首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multiple myeloma (MM) is a plasma cell malignancy preliminary localized in the bone marrow and characterized by its capacity to disseminate. IL-6 and IGF-1 have been shown to mediate proliferative and anti-apoptotic signals in plasmocytes. However, in primary plasma-cell leukemia (PCL) and in end-stage aggressive extramedullar disease, the cytokine requirement for both effects may be not mandatory. This suggests that constitutive activation of signaling pathways occurs. One of the signaling pathways whose deregulation may play an oncogenic role in MM is the phosphatidylinositol 3-kinase (PI 3-K) pathway. In human growth factor-independent MM cell lines OPM2 and RPMI8226, we show that the PI 3-K inhibitors LY294002 and Wortmannin strongly inhibited cell proliferation, whereas inhibition of the mammalian Target Of Rapamycin (mTOR)/P70-S6-kinase (P70(S6K)) pathway with rapamycin or of the Mitogen-Activated Protein Kinase (MAPK) pathway with PD98059 had minimal effect on proliferation. In both cell lines, constitutive activation of the PI 3-K/Akt/FKHRL-1, mTOR/P70(S6K) and MAPK pathways was detected. LY294002 inhibited phosphorylation of Akt, FKHRL-1 and P70(S6K) but had no effect on ERK1/2 phosphorylation, indicating that the PI 3-K and MAPK pathways are independent. IGF-1 but not IL-6 increased phosphorylation of Akt, FKHRL-1 and P70(S6K). Purified plasmocytes from four patients with MM and two patients with primary PCL were studied. In three of them including the two patients with PCL, constitutive phosphorylation of Akt, FKHRL-1 and P70(S6K) was present, inhibited by LY294002 and enhanced by IGF-1. In these patients with constitutive Akt activation, normal PTEN expression was detected. PI 3-K inhibition induced caspase-dependent apoptosis as confirmed by inhibition with the large spectrum caspase inhibitor Z-VAD-FMK and cleavage of pro-caspase-3. Both cell lines spontaneously expressed Skp2 and cyclin D1 proteins at high levels but no p27(Kip1) protein. In the presence of LY294002, cell-cycle arrest in G0/G1 was observed, p27(Kip1) protein expression was up-regulated whereas the expression of both Skp2 and cyclin D1 dramatically diminished. PI 3-K-dependent GSK-3alpha/beta constitutive phosphorylation was also detected in OPM2 cells that may contribute to high cyclin D1 expression. Overall, our results suggest that PI 3-K has a major role in the control of proliferation and apoptosis of growth factor-independent MM cell lines. Most of the biological effects of PI 3-K activation in these cell lines may be mediated by the opposite modulation of p27(Kip1) and Skp2 protein expression. Moreover, constitutive activation of this pathway is a frequent event in the biology of MM in vivo and may be more frequently observed in PCL.  相似文献   

3.
Kuo ML  Chuang SE  Lin MT  Yang SY 《Oncogene》2001,20(6):677-685
Interleukin-6 (IL-6) is a pleitrophic cytokine that not only regulates growth and differentiation of many cell types, but also induces production of acute phase proteins (AAP) in hepatocytes. Our previous works have demonstrated that both PI 3-K/Akt and STAT3 pathways were concomitantly activated and cooperatively mediated the anti-apoptotic effect of IL-6. This investigation reports that IL-6 protected cells against apoptosis induced by a variety of agents including, TGF-beta, UV and retinoic acid (RA) in Hep3B cells, suggesting that IL-6 is a fundamental determinant of hepatic cell survival. Mcl-1, but not other Bcl-2 family members, was rapidly up-regulated by IL-6, with a peak (approximately 3-4-fold) appearing at 4 h. Transient transfection of cells with a mcl-1 antisense vector, resulting in a 50-60% reduction of the anti-apoptotic effect of IL-6, indicating that Mcl-1 is a downstream effector of IL-6. Which signaling pathway transduced by IL-6 responsible for the Mcl-1 up-regulation was further investigated. In Hep3B cells, the JAK/STAT3, ERK, and PI 3-K/Akt pathways were activated by IL-6 stimulation. Blocking JAK/STAT3 activation with a dominant-negative mutant STAT3F or a JAK inhibitor AG490 could not influence IL-6-mediated Mcl-1 up-regulation. Similarly, PD98059 treatment, a MEK specific inhibitor, also failed to inhibit Mcl-1 expression. However, the IL-6-induced Mcl-1 up-regulation was effectively attenuated in the presence of PI 3-K inhibitors, LY294002 and wortmannin. Expression of dominant-negative Akt, but not Etk, could abrogate the IL-6-induced increase of Mcl-1. In conclusion, our results suggest that the anti-apoptotic effect of IL-6 is mediated, at least in part, by Mcl-1 expression and that is mainly through the PI 3-K/ Akt-dependent pathway.  相似文献   

