首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Amidox and didox are two polyhydroxy-substituted benzohydroxamic acid derivatives that belong to a new class of ribonucleotide reductase (RR) inhibitors. RR is the rate-limiting enzyme for de novo deoxyribonucleotide synthesis, and its activity is significantly increased in tumor cells in proportion to the proliferation rate. Therefore, RR is a target for antitumor therapy. MATERIALS AND METHODS: HL-60 and K562 leukemia cells were treated with increasing doses of amidox and didox. Thereafter, the mode of cytotoxic drug action was determined by Hoechst 33258/propidium iodide (HO/PI) double staining, annexin binding, DNA fragmentation, and caspase activation. This was correlated to the decrease in dNTP levels. Staining with HO/PI and binding of fluorescein isothiocyanate-conjugated annexin V to externalized phosphatidylserine were used to quantify apoptosis. RESULTS: Low doses of amidox or didox resulted in an increase of apoptotic HL-60 cells within 48 hours. Higher doses (50 microM amidox or 250 microM didox) led to rapid induction of apoptosis, which could be detected as early as 4 hours after treatment. After 48 hours with these concentrations, almost 100% of the HL-60 cells died by apoptosis without an increase in necrosis. K562 cells were found to be resistant to amidox but not to didox. In HL-60 cells, upstream caspase 8 is processed in response to didox, whereas caspases 8 and 9 are processed upon amidox treatment. Didox-induced apoptosis, but not amidox-induced apoptosis, can be correlated with the decrease in dNTP levels.The results suggests that amidox induces several apoptosis mechanisms in HL-60 cells. In contrast, only caspase 9 is activated by didox in K562 cells, and because amidox hardly induces apoptosis in this cell line, no caspase cleavage is observed. CONCLUSIONS: Didox triggers distinct apoptosis pathways in HL-60 and K562 cells.  相似文献   

2.
3.
Previous reports have established the synthesis of interleukin-6 (IL-6) and IL-6 receptors (IL-6R) in several human leukemia cells and found that IL-6 and the IL-6R could be expressed in cell lines with erythroid/megakaryocytic features. IL-6 is a pleiotropic cytokine involved in megakaryocytic differentiation. The finding that endogenous IL-6 levels in serum increased after 5-fluorouracil (5-FU) treatment suggests that IL-6 may play some role in the recovery of hematopoietic systems. This observation may assist the understanding of erythroid regeneration caused by antineoplastic agents such as tiazofurin. Tiazofurin inhibits the activity of IMP dehydrogenase. Its exposure to K562 cells at 10 μM tiazofurin stimulates erythroid differentiation. Stimulation of cells with tiazofurin gave a significant increase in IL-6 production. Its levels were quadrupled after 2 days of culture. Tiazofurin also caused a trivial reduction in the percentage of cells with the IL-6R. This evidence implies that tiazofurin produced no significant effect on the IL-6R. Tiazofurin also increased the percentage of benzidine-positive cells representing hemoglobin production, confirmed by GpA expression. We concluded that IL-6 is rate limiting in regard to hemoglobin production and that IL-3 could be used for clinical benefit to stimulate erythropoiesis and synergize with tiazofurin. Am. J. Hematol. 54:301–305, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Wu  Y; Dean  A; Egan  W; Schechter  AN 《Blood》1984,63(6):1447-1452
The oxygen affinity of hemoglobin in K562 cells induced by hemin and the relationship between levels of 2,3-diphosphoglycerate (2,3-DPG) and hemoglobin have been investigated. Absorption spectra of induced cells indicate that the hemoglobin is oxygenated; oxygen dissociation curves are symmetric, with a P50 of 20 +/- 0.9 mm Hg, Hill coefficient of 2.5, and a normal temperature dependence. The intracellular pH measured by phosphorus 31 nuclear magnetic resonance (NMR) was 7.3. The amount of 2,3-DPG was determined by an enzymatic method and by 31P NMR. The level of 2,3-DPG in uninduced K562 cells, containing 0.5 pg of hemoglobin per cell, was low (5 +/- 0.5 mumole/10(8) cells), but increased to 64 +/- 5 mumole/10(8) cells upon induction of hemoglobin accumulation (to a final level of 20 pg hemoglobin/cell). For several experiments, there was a closely coordinated relationship between 2,3-DPG and hemoglobin levels, at about 1:1 stoichiometry of the two molecules. The time course of induction of hemoglobin, and of 2,3-DPG levels, are very similar; both processes are reversible. These data suggest that induction of hemoglobin synthesis in K562 cells by hemin results in hemoglobin-containing cells with normal oxygenation properties and that 2,3-DPG and hemoglobin levels are coordinately controlled in these cells. Elucidation of the mechanism of this effect should be of importance in understanding the erythroid-like differentiation of these cells.  相似文献   

