首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to investigate the potential relationship between CDKN2A (p16) gene hypermethylation, which has reported to be frequently observed in oral squamous cell carcinomas (OSCCs), and expression of human DNA methyltransferases (DNMTs: DNMT1, DNMT3A and DNMT3B). Twenty-five pairs of primary OSCCs and matched normal oral mucosa tissues were examined. The p16 gene was hypermethylated (48%) in the tumors showing significant down-regulation of both mRNA and protein expressions. A demethylation assay on 8 OSCC-derived cell lines was also performed by means of treatment with the demethylating agent, 5-aza-2'-deoxycytidine. Four of 5 cell lines showing down-regulation of the p16 gene, revealed re-activation of gene expression after the treatment. In contrast, frequent over-expression of DNMT mRNA expression, also found in the expression of the proteins, was detected: DNMT1 at 72% and DNMT3A at 56%, and DNMT3B at 64%, respectively. However, we could not identify any statistical significance between p16-hypermethylation status in individual tumors and the expression of any of the three DNMTs. These data suggest that hypermethylation of the p16 gene and up-regulation of DNMTs are involved in oral carcinogenesis, but they may be through different mechanisms.  相似文献   

2.
3.
4.
5.
The DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the O6 position of guanine. MGMT expression is decreased in some tumor tissues, and lack of activity has been observed in some cell lines. Loss of expression is rarely due to deletion, mutation, or rearrangement of the MGMT gene, but methylation of discrete regions of the CpG island of MGMT has been associated with the silencing of the gene in cell lines. We used methylation-specific PCR to study the promoter methylation of the MGMT gene. All normal tissues and expressing cancer cell lines were unmethylated, whereas nonexpressing cancer cell lines were methylated. Among the more than 500 primary human tumors examined, MGMT hypermethylation was present in a subset of specific types of cancer. In gliomas and colorectal carcinomas, aberrant methylation was detected in 40% of the tumors, whereas in non-small cell lung carcinomas, lymphomas, and head and neck carcinomas, this alteration was found in 25% of the tumors. MGMT methylation was found rarely or not at all in other tumor types. We also analyzed MGMT expression by immunohistochemistry in relation to the methylation status in 31 primary tumors. The presence of aberrant hypermethylation was associated with loss of MGMT protein, in contrast to retention of protein in the majority of tumors without aberrant hypermethylation. Our results suggest that epigenetic inactivation of MGMT plays an important role in primary human neoplasia.  相似文献   

6.
背景与目的近年研究表明,KAI1表达下调与多种肿瘤的转移有关,但其与非小细胞肺癌的关系研究较少,且导致其下调的机制尚未明确。本研究从mRNA和蛋白水平探讨KAI1基因在非小细胞肺癌组织中的表达与患者临床病理特征的关系及其与突变型P53蛋白表达的关系。方法采用RTPCR和Westernblot法,检测48例肺癌患者手术切除的新鲜癌组织标本中KAI1mRNA、KAI1/CD82及突变型P53蛋白的表达,20例肺部良性疾病组织和正常肺组织作为对照。结果肺癌组和对照组中KAI1mRNA的阳性率分别为52%和90%(P<0.01),KAI1/CD82蛋白的阳性率分别为48%和85%(P<0.01),突变型P53蛋白阳性率分别为65%和5%(P<0.01)。KAI1mRNA、KAI1/CD82和突变型P53蛋白阳性率与肺癌患者临床分期、细胞分化程度和淋巴结转移有密切关系(P<0.05或P<0.01)。肺癌组织中KAI1mRNA与KAI1/CD82表达呈密切相关性(P<0.01),KAI1/CD82与突变型P53蛋白的表达亦呈显著相关性(P<0.05),KAI1mRNA与突变型P53表达无明显相关性(P>0.05)。结论KAI1基因的低表达可能与非小细胞肺癌的发生、发展和转移有关;其下调的机制可能主要发生在转录水平并与p53基因有关,二者可能作为评估肺癌患者转移潜能的指标。  相似文献   