4.
In general, oral squamous cell carcinoma (OSCC) cells are relatively resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis during culture in vitro. Here, we studied the role of phosphatidylinositol 3-kinase (PI 3-K)/Akt in survival and apoptosis of these cells. The PI 3-K inhibitors wortmannin and LY294002 markedly suppressed phosphorylation of Akt and accelerated TRAIL-mediated apoptosis in OSCC cells. Addition of TRAIL to PI 3-K inhibitor-treated cells resulted in caspase-8 activation and loss of mitochondrial membrane potential. Furthermore, inhibitors of caspase-3, -8 and -9 reduced the accelerative effect of PI 3-K inhibitors on TRAIL-mediated apoptosis. These results suggest that the pro-apoptotic effect of PI 3-K inhibitors on TRAIL-mediated apoptosis may contribute to both the extrinsic and intrinsic pathways. Although PI 3-K inhibitors did not affect expression of the TRAIL receptors DR4 and DR5, we observed a marked reduction in expression of cellular FLICE-inhibitory protein (c-FLIP), Bcl-2, cellular inhibitor of apoptosis protein-1 (cIAP-1) and X-linked IAP (XIAP), whereas Bax was up-regulated and no significant difference was observed in expression of Bcl-xL, Bak or cIAP-2. Therefore, the PI 3-K/Akt signaling pathway provides partial regulation of TRAIL-mediated apoptosis in OSCC cells via modulation of c-FLIP, Bcl-2, Bax, cIAP-1 and XIAP expression. These results suggest that PI 3-K inhibitors may represent a novel strategy for overcoming resistance to TRAIL-mediated apoptosis in OSCC cells.  相似文献   

5.
Promyelocytic leukemia HL-60 cells are resistant to Fas-mediated apoptosis. The signaling pathway for Fas-mediated apoptosis in various cells, including HL-60 cells, is currently unknown. Here, we studied the role of survival/apoptosis associated phosphatidylinositol 3-kinase (PI 3-K)/Akt in this process. We found that both PI 3-K inhibitors, wortmannin and LY294002, markedly suppressed phosphorylation of Akt and Bad in HL-60 cells. PI 3-K inhibitors significantly accelerated not only spontaneous apoptosis, but also Fas-induced apoptosis in HL-60 cells. The pro-apoptotic effect of PI 3-K inhibitors favored Fas-mediated apoptosis rather than spontaneous apoptosis in HL-60 cells. The caspase-3 or -8 inhibitor reduced the pro-apoptotic effect of the PI 3-K inhibitors for Fas-mediated apoptosis in HL-60 cells, but the caspase-9 inhibitor did not. Although PI 3-K inhibitors did not affect Fas expression in HL-60 cells, cellular FLICE-inhibitory protein (c-FLIP) levels were markedly reduced by PI 3-K inhibitor treatment. Furthermore, antisense oligonucleotide of c-FLIP confirmed that down-regulation of c-FLIP enhanced sensitization to Fas-mediated apoptosis in HL-60 cells. These results suggest that the PI 3-K/Akt signaling pathway may, in part, regulate Fas-mediated apoptosis in HL-60 cells through c-FLIP expression.  相似文献   