5.
6.
L Cioè  P Meo  V Sorrentino  G B Rossi 《Blood》1983,61(6):1146-1154
Treatment of K-562(S) cells with human interferons (HulFN) alpha, beta, or gamma results in a modulation of hemoglobin (Hb) production. When K- 562(S) cells, "induced" with butyric acid or hemin, are given low dosages of all three types of IFN, the percent benzidine-positive cells doubles. Treatment with low doses of IFN causes the acceleration and increased production of those Hb types (as shown by Cellogel analysis) that are already synthesized either in untreated or in "induced" cultures. These results were confirmed by using pure HulFN-beta, and were abrogated, for HulFN-alpha, in presence of its specific antiserum. In contrast, cultures of K-562 cells treated with either inducer and given more than 10(4) IU/ml of alpha- or beta-IFN show a dose-dependent decrease of hemoglobinization in the absence of cell death. The inhibitory effect was reversible upon removal of IFN and culture reseeding in IFN- and inducer-free medium. The significance of both sets of data is strengthened by the pronounced heterogeneity of K-562S cells with respect to their sensitivity to IFN treatment as evaluated by the establishment of the antiviral state. Apparently, one cell out of two is sensitive to IFN, which suggests that the magnitude of IFN effects described here may be larger than it appears to be from the data taken at face value.  相似文献   

7.
Clone cells of K562 that are able to synthesize hemoglobin spontaneously on a relatively high level were obtained by cell-cloning technique. The clone cell proliferated 25 times by day 6 in culture, and the growth rate was not affected by changing the dose of fetal calf serum (FCS) from 5% to 30%. On the other hand, the erythroid differentiation could be linearly enhanced by increasing dosage of FCS, reaching a maximum after four days in culture. The wild-type K562 cells were also slightly stimulated to synthesize hemoglobin by adding FCS (30% final concentration). The enhancing effect of 30% FCS on the erythroid differentiation in the clone cells was greater than that of 12.5 microM hemin, while in the wild-type cells the relationship was reversed. There were no effects of erythropoietin (Epo) on the hemoglobin synthesis in either the clone cells or the wild-type cells. When various kinds of sera were added to the standard culture of the clone cells, only FCS had the enhancing effect. These results suggest that spontaneous erythroid differentiation is not induced by hemin or Epo in FCS but by FCS-specific substance(s).  相似文献   

8.
9.
The B1 subunit of Escherichia coli ribonucleotide reductase (EC 1.17.4.1) has been overexpressed using the pT7-5/pGP1-2 system developed by Tabor and Richardson [Tabor, S. & Richardson, C. (1985) Proc. Natl. Acad. Sci. USA 82, 1074-1078]. This method has allowed the preparation of two mutant B1 subunits in which two of the four thiols postulated to be within the active site of the enzyme, Cys-225 and Cys-759, have been changed to serines. Incubation of the [Ser225]B1 mutant with the B2 subunit, [U-14C]CDP, and the allosteric effector ATP results in production of cytosine, destruction of the tyrosyl radical in B2, radiolabeling of the protein, and cleavage of the B1 subunit into two pieces of 26 and 61.5 kDa. This process is independent of the identity of reductant. The [Ser759]B1 mutant reduces CDP in the presence of thioredoxin/thioredoxin reductase at 7.7% the rate of wild-type B1. When dithiothreitol is utilized as reductant, however, the rate of CDP reduction with [Ser759]B1 is identical to that observed with wild type.  相似文献   