7.
Methylation of hMLH1 in a population-based series of endometrial carcinomas.   总被引:17,自引:0,他引:17  
Microsatellite instability (MSI) is a characteristic feature of hereditary nonpolyposis colorectal cancer and is also observed in sporadic colorectal and endometrial cancers. Alterations in the mismatch repair genes hMLH1 and hMSH2 are important for the development of MSI. It has recently been demonstrated that hypermethylation of the hMLH1 promoter region is associated with MSI and appears to be a common mechanism for gene inactivation. For endometrial carcinoma, however, previous studies have been relatively small and have not been population based. We therefore wanted to assess the frequency and prognostic significance of hypermethylation of the hMLH1 and hMSH2 genes in conjunction with hMLH1 protein expression in a prospective and population-based series of endometrial carcinoma patients with known MSI status and complete follow-up. A total of 138 patients were studied, and methylation of hMLH1 was found in 23% of tumors with conclusive results, whereas methylation of hMSH2 was seen in only 1% of tumors. Methylation of hMLH1 was significantly correlated with MSI (P < 0.001). Loss of nuclear staining of hMLH1 protein was seen in 14% of the cases and was significantly correlated with hMLH1 methylation and MSI (P < 0.001). Normal expression of hMLH1 was seen in all of the unmethylated tumors (100%). Of the 14 MSI-positive tumors that were also methylated, all but 1 (93%) showed a loss of nuclear expression of hMLH1. None of the tumors with loss of hMLH1 expression or hMLH1 methylation were aneuploid (P for both < or = 0.05), and loss of hMLH1 expression and hMLH1 methylation was significantly correlated with lack of p53 overexpression (P for both < or = 0.05). Nuclear hMLH1 staining and hMLH1 methylation did not significantly influence survival. In conclusion, hMLH1 methylation was common and was significantly correlated with loss of hMLH1 protein expression, MSI, diploid tumors, and lack of p53 overexpression. In contrast, hMSH2 methylation was infrequent in this prospective and population-based series of endometrial carcinomas.  相似文献   

8.
Mice with a heterozygous deletion of the Atp2a2 gene (Atp2a2(+/-)) encoding SERCA2 spontaneously develop SCCs of the skin and upper digestive tract, including the oral cavity. To elucidate the contribution of ATP2A2 to human oral carcinogenesis, we analyzed genetic and epigenetic changes as well as mRNA and protein expression in primary OSCCs and OPLs. With the exception of one OSCC-derived cell line showing a 12 bp deletion of ATP2A2, we found no mutations in the coding sequence of the gene in primary OSCCs (n = 52), OPLs (n = 32) and cell lines (n = 8). In immunohistochemistry, however, high frequencies of ATP2A2 downregulation were evident not only in primary OSCCs (42%, 42/100) but also in OPLs (31%, 10/32). Real-time quantitative RT-PCR data were consistent with the protein expression status. Aberrant DNA methylation within ATP2A2 also was detected in 9 of 30 ATP2A2-downregulated OSCCs. Moreover, restoration or elevated expression of the ATP2A2 protein was induced in most of the cell lines showing ATP2A2 methylation after treatment with 5-aza-2'-dC, a DNA demethylating agent. These results suggest that inactivation of the ATP2A2 gene is a frequent and early event during oral carcinogenesis and that loss of expression may be regulated partly by an epigenetic mechanism.  相似文献   

9.
Promoter hypermethylation of RASSF1A in esophageal squamous cell carcinoma.   总被引:14,自引:0,他引:14  
PURPOSE: The RAS association domain family 1A (RASSF1A) gene, a candidate tumor suppressor gene, is frequently inactivated by hypermethylation of its promoter region in several human cancers. The aim of this study was to evaluate the promoter methylation status of the RASSF1A in esophageal squamous cell carcinoma. EXPERIMENTAL DESIGN: We analyzed the methylation status of RASSF1A promoter by methylation-specific PCR in 23 esophageal squamous cell carcinoma cell lines and 48 primary tumors. RESULTS: Hypermethylation of RASSF1A was found in 74% of cell lines and 52% of primary tumors. The presence of hypermethylation was statistically associated with loss of RASSF1A mRNA expression in both cell lines (P = 0.007) and primary tumors (P = 0.003). There was a statistically significant correlation between the presence of hypermethylation and tumor stage (P = 0.009). CONCLUSIONS: Our findings suggest that epigenetic silencing of RASSF1A gene expression by promoter hypermethylation could play an important role in primary esophageal squamous cell carcinogenesis.  相似文献   

10.
11.
12.
13.
The aim of this study was to evaluate the promoter methylation status and loss of heterozygosity (LOH) of the SEMA3B in non-small cell lung cancers (NSCLCs). We analyzed the methylation status of semaphorin 3B (SEMA3B) promoter and LOH at 3p21.3 in eight NSCLC cell lines and 27 primary tumors. Hypermethylation of SEMA3B was found in 50% of the cell lines and 41% of the primary tumors studied. The presence of hypermethylation was statistically associated with loss of SEMA3B expression in both cell lines (P = 0.02) and primary tumors (P < 0.01). There was no correlation between SEMA3B and tumor stage. On the other hand, the correlation between SEMA3B methylation status and LOH at 3p21.3 was significant (P = 0.02). Notably, 7 of 8 tumors with both hypermethylation and LOH of SEMA3B showed the absence of the expression. Treatment with 5-AZAC restored SEMA3B expression in NSCLC cell line. These results indicate that SEMA3B gene alterations may play a important role in the malignant transformation of NSCLC via a two-hit mechanism, including epigenetic changes and allelic loss, for tumor suppressor gene inactivation.  相似文献   

