kinase activation but also the Src-dependent Tyr(311) phosphorylation contributes to Akt activation and subsequent VSMC hypertrophy induced by Ang II, thus signifying a novel molecular mechanism for enhancement of cardiovascular diseases induced by Ang II.  相似文献   

12.
Objective: Although acute and chronic roles of microvascular smooth muscle cells as effectors of pulmonary vascular resistance and remodeling are well appreciated, relatively little is known regarding the direct effects of neurohumoral agents on these cells. We recently reported that microvascular smooth muscle cells isolated from distal rat lung (RPC) express mRNA and binding sites for 5HT2 receptors. The objective of the current study was to determine if protein kinase C (PKC) affected 5HT-induced changes in intracellular calcium and phosphoinositide metabolism in RPC. Methods: 5HT-induced changes in intracellular calcium ([Ca2+]i) in single RPC were determined microspectrofluorometrically using the calcium-sensitive dye, Fura-2. Results: Phorbol 12-myristate 13-acetate (PMA: 100 nM) caused a rapid desensitization of 5HT-induced increases in [Ca2+]i. Staurosporine, a putative PKC inhibitor, abolished the PMA-induced desensitization. Downregulation of PKC with prolonged (24 hr) PMA exposure also abolished subsequent PMA-induced desensitization of 5HT response. Neither short- nor long-term exposure of RPC to PMA affected binding of [125I]LSD. Activation of PKC by PMA was associated, however, with complete inhibition of 5HT-induced increases in intracellular inositol monophosphate. Conclusions: These data are consistent with PKC causing desensitization of 5HT2 receptors by affecting elements of signal transduction and uncoupling receptor-G protein complex from phospholipase C in RPC.  相似文献   

13.
We investigated the effect of arginine vasopressin (AVP) on inorganic phosphate (Pi) transport in A-10 rat aortic vascular smooth muscle cells (VSMCs). AVP time- and dose-dependently stimulated Na-dependent Pi transport in A-10 cells. This stimulatory effect of AVP on Pi transport was markedly suppressed by V1 receptor antagonist. A protein kinase C (PKC) inhibitor calphostin C partially suppressed the stimulatory effect of AVP. The selective inhibitors of c-Jun-NH2-terminal mitogen-activated protein (MAP) kinase (Jun kinase) attenuated AVP-induced Pi transport, but Erk kinase or p38 MAP kinase inhibitors did not. Wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, suppressed AVP-induced Pi transport. Rapamycin, a selective inhibitor of S6 kinase, reduced this effect of AVP, while Akt kinase inhibitor did not. The combination of inhibitors for PKC, Jun kinase and PI 3-kinase completely suppressed the AVP-enhanced Pi transport. Furthermore, AVP rescued the VSMC from high phosphate-induced cell death and enhanced mineralization of these cells. In summary, these results suggest that AVP stimulates both Na-dependent Pi transport and mineralization in VSMCs. The mechanism is mediated by the activation of multiple signaling pathways including PKC, PI 3-kinase, S6 kinase and Jun kinase.  相似文献   

14.
Sclerosis and increased matrix expression in diabetes are mediated by glucose-induced transforming growth factor (TGF)-beta1 expression. The intracellular effects of high glucose occur at least in part by way of protein kinase C (PKC). We previously described a role for PKC-alpha in glucose-induced permeability. We now investigated the hypothesis that glucose-induced expression of TGF-beta1 and its receptors (TGF-beta-R1 and -R2) are mediated by activation of this PKC isoform. TGF-beta1 and TGF-beta-R expressions were determined in vascular smooth muscle cells (VSMCs) by immunocytochemistry and Western blotting. PKC isoforms were assessed by confocal microscopy. PKC isoforms were inhibited with antisense oligodeoxynucleotides. PKC-alpha was upregulated by overexpression or microinjection. High glucose (20 mmol/L) increased VSMC TGF-beta1 and TGF-beta-R1 expression but not TGF-beta-R2 expression. PKC inhibitors and specific PKC-alpha downregulation by antisense treatment prevented this effect, whereas antisense treatment against PKC-beta, -epsilon, and -zeta had no influence. PKC-alpha overexpression increased TGF-beta1 and TGF-beta-R1 expression but not TGF-beta-R2 expression. PKC-alpha microinjection into individual VSMCs also increased TGF-beta1 and TGF-beta-R immunofluorescence. Last, VSMCs from PKC-alpha-deficient mice did not respond to high glucose compared with VSMCs from wild-type mice. We propose that high glucose-induced TGF-beta1 and TGF-beta-R1 expression is mediated by PKC-alpha. Our findings suggest an autocrine feedback mechanism and a possible role for PKC-alpha in diabetic vascular disease.  相似文献   