10.
Treatment with adriamycin for 8-14 h irreversibly induces K562 human erythroleukemic cells to synthesize hemoglobin. With 16-h exposure, this effect is maximal at concentrations between 180 and 400 nM, yielding 70%-90% benzidine-positive (B+) cells and 24 pg/cell hemoglobin 4 days after the beginning of adriamycin treatment. This induction is accompanied by changes in ouabain-sensitive 86Rb influx opposite to those seen with murine erythroleukemic (MEL) cells. Amiloride and several amiloride analogues strongly inhibit adriamycin induction of hemoglobin synthesis as well as cell growth in the absence of adriamycin. The inhibition of induction is enhanced with the analogues bearing a benzyl or substituted benzyl group on the 5-amino or on a terminal guanidino nitrogen atom. The effect on growth was somewhat greater with the analogue bearing a 2-chlorobenzyl moiety on a terminal guanidino nitrogen atom and with the one bearing a 2-fluorobenzyl group on the 5-amino nitrogen atom. The structural features required for growth inhibition resemble those seen with MEL cells, but the features required for inhibition of induction of hemoglobin synthesis are completely different. These data suggest that different specific binding sites are involved in these two effects of amiloride and its analogues.  相似文献   

11.
Abstract: Human leukemia K562 cells can be induced to erythroid differentiation when treated with a variety of compounds, including hemin, cytosine arabinoside and 5-azacytidine. Following erythroid induction, K562 cells express at high level γ-globin and accumulate both Hb Portland and Hb Gower 1. In this paper we determined whether a combination treatment of K562 cells with suboptimal concentrations of cytosine arabinoside and retinoids lead to full expression of differentiated functions. Cell growth kinetics studies, intracellular detection of hemoglobin by benzidine staining and hemoglobin analysis by cellulose acetate were performed. The results obtained show that (a) retinoic acid and retinol are not able to induce differentiaton of K562 cells and (b) cytosine arabinoside induces differentiation only when used at 100–300 nmol/l concentrations. In addition, our data demonstrate that erythroid differentiation of K562 occurs when 40 μmol/l of retinoic acid or retinol are added together with 75 nmol/l cytosine arabinoside.  相似文献   

12.
Witt O  Sand K  Pekrun A 《Blood》2000,95(7):2391-2396
Butyrate induces cytodifferentiation in many tumor cells of different origin, suggesting that an as yet unidentified common mechanism inherent to malignant cells is the target of butyrate action. This study determined the role of different mitogen-activated protein (MAP) kinase signal transduction pathways in butyrate-induced erythroid differentiation of K562 human leukemia cells. Using a panel of anti-ERK, JNK, and p38 phosphospecific antibodies, the study showed that phosphorylation of ERK and JNK is decreased following treatment of cells with butyrate, whereas phosphorylation of p38 is increased. In contrast, a K562 subline defective in butyrate-mediated induction of erythroid differentiation did not reveal these changes in phosphorylation patterns. Inhibition of ERK activity by UO126 induces erythroid differentiation and acts synergistically with butyrate on hemoglobin synthesis and inhibition of cell proliferation, whereas inhibition of p38 activity by SB203580 completely abolished induction of hemoglobin expression by butyrate. Taken together, our data suggest a model in which butyrate induces erythroid differentiation of K562 cells by inhibition of ERK and activation of p38 signal transduction pathways.  相似文献   