6.
In general, oral squamous cell carcinoma (OSCC) cells are relatively resistant to Fas-mediated apoptosis during in vitro culture. Here, we studied the role of survival/apoptosis associated phosphatidylinositol 3-kinase (PI 3-K)/Akt in this process. We found that both PI 3-K inhibitors, wortmannin and LY294002, markedly suppressed the phosphorylation of Akt and accelerated Fas-mediated apoptosis in OSCC cells. It was found that caspase-3 and -8 inhibitors reduced the accelerative effect of PI 3-K inhibitor on Fas-mediated apoptosis in OSCC cells, but not caspase-9 inhibitor. Although PI 3-K inhibitors did not affect the Fas expression of OSCC cells, cellular FLICE-inhibitory protein (c-FLIP) levels were markedly reduced by PI 3-K inhibitor treatment. Moreover, antisense oligonucleotide to c-FLIP confirmed that the down-regulation of c-FLIP enhanced the sensitization to Fas-mediated apoptosis in OSCC cells. These results suggest that PI 3-K/Akt signaling pathway may, in part, regulate Fas-mediated apoptosis in OSCC cells through c-FLIP expression.  相似文献   

7.
RAFTK/PYK2-dependent and -independent apoptosis in multiple myeloma cells   总被引:8,自引:0,他引:8  
Related Adhesion Focal Tyrosine Kinase (RAFTK; also known as Pyk2), is a member of the Focal Adhesion Kinase (FAK) subfamily and is activated by TNF alpha, UV light and increases in intracellular calcium levels. However, the function of RAFTK remains largely unknown. Our previous studies demonstrated that treatment with dexamethasone (Dex), ionizing radiation (IR), and anti-Fas mAb induces apoptosis in multiple myeloma (MM) cells. In the present study, we examined the potential role of RAFTK during induction of apoptosis in human MM cells triggered by these three stimuli. Dex-induced apoptosis, in contrast to apoptosis triggered by anti-Fas mAb or IR, is associated with activation of RAFTK. Transient overexpression of RAFTK wild type (RAFTK WT) induces apoptosis, whereas transient overexpression of Kinase inactive RAFTK (RAFTK K-M) blocks Dex-induced apoptosis. In contrast, transient overexpression of RAFTK K-M has no effect on apoptosis triggered by IR or Fas. In Dex-resistant cells, Dex does not trigger either RAFTK activation or apoptosis. Finally, interleukin-6 (IL-6), a known survival factor for MM cells, inhibits both activation of RAFTK and apoptosis of MM.1S cells triggered by Dex. Our studies therefore demonstrate Dex-induced RAFTK-dependent, and IR or Fas induced RAFTK-independent apoptotic signaling cascades in MM cells.  相似文献   

8.
Ewing's sarcoma family of tumors (ESFTs) affects patients between the ages of 3 and 40 years, with most cases occurring in the second decade of life. These tumors contain a characteristic translocation, t(11;22), that produces a unique fusion protein, EWS/FLI-1. EWS/FLI-1 transforms mouse fibroblasts; this transformation requires intact EWS and FLI-1 domains as well as the insulin-like growth factor-I receptor (IGF-IR). The IGF-IR is a well-described transmembrane tyrosine kinase receptor that modulates transformation, cell growth, and survival. IGF-IR survival signaling is mediated through the downstream activation of phosphoinositide 3-OH kinase (PI 3-K) and Akt. Apoptosis, programmed cell death, progresses from a central death signal to a caspase cascade, including activation of caspase-3. Because the IGF-IR has been shown to play a role in the transformation and growth of ESFTs, we wanted to determine the role of downstream molecules in the cellular response to doxorubicin treatment. Doxorubicin increased caspase-3 activity in two ESFT cell lines, TC-32 and TC-71. Concomitant treatment of the doxorubicin-treated cells with IGF-I reduced caspase-3 activity 8-fold in TC-32 and 4-fold in TC-71. To determine whether PI 3-K has a role in IGF-I-mediated survival in ESFTs, PI 3-K was then inhibited with wortmannin and LY294002. Doxorubicin treatment reduced cell number and enhanced apoptosis in PI 3-K inhibited cells compared with noninhibited cells. Akt, a serine/threonine kinase activated downstream of PI 3-K, was investigated to determine whether its constitutive activation would render ESFT cells more resistant to doxorubicin. A constitutively activated Akt was stably transfected into ESFT and those cells with high levels of expression demonstrated increased resistance to doxorubicin-induced caspase-3 activation. These results indicate that ESFT cell lines use an IGF-IR initiated signaling pathway through PI 3-K and Akt for survival when treated with doxorubicin.  相似文献   

