首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Estrogen, mainly estradiol (E2), and progesterone (P) are essential for the growth and differentiation of the breast, but their roles in breast cancer are highly debated. To understand how E2 and P influence cell proliferation and differentiation, it is essential to know how their receptors are regulated. Because of limited tissue availability, little is known about regulation of the two estrogen receptors (ERalpha and ERbeta) and the two progesterone receptor isoforms (PR-A and PR-B) in the normal human breast. What we know comes from rodent studies, which are not always pertinent for the human breast. We report now on regulation of gonadal hormone receptors during the menstrual cycle, pregnancy, and lactation in rhesus monkey mammary gland and on the relationship of these receptors to proliferation. We found that ERalpha but not ERbeta is down-regulated when E2 levels increase and when cells enter the cell cycle. PR-B but not PR-A is expressed in proliferating cells. Thus under normal conditions, the ratio of ERalpha to ERbeta in the breast depends on plasma concentrations of E2. Elevated expression of ERalpha (as occurs in postmenopausal women) is a normal response to loss of E2 and indicates nonproliferating cells. As selective receptor ligands become available, they will be helpful in delineation of the functions of these receptors.  相似文献   

7.
The steroid hormone, estrogen, plays an important role in various physiological events which are mediated via its nuclear estrogen receptors, ERalpha and ERbeta. However, the molecular mechanisms that are regulated by estrogen in the uterus remain largely unknown. To identify genes that are regulated by estrogen, the ovariectomized mouse uterus was exposed to 17beta-estradiol (E2) for 6 h and 12 h, and the data were analyzed by cDNA microarray. The present study confirms previous findings and identifies several genes with expressions not previously known to be influenced by estrogen. These genes include small proline-rich protein 2A, receptor-activity-modifying protein 3, inhibitor of DNA binding-1, eukaryotic translation initiation factor 2, cystatin B, decorin, secreted frizzled-related protein 2, integral membrane protein 2B and chemokine ligand 12. The expression patterns of several selected genes identified by the microarray analysis were confirmed by RT-PCR. In addition, laser capture microdissection (LCM) was conducted to determine the expression of selected genes in specific uterine cell types. Analysis of early and late responsive genes using LCM and cDNA microarray not only suggests direct and indirect effects of E2 on uterine physiological events, but also demonstrates differential regulation of E2 in specific uterine cell types. These results provide a basic background on global gene alterations or genetic pathways in the uterus during the estrous cycle and the implantation period.  相似文献   

8.
9.
The characterization of estrogen receptor beta (ERbeta) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues, and the mitogenic effects of estrogen in these tissues (such as breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERbeta expression in cancer as compared with benign tumors or normal tissues, whereas ERalpha expression persists. The loss of ERbeta expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERalpha target genes by ERbeta or ERbeta-specific gene induction could explain that ERbeta has a differential effect on proliferation as compared with ERalpha. ERbeta may exert a protective effect and thus constitute a new target for hormone therapy, such as ligand specific activation. The potential distinct roles of ERalpha and ERbeta expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review.  相似文献   

10.
11.
Estrogen is of great importance in the regulation of uterine function. The aim of this study was to examine the individual physiological roles of each of the two receptors for estradiol, estrogen receptor (ER) alpha and ERbeta, and their potential comodulatory effects on gene expression and uterine growth using recently developed ER subtype-selective agonist ligands. The use of ER subtype-selective ligands provides an alternative, complementary approach to the use of receptor knockout mice. Administration of the ERalpha-selective ligand propyl pyrazole triol (PPT) to immature mice resulted in a significant increase in uterine weight, as well as bromodeoxyuridine incorporation and proliferating cell nuclear antigen expression in luminal epithelial cells. PPT also increased complement component 3, lactoferrin, and glucose-6-phosphate dehydrogenase (G6PDH), and decreased androgen receptor (AR) and progesterone receptor (PR) mRNA levels in uterine tissue, as did estradiol (E(2)). However, when compared with E(2), PPT was less effective in stimulating uterine weight, complement component 3, and G6PDH expression but was as effective as E(2) in regulating lactoferrin, AR, and PR expression. In contrast to the action of the ERalpha agonist PPT, the ERbeta agonist diarylpropionitrile (DPN) did not increase uterine weight or luminal epithelial cell proliferation at a dose that reduced G6PDH and elicited a decrease in PR and AR mRNA and protein expression. Interestingly, DPN reduced the uterine weight stimulation by PPT, and enhanced the effect of PPT in decreasing uterine PR and AR mRNA. These findings with ER subtype-selective ligands indicate that ERalpha is the major regulator of estrogen function in the uterus, but that ERbeta does exert effects on some uterine markers of estrogen action. In addition, ERbeta can modulate ERalpha activity in a response-specific and dose-dependent manner.  相似文献   