15.
Cell signalling of glucagon-like peptide-1 action in rat skeletal muscle   总被引:1,自引:0,他引:1  
Glucagon-like peptide-1 (GLP-1), an incretin with glucose-dependent insulinotropic and insulin-independent antidiabetic properties, has insulin-like effects on glucose metabolism in extrapancreatic tissues participating in overall glucose homeostasis. These effects are exerted through specific receptors not associated with cAMP, an inositol phosphoglycan being a possible second messenger. In rat hepatocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB), protein kinase C (PKC) and protein phosphatase 1 (PP-1) has been shown to be involved in the GLP-1-induced stimulation of glycogen synthase. We have investigated the role of enzymes known or suggested to mediate the actions of insulin in the GLP-1-induced increase in glycogen synthase a activity in rat skeletal muscle strips. We first explored the effect of GLP-1, compared with that of insulin, on the activation of PI3K, PKB, p70s6 kinase (p70s6k) and p44/42 mitogen-activated protein kinases (MAPKs) and the action of specific inhibitors of these kinases on the insulin- and GLP-1-induced increment in glycogen synthase a activity. The study showed that GLP-1, like insulin, activated PI3K/PKB, p70s6k and p44/42. Wortmannin (a PI3K inhibitor) reduced the stimulatory action of insulin on glycogen synthase a activity and blocked that of GLP-1, rapamycin (a 70s6k inhibitor) did not affect the action of GLP-1 but abolished that of insulin, PD98059 (MAPK inhibitor) was ineffective on insulin but blocked the action of GLP-1, okadaic acid (a PP-2A inhibitor) and tumour necrosis factor-alpha (a PP-1 inhibitor) were both ineffective on GLP-1 but abolished the action of insulin, and Ro 31-8220 (an inhibitor of some PKC isoforms) reduced the effect of GLP-1 while completely preventing that of insulin. It was concluded that activation of PI3K/PKB and MAPKs is required for the GLP-1-induced increment in glycogen synthase a activity, while PKC, although apparently participating, does not seem to play an essential role; unlike in insulin signaling, p70s6k, PP-1 and PP-2A do not seem to be needed in the action of GLP-1 upon glycogen synthase a activity in rat muscle.  相似文献   

16.
17.
Aims/hypothesis Proinsulin C-peptide is generally believed to be inert without any appreciable biological functions. However, it has been shown to modulate a variety of cellular processes important in the pathophysiology of diabetic complications. We therefore investigated the ability of C-peptide to stimulate intracellular signalling pathways in kidney proximal tubular cells, the altered activation of which may possibly be related to the development of diabetic nephropathy.Methods Extracellular signal-regulated kinase (ERK) and Akt phosphorylation were evaluated by western blotting. ERK activity was measured by in vitro kinase assay. Intracellular Ca2+ was evaluated by confocal imaging. The membrane and cytosol-associated fractions of protein kinase C (PKC) isoforms were evaluated by western blotting. Proliferation was assessed by thymidine incorporation assay.Results Using the opossum proximal tubular kidney cell line as a model, we demonstrated that at high picomolar to low nanomolar concentrations, C-peptide stimulates extracellular signal-regulated mitogen-activated kinase (3.3±0.1-fold over basal at 3 minutes) and phosphatidylinositol 3-kinase (4.1±0.05-fold over basal at 5 minutes). ERK activation was attenuated by pre-treatment with a PKC inhibitor and abolished by pertussis toxin. Elevations of intracellular [Ca2+] are seen in response to 5 nmol/l C-peptide with consequent activation of PKC-. Pre-treatment with pertussis toxin abolished PKC-. C-peptide is also a functional mitogen in this cell type, stimulating significantly increased cell proliferation. Proliferation was attenuated by wortmannin and pertussis toxin pre-treatments. None of these effects is reproduced by scrambled C-peptide.Conclusions/interpretation This study provides evidence that C-peptide, within physiological concentration ranges, stimulates many signalling pathways in opossum kidney cells.Abbreviations Akt/PKB protein kinase B - DTT dithiothreitol - ERK extracellular signal-regulated kinase - GPCR G-protein coupled receptor - MAPK mitogen-activated protein kinase - OK opossum kidney - PI3-K phosphoinositide 3-kinase - PKC protein kinase C - PMA phorbol myristate acetate - PMSF phenylmethansulfonylfluoride - PTC proximal tubular cells - PTX pertussis toxin  相似文献   