9.
The Raf/MEK/ERK kinase cascade plays a critical role in transducing growth signals from activated cell surface receptors. Using DeltaMEK1:ER, a conditionally active form of MEK1 which responds to either beta-estradiol or the estrogen receptor antagonist 4 hydroxy-tamoxifen (4HT), we previously documented the ability of this dual specificity protein kinase to abrogate the cytokine-dependency of human (TF-1) and murine (FDC-P1 and FL5.12) hematopoietic cells lines. Here we demonstrate the ability of DeltaMEK1:ER to activate the phosphatidylinositol 3-kinase (PI3K)/Akt/p70 ribosomal S6 kinase (p70(S6K)) pathway and the importance of this pathway in MEK1-mediated prevention of apoptosis. MEK1-responsive cells can be maintained long term in the presence of beta-estradiol, 4HT or IL-3. Removal of hormone led to the rapid cessation of cell proliferation and the induction of apoptosis in a manner similar to cytokine deprivation of the parental cells. Stimulation of DeltaMEK1:ER by 4HT resulted in ERK, PI3K, Akt and p70(S6K) activation. Treatment with PI3K, Akt and p70(S6K) inhibitors prevented MEK-responsive growth. Furthermore, the apoptotic effects of PI3K/Akt/p70(S6K) inhibitors could be enhanced by cotreatment with MEK inhibitors. Use of a PI3K inhibitor and a constitutively active form of Akt, [DeltaAkt(Myr(+))], indicated that activation of PI3K was necessary for MEK1-responsive growth and survival as activation of Akt alone was unable to compensate for the loss of PI3K activity. Cells transduced by MEK or MEK+Akt displayed different sensitivities to signal transduction inhibitors, which targeted these pathways. These results indicate a requirement for the activation of the PI3K pathway during MEK-mediated transformation of certain hematopoietic cells. These experiments provide important clues as to why the identification of mutant signaling pathways may be the Achilles heel of leukemic cell growth. Leukemia treatment targeting multiple signal transduction pathways may be more efficacious than therapy aimed at inhibiting a single pathway.  相似文献   

10.
Asselin E  Mills GB  Tsang BK 《Cancer research》2001,61(5):1862-1868
Chemoresistance is a major hurdle for successful cancer therapy. Although multiple mechanisms have been implicated to be involved in cisplatin resistance, recent evidence has suggested that X-linked inhibitor of apoptosis protein (XIAP) may be a key determinant in chemosensitivity in ovarian cancer. Cell fate is determined by a balance between cell survival and apoptotic signaling. Whereas phosphatidylinositol 3-kinase (PI 3-K) and XIAP are believed to be important cell survival factors in human ovarian surface epithelial cancer cells, if and how they interact to confer resistance to chemotherapy is not known. In the present study, we have investigated the role of XIAP in the regulation of the PI 3-K/Akt survival pathway in chemosensitive (A2780-s, OV2008, and OVCAR-3) and resistant (A2780-cp) ovarian cancer cell lines and the nature of this interaction in cell death/survival signaling. Cisplatin decreased XIAP protein levels and induced Akt cleavage and apoptosis in chemosensitive, but not in resistant, ovarian cancer cells. Cisplatin also induced cleavage of caspase-9 and caspase-3, a process blocked by XIAP overexpression. Pretreatment of ovarian cancer cells and their whole cell lysate with tetrapeptide inhibitors of caspases in vitro significantly decreased Akt cleavage induced by cisplatin and exogenous active caspase-3. Adenoviral sense XIAP cDNA expression increased XIAP protein levels and increased Akt phosphorylation, indicative of activation of Akt and, likely, of PI 3-K. This was associated with a decrease in cisplatin-induced apoptosis. In a cell line (OVCAR-3) where basal phosphorylated Akt levels were high, XIAP overexpression failed to increase further the level of this phosphoprotein. XIAP down-regulation induced Akt cleavage and apoptosis, and treatment of whole cell lysate with human recombinant active caspase-3 resulted in a similar pattern of Akt cleavage. In the presence of the PI 3-K inhibitor (LY294002), XIAP overexpression failed to block cisplatin-induced apoptosis and to induce Akt phosphorylation, suggesting that the site of action of XIAP is upstream of Akt in this cell survival pathway. Taken together, the results indicate that XIAP prevents apoptosis through a PI 3-K-dependent inhibition of the caspase cascade. These results demonstrate a novel mechanism by which XIAP regulates apoptosis and the possible involvement of the PI 3-K/Akt survival pathway in XIAP-mediated chemoresistance of ovarian cancer cells.  相似文献   