12.
We reported previously that both subtypes of estrogen receptors, ERalpha and ERbeta, are expressed by human urothelial cells and mediate estrogen-induced cell proliferation in these cells. The aim of this study was to determine the extent to which each ER subtype contributes to urothelial cell proliferation and their possible involvement in the regulation of the cell cycle. We compared the expression of ERalpha and ERbeta mRNAs and protein quantitatively in primarily cultured human bladder urothelial cells obtained from six individuals with three immortalized urothelial (E6, E7, and UROtsa) and two bladder cancer cell lines (HTB-9 and T24). We found that all these cells express similar levels of ERbeta, but immortalized and cancer cells express much higher amounts of ERalpha than primary cells. Higher levels of ERalpha mRNA were also observed in the biopsies of bladder transitional cell carcinoma compared with sample from the same bladder unaffected by tumor. Using the ERalpha-selective agonist PPT, the ERbeta-selective agonist DPN, and specific small interfering RNA against ERalpha or ERbeta, we found that ERbeta predominantly mediates estrogen-induced G1/S transition and cell proliferation in the primary urothelial cells. By contrast, ERalpha predominantly mediates estrogen-induced G1/S transition and cell proliferation in bladder cancer cell lines. Furthermore, we found that 17beta-estradiol (E(2)) rapidly induces phosphorylation of extracellular signal-regulated kinases, but U0126, a mitogen-activated protein kinase kinase (MEK) inhibitor, does not affect E(2)-induced urothelial cell proliferation. E(2) up-regulated cyclin D1 and cyclin E expression in both the primary and bladder cancer cells, and the cancer cells have higher cyclin D1 and cyclin E expression during G0/G1 phases. Our data suggest that estrogen exerts its effects through different ER subtypes in urothelial cells. Increased expression of ERalpha may contribute to early induction of cyclin D1 and cyclin E during the cell cycle in bladder cancer cells.  相似文献   

13.
The two known estrogen receptors, ERalpha and ERbeta, mediate the effects of estrogen in all target tissues, including blood vessels. We have shown previously that estrogen inhibits vascular injury response to the same extent in female wild-type (WT), ERalpha knockout (ERalphaKO(CH)), and ERbeta knockout (ERbetaKO(CH)) mice. We generated mice harboring disruptions of both ERalpha and ERbeta genes (ERalpha,betaKO(CH)) by breeding and studied the effect of 17beta-estradiol (E2) on vascular injury responses in ovariectomized female ERalpha,betaKO(CH) mice and WT littermates. E2 inhibited increases in vascular medial area following injury in the WT mice but not in the ERalpha,betaKO(CH) mice, demonstrating for the first time that the two known estrogen receptors are necessary and sufficient to mediate estrogen inhibition of a component of the vascular injury response. Surprisingly, as in WT littermates, E2 still significantly increased uterine weight and inhibited vascular smooth muscle cell (VSMC) proliferation following injury in the ERalpha,betaKO(CH) mice. These data support that the role of estrogen receptors differs for specific components of the vascular injury response in the ERalpha,betaKO(CH) mice. The results leave unresolved whether E2 inhibition of VSMC proliferation in ERalpha,betaKO(CH) mice is caused by a receptor-independent mechanism, an unidentified receptor responsive to estrogen, or residual activity of the ERalpha splice variant reported previously in the parental ERalphaKO(CH) mice. These possibilities may be resolved by studies of mice in which ERalpha has been fully disrupted (ERalphaKO(St)), which are in progress.  相似文献   