14.
15.
PURPOSE: KAI1 is a metastasis suppressor gene located on human chromosome 11p11.2. It is a member of the structurally distinct family of cell surface glycoprotein, transmembrane 4 protein superfamily. KAI1 was initially isolated as a gene that suppressed metastasis of rat prostate tumor cells. Decreased KAI1 expression has been observed recently in various human cancers, including pancreatic, lung, hepatic, colorectal, breast, ovarian, esophageal, and cervical cancers. Frequent down-regulation of the KAI1 protein was also observed in endometrial cancer cell lines. The aim of this study was to determine whether this gene is altered in human endometrial carcinoma. In addition, its prognostic significance in this tumor was also evaluated. EXPERIMENTAL DESIGN: Tumor specimens from 18 cases with various degrees of endometrial hyperplasia, 97 primary endometrial carcinomas with various stages, and 28 metastatic lesions of this cancer were examined in this study. Using the method of immunohistochemistry, we characterized the KAI1 protein expression in the 143 endometrial tumors. Expression of KAI1 at RNA level was also examined in 35 of the 143 samples using a real-time quantitative PCR method. The data from immunohistochemical analysis were correlated with various clinicopathological factors. RESULTS: High levels of KAI1 protein expression were detected in almost all of the specimens with endometrial hyperplasia (17 of 18). In contrast, loss of KAI1 expression occurred in an increasing frequency (27.8-71.4%) from early stages of primary endometrial carcinomas to metastatic tumors (P < 0.001). In addition, more poorly differentiated tumors demonstrated significantly lower KAI1 expression as compared with the well-differentiated tumors (P < 0.001). It was also found that patients with KAI1-negative tumors had a lower survival rate than those with KAI1-decreased or positive tumors (P = 0.0042 and 0.0286, respectively). However, in multivariate analysis, the prognostic significance of KAI1 expression was inferior to tumor stage. CONCLUSION: These data suggest that KAI1 expression is down-regulated in advanced endometrial cancer. Clinically it may be a useful indicator of the tumor progression and may provide prognostic information on the outcome of this disease.  相似文献   

16.
17.
The molecular basis for downregulation of the KAI1 metastasis suppressor gene in invasive and metastatic human cancers is unknown. We have used bisulphite methylation analysis of DNA from paraffin-embedded invasive bladder tumour samples and from bladder cancer cell lines to determine if hypermethylation of a CpG island within the KAI1 promoter is responsible for this effect. Representative invasive tumour cell lines were also exposed to 5-aza-2-deoxycytidine. We found no evidence for hypermethylation of the CpG island and suggest that mechanisms other than promoter hypermethylation are responsible for reduced KAI1 expression in invasive bladder tumours and tumour cell lines.  相似文献   

18.
19.
20.
We examined the DNA methylation pathway in an autochthonous murine prostate cancer model, transgenic adenocarcinoma of mouse prostate (TRAMP). We observed that, compared with strain-matched normal prostates, primary and metastatic TRAMP tumors display increased cytosine DNA methyltransferase (Dnmt) activity, Dnmt1 and Dnmt3b protein expression, and Dnmt1, Dnmt3a, and Dnmt3b mRNA expression. Increased expression of Dnmt genes correlates with increased expression of cyclin A and E2F target genes, implicating increased cell proliferation and Rb inactivation in Dnmt overexpression. We analyzed DNA methylation in TRAMP and found that global levels of 5-methyl-2'-deoxycytidine are unaltered, whereas specific tumors display centromeric repeat hypomethylation. To interrogate locus-specific methylation, we did restriction landmark genomic scanning (RLGS) on normal prostates and primary tumors. In primary tumors, 2.3% of approximately 1,200 analyzed loci display aberrant DNA hypermethylation, whereas a considerably smaller number of events show hypomethylation. The pattern of RLGS changes was nonrandom, indicating a coordinated methylation defect. Two specific genes identified by RLGS were studied in detail. Surprisingly, methylation of a downstream exon of p16(INK4a) (p16) was the highest frequency hypermethylation event identified in TRAMP, where it is associated with increased p16 mRNA and protein expression. In contrast, hypermethylation of the 5' CpG island region of the homeobox gene Irx3 in TRAMP is associated with reduced gene expression. In summary, our data reveal a systemic DNA methylation pathway defect in TRAMP reminiscent of human prostate cancer, supporting the use of this model to investigate the functional role of DNA methylation pathway alterations in prostate cancer development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号