11.
IL-6 has been reported to play a central role in growth and survival of multiple myeloma (MM) cells. However, recently we have demonstrated that in the presence of bone marrow stromal cells, survival of MM cells becomes independent of the IL-6/gp130/STAT3 pathway questioning the singular role of IL-6 in MM. Therefore, it was the aim of this study to identify additional factors and signaling pathways that might contribute to the growth and survival of MM cells. We found that in addition to IL-6 a number of bone marrow derived cytokines such as LIF, VEGF, bFGF, MIP-1alpha, SDF-1alpha, IL-1beta, SCF and IL-3 activate the MAPK pathway and induce proliferation of MM.1S and RPMI-8226 MM cells. In addition, these cytokines independently phosphorylate the forkhead family member FKHR via PI3-K/AKT and support survival of primary human MM cells. Inhibition of these pathways induces apoptosis in MM cell lines and primary MM cells. Thus, we provide evidence that in addition to IL-6 a number of different factors trigger important growth-promoting pathways to support the proliferation and survival of MM cells. Therefore, blocking such pathways, rather than blocking a single factor, might be a promising approach for the development of novel treatment strategies in MM.  相似文献   

12.
PURPOSE: Hypoxia, frequently found in the center of solid tumor, is associated with resistance to chemotherapy by activation of signaling pathways that regulate cell pro-liferation, angiogenesis, and apoptosis. We determined whether hypoxia can increase the resistance of human pancreatic carcinoma cells to gemcitabine-induced apoptosis by activation of phosphatidylinositol 3'-kinase (PI3K)/Akt, MEK/mitogen-activated protein kinase (extracellular signal-regulated kinase) [MAPK(Erk) kinase (MEK)], and nuclear factor kappa B (NF-kappa B) signaling pathways. EXPERIMENTAL DESIGN: We evaluated the phosphorylation of Akt and MAPK(Erk), DNA binding activity of NF-kappa B, and apoptosis induced by gemcitabine in L3.6pl human pancreatic cancer cells under normoxic and hypoxic conditions. We then examined the effects of the PI3K inhibitor LY294002, MEK inhibitor U0126, and the epidermal growth factor receptor tyrosine kinase inhibitor PKI 166 on these signaling pathways and induction of apoptosis. RESULTS: Hypoxic conditions increased phosphorylation of Akt and MAPK(Erk) and NF-kappa B DNA binding activity in L3.6pl cells. The activation of Akt and NF-kappa B was prevented by LY294002, whereas the activity of MAPK(Erk), but not NF-kappa B, was inhibited by U0126. The increased activation of Akt, NF-kappa B, and MAPK(Erk) was inhibited by PKI 166. Under hypoxic conditions, L3.6pl cells were resistant to apoptosis induced by gemcitabine. The addition of LY294002 or PKI 166 abrogated cell resistance to gemcitabine, whereas U0126 only partially decreased this resistance. CONCLUSIONS: These data demonstrate that hypoxia can induce resistance of pancreatic cancer cells to gemcitabine mainly through the PI3K/Akt/NF-kappa B pathways and partially through the MAPK(Erk) signaling pathway. Because PKI 166 prevented the activation of PI3K/Akt/NF-kappa B and MAPK(Erk) pathways, the combination of this tyrosine kinase inhibitor with gemcitabine should be an effective therapy for pancreatic cancer.  相似文献   