18.
Sham  RL; Packman  CH; Abboud  CN; Lichtman  MA 《Blood》1991,77(2):363-370
Maturation of human myeloid cells is associated with quantitative and qualitative changes in protein kinase C (PKC) and increases in N-formyl- L-methionyl-L-leucyl-L-phenylalanine (FMLP) receptors, actin, and actin regulatory proteins. We have studied the actin responses and cell shape changes caused by FMLP and its second messenger pathways in HL60 cells undergoing neutrophilic maturation. In uninduced cells, the PKC activators 12-O-tetradecanoyl phorbol-13-acetate (TPA), bryostatin, and 1-oleyl-2-acetylglycerol (OAG) resulted in 15% to 30% decreases in F- actin, whereas FMLP had no effect. Ionomycin had no effect on actin but did cause a 10-fold increase in intracellular calcium. Cells grown for 24 hours in 1% dimethyl sulfoxide (DMSO) acquired the ability to polymerize actin in response to FMLP and ionomycin. TPA continued to cause a decrease in F-actin at 24 hours, but caused an increase in F- actin at 48 to 72 hours of maturation. The PKC inhibitor 1-5- isoquinolinesulfonyl 2-methylpiperazine (H7) partially blocked the F- actin increase caused by TPA in induced cells, but had no effect on the decrease in F-actin caused by TPA in uninduced cells or the increase in F-actin seen in FMLP-treated neutrophils. F-actin rich pseudopods developed following TPA or FMLP stimulation of induced HL60 cells; in uninduced cells neither agent caused pseudopod formation but TPA caused a dramatic loss of surface ruffles. The ability of FMLP and ionomycin to elicit a neutrophil-like actin response in HL60 cells within 24 hours after DMSO treatment shows that the actin regulatory mechanism is mature by that time. The inability of ionomycin to increase F-actin in uninduced cells supports the view that calcium increases alone are insufficient for actin polymerization. The longer maturation time required for HL60 cells to develop an actin polymerization response to TPA compared with FMLP, coupled with the inability of H7 to block the FMLP-mediated F-actin increase in neutrophils, suggests that the F- actin increase caused by FMLP is not mediated solely by PKC. Lastly, the TPA-induced F-actin decrease and shape changes in uninduced HL60 cells, and the longer time required for a "mature" response to TPA, may reflect immaturity in the PKC isoenzyme pattern rather than immaturity of the actin regulatory mechanism.  相似文献   

19.
In response to vascular injury, adventitial fibroblasts can modulate their phenotype to myofibroblasts, cells that participate in arterial remodeling. However, the signaling mechanisms underlying the vascular myofibroblast differentiation remain unknown. Since protein kinase C (PKC) is a key enzyme for cell differentiation, we examined whether PKC isoforms were involved in the vascular myofibroblast differentiation. The association between PKCalpha and myofibroblast differentiation was investigated in cultured rat aortic fibroblasts treated with transforming growth factor-beta1 (TGFbeta1). Confocal immunofluorescence microscopy indicated that fibroblasts expressed alpha-smooth muscle actin (alpha-SM actin) after TGFbeta1 treatment. Moreover, TGFbeta1 stimulation increased both PKCalpha mRNA expression (measured by real-time quantitative RT-PCR) and PKC activity (determined by histone-like pseudosubstrate phosphorylation) in adventitial fibroblasts. Western blot analysis indicated that PKCalpha protein expression was higher in TGFbeta1-treated fibroblasts than in untreated cells. TGFbeta1-induced expression of alpha-SM actin was inhibited in a dose-dependent manner by treating cells with a PKC inhibitor, calphostin C, and was abolished by depleting PKCalpha with antisense PKCalpha oligodeoxynucleotides. Our results demonstrate that TGFbeta1 induces adventitial myofibroblast differentiation via a PKCalpha-dependent process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号