13.
Zhang J  Wang JC  Han YH  Wang LF  Ji SP  Liu SX  Liu XP  Yao LB 《Acta haematologica》2005,113(4):247-254
Arsenic compounds (As(2)O(3 )or()As(4)S(4)) have been used successfully for the treatment of acute promyelocytic leukemia (APL) for quite a long time. It has been noticed that the sensitivity to apoptosis induced by As(2)O(3 )varies among various leukemia cells. It was reported by several groups that As(2)O(3) could induce apoptosis in APL-derived NB4 cells at concentrations of 0.5-1 mumol/l, whereas in other leukemia cells like K562, As(2)O(3) has no effects at the same concentration. K562 cells undergo apoptosis only when the concentration of As(2)O(3 )is greater than 2 mumol/l. Another arsenic compound, realgar (As(4)S(4)), a traditional Chinese mineral medicine, has been used to treat APL effectively and demonstrated to have lower toxicity than As(2)O(3). It would be interesting to know whether NB4 and K562 cells will show different sensitivity to realgar as well and if there is a difference, what is the cellular mechanism of it. In our present study, K562 cells were much less sensitive than NB4 cells to apoptosis induced by realgar. We confirm that the expression of bcl-x(L) is significantly higher in K562 cells than that in NB4 cells and is not downregulated upon realgar treatment. K562 cells become sensitive to realgar at clinically acceptable concentrations when bcl-x(L) expression level is downregulated by transfecting bcl-x(L) antisense RNA vector into the cells. Our results suggest that the increased bcl-x(L) expression in K562 cells contributes to its insensitivity to realgar-induced apoptosis.  相似文献   

14.
The p38 mitogen-activated protein kinase (p38) is involved in multiple cellular functions such as cell proliferation and differentiation. Previously, we found that activin A mediated hemoglobin synthesis and cell growth inhibition through p38, whereas, basic fibroblast growth factor (bFGF) inactivated p38 to antagonize the activin A effects. In this study, we selected three structurally different histone deacetylase (HDAC) inhibitors, apicidin, MS275, and sodium butyrate that activate p38, to probe the signal pathway from activin A to p38 in chronic myeloid leukemia (CML)-derived K562 cells. HDAC inhibitors and activin A showed additive p38 phosphorylation. The enhanced phosphorylation of p38 was correlated with increased cell differentiation and decreased cell proliferation. The use of p38 inhibitor SB203580 in conjunction with activin A or with the HDAC inhibitors inhibited cell differentiation and restored cell proliferation, indicating that activin A and the HDAC inhibitors exert their effects through p38 activation. However, bFGF did not affect HDAC inhibitors-induced cell differentiation or growth inhibition. Western blots showed that p38 phosphorylation remained at similar levels with or without bFGF in the presence of HDAC inhibitors. Thus, the HDAC inhibitors activate p38 in a manner different from the activin A pathway. Furthermore, mRNA expressions for activin type I, IB, II, and IIB receptors remained constant in the presence of activin A, bFGF, or both activin A and bFGF. These results indicate that bFGF does not directly act on p38 nor on the mRNA expression levels of activin receptors but inhibit activin A activation of p38 upstream of p38 in K562 cells.  相似文献   

15.
D Samid  A Yeh  P Prasanna 《Blood》1992,80(6):1576-1581
There is considerable interest in identifying nontoxic differentiation inducers for the treatment of various malignant and nonmalignant blood disorders, including inborn beta-chain hemoglobinopathies. Using the human leukemic K562 cell line as a model, we explored the efficacy of phenylacetate, an amino acid derivative with a low toxicity index when administered to humans. Treatment of K562 cultures with pharmacologically attainable concentrations of phenylacetate resulted in erythroid differentiation, evident by the reduced growth rate and increased hemoglobin production. The effect was time- and dose-dependent, further augmented by glutamine starvation (phenylacetate is known to deplete circulating glutamine in vivo), and reversible upon cessation of treatment. Molecular analysis showed that phenylacetate induced gamma globin gene expression with subsequent accumulation of the fetal form of hemoglobin (HbF). Interestingly, the addition of phenylacetate to antitumor agents of clinical interest, eg, hydroxyurea and 5-azacytidine, caused superinduction of HbF biosynthesis. The results suggest that phenylacetate, used alone or in combination with other drugs, might offer a safe and effective new approach to treatment of some hematopoietic neoplasms and severe hemoglobinopathies.  相似文献   