13.
14.
Rong R  He Q  Liu Y  Sheikh MS  Huang Y 《Oncogene》2002,21(7):1062-1070
The signaling pathways of TC21-mediated transformation and cell survival are not well-established. In this study, we have investigated the role of PI3-K/Akt signaling pathway in oncogenic-TC21-mediated transformation and cell survival. We found that oncogenic-TC21 stimulated the PI3-K activity. This was associated with the activation of Akt, a key component of PI3-K signaling pathway. We also found that TC21 interacted and formed complex with PI3-K. Mutations in the GTP-binding region of TC21, which enhanced GTP-binding potential of this protein, also stimulated its association with PI3-K, suggesting that PI3-K may preferentially interact with the GTP-bound form. Suppression of PI3-K and Akt by specific inhibitors LY294002 and Wortmannin reversed TC21-induced transformation. Likewise, inhibition of PI3-K activity by the PI3-K phosphotase PTEN reduced TC21-mediated focus formation in NIH3T3 cells. Investigation of TC21's effect on cell survival revealed that mutant-TC21 expressing cells were more resistant to etoposide- and cisplatin-induced cell death, and this was associated with the activation of anti-apoptotic protein NF-kappaB, a downstream target of Akt. Treatment of PI3-K inhibitor LY294002 significantly suppressed TC21-mediated NF-kappaB activation. In conclusion, we have identified PI3-K as an effector of TC21 and demonstrated that the PI3-K/Akt signaling pathway plays important roles in TC21-mediated transformation and cell survival.  相似文献   

15.
Tu Y  Gardner A  Lichtenstein A 《Cancer research》2000,60(23):6763-6770
Interleukin 6 (IL-6) and insulin-like growth factor I (IGF-I) induce proliferative and antiapoptotic responses in multiple myeloma (MM) plasma cells. Because these cytokines may activate the phosphatidylinositol 3-kinase (PI 3-K)/AKT kinase pathway in other cell types, we investigated the role of PI 3-K/AKT in MM cell responses. IGF-I effectively activated PI 3-K in 8226 and OCI-My5 MM cells, but IL-6 was ineffective. However, IL-6 successfully activated PI 3-K in AF-10 MM cells and IL-6-dependent MH.60 plasmacytoma/hybridoma cells. IGF-I also successfully activated PI 3-K in four of four MM patient specimens, and IL-6 activated PI 3-K in three of four specimens. Inhibition of PI 3-K activity with wortmannin or Ly294002 blocked the antiapoptotic effect of IGF-I and the proliferative effect of IL-6 in the myeloma cell lines. Furthermore, a dominant negative PI 3-K construct, expressed in AF-10 cells by adenoviral infection, also significantly inhibited the IL-6 proliferative response in MM cells. In correlation with activation of PI 3-K, IGF-I also effectively activated the AKT kinase in 8226 and OCI-My5 cells, and IL-6 activated AKT in AF-10 and MH.60 cells. However, although incapable of activating PI 3-K in 8226 and OCI-My5 cells, IL-6 successfully activated AKT in these MM lines, suggesting PI 3-K-independent mechanisms of AKT activation. The prevention of a myeloma cell proliferative response resulting from inhibition of PI 3-K activity was not associated with an inhibition of IL-6-dependent extracellular signal-regulated kinase (ERK) activation. These results support a role for the PI 3-K/AKT pathway in cytokine-dependent responses in myeloma cells, which is independent of any activation of the ERK pathway.  相似文献   