14.
15.
To investigate the molecular mechanisms involved in the estrogen-dependent control of plasminogen activator inhibitor-1 (PAI-1) gene expression in vascular cells, we compared the transactivation properties of estrogen receptors (ERalpha and ERbeta) in regulating the activity of a human PAI-1 promoter reporter construct in transfected bovine aortic endothelial cells (BAECs). ERalpha increased PAI-1 promoter activity in BAECs by an estrogen-dependent mechanism, whereas ERbeta suppressed PAI-1 promoter activity by an estrogen-independent mechanism. The suppressive activity of ERbeta was dominant over the inductive activity of ERalpha. Mutation of a putative estrogen response element (ERE) located at position -427 in the proximal promoter abolished the ERalpha action without influencing the suppressive effects of ERbeta. Mutation of either AP1-like site did not eliminate the ERalpha or ERbeta actions at the PAI-1 promoter, suggesting that other promoter elements are involved in these responses. These mutations significantly reduced the -3.4kbp PAI-1 promoter response to serum. We concluded that ERalpha and ERbeta exert differential effects on the PAI-1 promoter activity in transfected BAECs. ERalpha activated the PAI-1 promoter through a proximal ERE (-427) and possibly additional EREs located within the PAI-1 promoter, whereas ERbeta suppressed the promoter construct via an unidentified mechanism. This is the first demonstration of the differential regulation of a vascular gene promoter by ERalpha and ERbeta.  相似文献   

16.
Estrogen action is dependent upon the presence of specific ligand-activated receptors in target tissues. The aim of the present experiments was to compare the spatial and temporal pattern of expression of estrogen receptor beta (ERbeta) with that of ERalpha in full thickness endometrial samples (from the superficial to the basal zone) obtained from both women and rhesus macaques. Immunohistochemical localization with specific antibodies revealed that ERalpha and ERbeta were both expressed in nuclei of the glands and stroma. Consistent with previous studies, expression of ERalpha declined in the glands and stroma of the functionalis during the secretory phase. The luminal epithelium also displayed positive immunoreactivity for ERbeta. Expression of ERbeta declined in glandular cell nuclei, but not stroma, within the functionalis during the late secretory phase. Levels of expression of ERalpha and ERbeta in all cellular compartments remained unchanged in the basalis. Both receptor subtypes were detected on Western blots using proteins extracted from uterine samples obtained throughout the menstrual cycle. There was a striking contrast between the pattern of expression of ERalpha and ERbeta in the vascular endothelium and the perivascular cells surrounding endometrial blood vessels; only ERbeta was present in the endothelial cell population, although both forms of ER were expressed in perivascular cells. We conclude that estrogen action(s) within the vascular endothelium in the endometrium may be mediated via direct binding to the ERbeta isoform and that these cells could therefore be a target for agonists or antagonists that selectively target the beta form of the ER.  相似文献   

17.
18.
19.
20.
Smith A  Contreras C  Ko KH  Chow J  Dong X  Tuo B  Zhang HH  Chen DB  Dong H 《Endocrinology》2008,149(9):4554-4566
Because human duodenal mucosal bicarbonate secretion (DMBS) protects duodenum against acid-peptic injury, we hypothesize that estrogen stimulates DMBS, thereby attributing to the clinically observed lower incidence of duodenal ulcer in premenopausal women than the age-matched men. We found that basal and acid-stimulated DMBS responses were 1.5 and 2.4-fold higher in female than male mice in vivo, respectively. Acid-stimulated DMBS in both genders was abolished by ICI 182,780 and tamoxifen. Estradiol-17beta (E2) and the selective estrogen receptor (ER) agonists of ERalpha [1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole] and ERbeta [2,3-bis(4-hydroxyphenyl) propionitrile], but not progesterone, rapidly stimulated ER-dependent murine DMBS in vivo. E2 dose dependently stimulated murine DMBS, which was attenuated by a Cl(-)/HCO3(-) anion exchanger inhibitor 4,4'-didsothio- cyanostilbene-2, 2'-disulfonic acid, removal of extracellular Cl(-), and in cystic fibrosis transmembrane conductance regulator knockout female mice. E2 stimulated murine DMBS in vitro in both genders with significantly greater response in female than male mice (female to male ratio = 4.3). ERalpha and ERbeta mRNAs and proteins were detected in murine duodenal epithelium of both genders; however, neither ERalpha nor ERbeta mRNA and protein expression levels differed according to gender. E2 rapidly mobilized intracellular calcium in a duodenal epithelial SCBN cell line that expresses ERalpha and ERbeta, whereas BAPTA-AM abolished E2-stimulated murine DMBS. Thus, our data show that E2 stimulates DMBS via ER dependent mechanisms linked to intracellular calcium, cystic fibrosis transmembrane conductance regulator, and Cl(-)/HCO3(-) anion exchanger. Gender-associated differences in basal, acid- and E2-stimulated DMBS may have offered a reasonable explanation for the clinically observed lower incidence of duodenal ulcer in premenopausal women than age-matched men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号