16.
ObjectiveSince diabetes-induced vascular endothelial growth factor (VEGF) is implicated in retinal angiogenesis, we aimed to examine the role of aldose reductase (AR) in VEGF-induced human retinal endothelial cells (HREC) growth and tube formation.Materials and MethodsHRECs were stimulated with VEGF and cell-growth was determined by MTT assay. AR inhibitor, fidarestat, to block the enzyme activity and AR siRNA to ablate AR gene expression in HREC were used to investigate the role of AR in neovascularization using cell-migration and tube formation assays. Various signaling intermediates and angiogenesis markers were assessed by Western blot analysis. Immuno-histochemical analysis of diabetic rat eyes was performed to examine VEGF expression in the retinal layer.ResultsStimulation of primary HREC with VEGF caused increased cell growth and migration, and AR inhibition with fidarestat or ablation with siRNA significantly prevented it. VEGF-induced tube formation in HREC was also significantly prevented by fidarestat. Treatment of HREC with VEGF also increased the expression of VCAM, AR, and phosphorylation and activation of Akt and p38-MAP kinase, which were prevented by fidarestat. VEGF-induced expression of VEGFRII in HREC was also prevented by AR inhibition or ablation.ConclusionsOur results indicate that inhibition of AR in HREC prevents tube formation by inhibiting the VEGF-induced activation of the Akt and p38-MAPK pathway and suggest a mediatory role of AR in ocular neovascularization generally implicated in retinopathy and AMD.  相似文献   

17.
Oliver  LJ; Keeton  M; Wilson  EL 《Blood》1989,74(4):1321-1327
The secretion of tissue plasminogen activator (t-PA), urokinase (u-PA) and their inhibitors by the human leukemia cell line K562 was examined. K562 cells normally secrete both t-PA and u-PA in a ratio of 3:1. After addition of 10 or 1 ng/mL phorbol myristate acetate (PMA) to K562 cells, a marked decrease in enzymatic activity is observed in the medium. However, when t-PA antigen rather than activity is measured, an increased amount is found in the medium under these conditions. PMA also induces secretion of the two inhibitors of plasminogen activator: plasminogen activator inhibitor 1 (PAI-1) and plasminogen activator inhibitor 2 (PAI-2). This accounts for the decrease in total enzymatic activity under conditions when production of t-PA antigen is increased. A study of the time course of induction revealed that the synthesis of plasminogen activator occurred before that of its inhibitors. Low concentrations of PMA (0.1 ng/mL) induce t-PA antigen primarily and not the inhibitors. This results in an increase in total enzymatic activity, with 94% of the secreted activity being t-PA. Thus, the secretion of plasminogen activators and their inhibitors can be manipulated in certain leukemic cells by inducers such as PMA.  相似文献   

18.
Chen  LL; Dean  A; Jenkinson  T; Mendelsohn  J 《Blood》1989,74(7):2368-2375
The effects of transforming growth factor-beta 1 (TGF-beta 1) on proliferation and hemoglobinization in K-562 cells, a human multipotential hematopoietic cell line, were studied. We found that TGF- beta 1 could induce hemoglobin accumulation in K-562 cells. Various clones were selected on the basis of the inducibility of hemoglobinization by TGF-beta 1. One high response clone (no. 1) and one low response clone (no. 8) were studied in detail. Hemoglobin accumulation peaked on day 5 of culture in the presence of TGF-beta 1 (0.5 ng/mL, 20 pmol/L), when 90% of clone 1 cells, 55% of parent line cells, and less than 10% of clone 8 cells contained hemoglobin. There was a concomitant reduction in proliferation of 60% for clone 1, 40% for the parent line, and 30% for the clone 8 on day 5 of culture. Quantitative analysis showed that the hemoglobin contents in clone 1 after 5-day induction by TGF-beta 1 and hemin were 1.0 pg/cell and 2.9 pg/cell, respectively. The hemoglobin induced by TGF-beta 1 showed the same electrophoretic characteristics as the hemoglobin induced by hemin. The expression of epsilon-globin mRNA was minimally detectable in control cells and was induced in both TGF-beta 1 and hemin treated cells. Other cytokines with potential effects on K-562 cell proliferation and differentiation were also studied. Interleukin-1, interleukin-3, interferon alpha, interferon gamma, and inhibin, tested as single agents, showed minimal effects on proliferation. None of these agents could induce hemoglobinization or inhibit the hemoglobinization induced by TGF-beta 1.  相似文献   