16.
Wei LH  Kuo ML  Chen CA  Chou CH  Cheng WF  Chang MC  Su JL  Hsieh CY 《Oncogene》2001,20(41):5799-5809
Interleukin-6 (IL-6), a multifunctional cytokine, has recently been implicated in human cervical cancer, though the mechanism remains elusive. This study demonstrates that the anti-apoptotic protein Mcl-1 and IL-6 was concomitantly expressed in human cervical cancer tissues and cell lines, but not in normal cervix tissues. Upon IL-6 treatment, Mcl-1, but not other Bcl-2 family members, was rapidly up-regulated peaking at 4-8 h in human cervical cancer C33A cells. Supporting this observation, using anti-IL-6 or anti-IL-6 receptor antibody to interrupt the IL-6 autocrine loop in SiHa cells significantly reduced cellular level of Mcl-1. This study hypothesizes that the expression of Mcl-1 in cervical cancer cells is regulated by IL-6. The matter of which signaling pathways transduced by IL-6 is responsible for the Mcl-1 up-regulation is further investigated herein. Blocking the STAT3 or MAPK pathway with dominant-negative mutant STAT3F or the MEK inhibitor PD98059 failed to inhibit IL-6-mediated Mcl-1 expression. Meanwhile, the IL-6-induced Mcl-1 up-regulation was effectively abolished by treatment with PI 3-K inhibitors, LY294002. Additionally, overexpression of dominant-negative (dn) Akt in C33A cells could inhibit the IL-6-induced increase of Mcl-1. Finally, overexpression of IL-6 in C33A cells caused a markable resistance to apoptosis induced by doxorubicin or cisplatin. Transient transfection of IL-6-overexpressed cells with a mcl-1 antisense vector, leading to the attenuation of their apoptosis-resistant activity. In conclusion, the data herein suggest that IL-6 regulated the mcl-1 expression via a PI 3-K/Akt-dependent pathway that may facilitate the oncogenesis of human cervical cancer by modulating the apoptosis threshold.  相似文献   

17.
The fact that small cell lung cancer (SCLC) is commonly incurable despite being initially responsive to chemotherapy, combined with disappointing results from a recent SCLC clinical trial with imatinib, has intensified efforts to identify mechanisms of SCLC resistance. Adhesion to extracellular matrix (ECM) is one mechanism that can increase therapeutic resistance in SCLC cells. To address whether adhesion to ECM increases resistance through modulation of signaling pathways, a series of SCLC cell lines were plated on various ECM components, and activation of two signaling pathways that promote cellular survival, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathway, was assessed. Although differential activation was observed, adhesion to laminin increased Akt activation, increased cellular survival after serum starvation, and caused the cells to assume a flattened, epithelial morphology. Inhibitors of the PI3K/Akt/mTOR pathway (LY294002, rapamycin) but not the MEK/ERK pathway (U0126) abrogated laminin-mediated survival. SCLC cells plated on laminin were not only resistant to serum starvation-induced apoptosis but were also resistant to apoptosis caused by imatinib. Combining imatinib with LY294002 or rapamycin but not U0126 caused greater than additive increases in apoptosis compared with apoptosis caused by the inhibitor or imatinib alone. Similar results were observed when adenoviruses expressing mutant Akt were combined with imatinib, or when LY294002 was combined with cisplatin or etoposide. These studies identify laminin-mediated activation of the PI3K/Akt/mTOR pathway as a mechanism of cellular survival and therapeutic resistance in SCLC cells and suggest that inhibition of the PI3K/Akt/mTOR pathway is one strategy to overcome SCLC resistance mediated by ECM.  相似文献   

18.
We examined the role of Mcl-1 and Bcl-2 expression in the induction of apoptosis, through blocking protein tyrosine kinase (PTK), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K) and mitogen-activated protein kinase (MAPK)/Erk kinase (MEK) signaling pathways by various kinase inhibitors in MCF-7 breast cancer cells. The PTK inhibitor genistein (GEN) and PKC inhibitor staurosporine (STP) down-regulated Mcl-1 and Bcl-2 expression, and induced growth inhibition by blocking at the G2/M phase of cell cycle, followed by apoptosis, leading to chromatin condensation and DNA fragmentation. LY294002 (LY)-mediated inhibition of PI3-K activity down-regulated Bcl-2 but not Mcl-1 expression, triggered growth arrest at the G1/G0 phase of cell cycle and also led to apoptosis marked with chromatin condensation and DNA fragmentation. The MEK inhibitor U0126 (U0) decreased Bcl-2 expression but not Mcl-1 expression, inhibited cells growth and induced G1/G0 arrest, but in this case cell death occurred without significant apoptotic features. The kinase inhibitor concentration dependence of cytotoxicity correlated well with down-regulation of Bcl-2 but not with changes in Mcl-1 levels. This suggests that Bcl-2 plays a predominant role in the regulation of cell death induced by cell signaling alterations whereas Mcl-1 does not appear to control cell survival under these conditions in MCF-7 cells. Further studies showed that the combination of GEN, STP and LY with U0 can produce synergetic cytotoxic effects on MCF-7 cells. Our results suggest that PTK, PKC, PI3-K and MEK signaling pathways can regulate Bcl-2 expression and form an integrated network that plays a critical role in cell survival.  相似文献   

19.
It has been shown that IL-6 is elevated in the serum and ascites of ovarian cancer patients, and increased IL-6 concentration correlates with poor prognosis and chemoresistance. However, the role of IL-6 expression in the acquisition of the chemoresistance phenotype and the underlining mechanisms of drug resistance in ovarian cancer cells remain unclear. Here we demonstrate that both exogenous (a relatively short period of treatment with recombination IL-6) and endogenous IL-6 (by transfecting with plasmid encoding for sense IL-6) induce cisplatin and paclitaxel resistance in non-IL-6-expressing A2780 cells, while deleting of endogenous IL-6 expression in IL-6-overexpressing SKOV3 cells (by transfecting with plasmid encoding for antisense IL-6) promotes the sensitivity of these cells to anticancer drugs. IL-6-mediated resistance of ovarian cancer cells exhibits decreased proteolytic activation of caspase-3. Meanwhile, the further study demonstrates that the chemoresistance caused by IL-6 is associated with increased expression of both multidrug resistance-related genes (MDR1 and GSTpi) and apoptosis inhibitory proteins (Bcl-2, Bcl-xL and XIAP), as well as activation of Ras/MEK/ERK and PI3K/Akt signaling. Therefore, modulation of IL-6 expression or its related signaling pathway may be a promising strategy of treatment for drug-resistant ovarian cancer.  相似文献   

20.
Advanced ovarian cancer (OC) is not curable by surgery alone and chemotherapy is essential for its treatment. Isothiocyanates have been shown to inhibit carcinogen-induced tumorigenesis in animal models, yet no efforts have been made to determine their therapeutic potential in OC. In the present study, we investigated the mechanism of the anti-proliferative and apoptotic activity of benzyl isothiocyanate (BITC) in OC. BITC inhibited the proliferation of OC cells and induced apoptosis in OC cells. Apoptosis was induced by a strong activation of caspase-3 and -9, and cleavage of PARP-1. However, caspase-8 was not activated by BITC. Cytotoxic effects of BITC were reversed by the inhibition caspase-3 and -9 specific inhibitors. BITC showed a concentration dependent decrease in the levels of Bcl-2 with a concomitant increase in Bax levels. In addition, BITC activated proapoptotic signaling by phosphorylation JNK1/2 and p38 while simultaneously inhibiting survival signaling mediated by ERK1/2 and Akt phosphorylation in a dose-dependent manner. While JNK inhibitor SP600125 and p38 inhibitor SB203580, abolished the cytotoxic effect of BITC, MEK inhibitor, PD98059 and PI3 kinase inhibitor, LY294002 failed to show such reversal indicating a critical role played by JNK1/2 and p38 signaling in apoptosis induced by BITC. In summary, our studies demonstrate that BITC inhibits proliferation of OC cells and induces apoptosis via caspase-9 and -3 pathways. BITC inhibits ERK1/2 and Akt survival signaling while simultaneously activating pro-apoptotic p38 and JNK1/2. Therefore, BITC can be potentially developed as a therapeutic agent to treat OC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号