19.
OBJECTIVES: We sought to determine whether inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase with pravastatin affects transforming growth factor-beta(1) (TGF-beta(1)) circulating levels and its production in the monocytes of hypercholesterolemic patients. BACKGROUND: Transforming growth factor-beta(1) is a multifunctional growth factor/cytokine involved in many physiologic and pathologic processes, such as vascular remodeling and atherogenesis. Statins have been reported to have a modulatory role in cytokine expression in the monocytes of hyperlipidemic patients. METHODS: We evaluated, in a cross-over study design, plasma TGF-beta(1) levels and ex vivo TGF-beta(1) production in the monocytes of hypercholesterolemic patients before and after four to six weeks of lipid-lowering treatment with diet or diet plus 40 mg/day of pravastatin. In addition, isolated blood monocytes were subjected to pravastatin treatment and evaluated for TGF-beta(1) messenger ribonucleic acid (mRNA) expression and TGF-beta(1) in vitro production. RESULTS: Lipid-lowering treatment significantly decreased total cholesterol and low-density lipoprotein cholesterol plasma levels. Pravastatin, but not a low lipid diet, induced a significant increase in TGF-beta(1) plasma levels (from 1.7 +/- 0.5 ng/ml to 3.1 +/- 1.1 ng/ml, p < 0.001) and in ex vivo monocyte production (from 1.8 +/- 0.8 ng/ml to 3.9 +/- 1.0 ng/ml, p < 0.001). The increase in TGF-beta(1) levels was not related to the changes in the lipid profile observed with pravastatin. An increase of approximately twofold in TGF-beta(1) production and in mRNA expression was also observed after in vitro treatment of human monocytes with pravastatin (5 microM). Co-incubation with mevalonate reversed the in vitro effect of pravastatin. CONCLUSIONS: 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibition with pravastatin increases TGF-beta(1) plasma levels, as well as monocyte production, in hypercholesterolemic patients. The mevalonate pathway plays a role in the regulation of TGF-beta(1) expression in human monocytes. A possible implication in the biologic and clinical effects of statins can be suggested.  相似文献   

20.
Megakaryocytic differentiation of myelogenous leukemia cell lines induced by a number of chemical compounds mimics, in part, the physiological process that takes place in the bone marrow in response to a variety of stimuli. We have investigated the involvement of mitogen‐activated protein kinases (MAPKs) [extracellular signal‐regulated protein kinase (ERK1/2) and p38] and phosphoinositide 3‐kinase (PI3K) signaling pathways in the differentiated phenotypes of K562 cells promoted by phorbol 12‐myristate 13‐acetate, staurosporine (STA), and the p38 MAPK inhibitor SB202190. In our experimental conditions, only STA‐treated cells showed the phenotype of mature megakaryocytes (MKs) including GPIbα expression, DNA endoreduplication, and formation of platelet‐like structures. We provide evidence supporting that basal activity, but not sustained activation, of ERK1/2 is required for expression of MK surface markers. Moreover, ERK1/2 signaling is not involved in cell endomitosis. The PI3K pathway exerts dual regulatory effects on K562 cell differentiation: it is intimately connected with ERK1/2 cascade to stimulate expression of surface markers and it is also necessary, but not sufficient, for polyploidization. Finally, apoptosis and megakaryocytic differentiation exhibit different sensitivity to p38 down‐regulation: it is required for expression of early specific markers but is not involved in cell apoptosis. The present work with K562 cells provides new insights into the molecular mechanisms regulating MK differentiation. The results indicate that a precise orchestration of signals, including ERK1/2 and p38 MAPKs as well as PI3K pathway, is necessary for acquisition of features of mature MKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号