首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Early T lineage cells are selected in the thymus by the specific recognition of peptide components presented by MHC molecules on the surface of thymic epithelial cells and dendritic cells. As a potential regulator of the apoptotic and survival signals, the protein phosphatase 2A-component G5PR regulates Bim phosphorylation in B-cells. Here, we studied whether G5PR is involved in the regulation of the similar apoptotic pathway for cell survival during the selection of thymocytes. T-cell-specific G5PR knockout (G5pr(-/-)) mice displayed thymic atrophy, significant reduction in thymocyte numbers, particularly a 10-fold decrease in the number of CD4 and CD8 double-positive (DP) thymocytes and few mature single-positive (SP) cells. G5pr(-/-) thymocytes exhibited normal potential of proliferation and differentiation during the transition from double-negative (DN) to DP stage, but significantly increased susceptibility to apoptosis at the DP stage. G5PR deficiency did not affect on Bim activation in thymocytes, but caused hyper-activation of JNK and Caspase-3 with augmented Fas ligand (FasL) expression, indicating that G5PR regulates the thymocyte unique apoptotic signal involved in JNK-mediated Caspase-3 activation but not in Bim activation. G5PR is essential for the survival of DP cells during thymocyte development.  相似文献   

2.
Local differentiation of eosinophil precursors occurs in the human thymus. Thymic eosinophils are often positioned in the corticomedullary junction between the CD4+CD8+ double-positive (DP) thymocytes and the CD4+ or CD8+ single-positive (SP) thymocytes. The aims of this study were to (1) determine if there are distinct thymic eosinophil populations that differ from the blood eosinophil populations and (2) evaluate the capacity of thymic eosinophils to promote the development of SP thymocytes from DP thymocytes. Thymic and blood eosinophils from thymectomized infants (n = 7) were compared regarding the expression of 34 molecules using cytometry by time-of-flight (CyTOF). In addition, FACS-sorted thymic eosinophils were co-cultured with autologous CD3/CD28-stimulated DP, CD4 SP, and CD8 SP thymocytes and analysed by flow cytometry and CyTOF. X-shift clustering analysis and viSNE dimensionality reduction were performed. Seven eosinophil populations were identified within the blood and thymus, respectively, five of which were specific for either tissue. Whereas the blood eosinophil populations varied between individuals, the thymic eosinophil populations were more uniform. The eosinophil-thymocyte co-cultures resulted in (1) an increase in CD4 SP thymocytes when eosinophils were cultured with DP thymocytes, (2) decreased frequency of CD8 SP thymocytes when these were cultured with eosinophils, and (3) a more mature thymic phenotype when eosinophils were cultured with CD4 SP thymocytes. Thymic eosinophils are a specialized population of eosinophils with a distinct phenotype that separates them from their blood counterparts, and in vitro they appear to favour CD4 SP thymocyte development to the detriment of CD8 SP thymocytes.  相似文献   

3.
4.
While the importance of the CD28/B7 costimulation pathway is well established for mature T cells, the role of CD28 in thymocyte selection is less well defined. The role of CD28 in both negative and positive selection was assessed using H-Y-specific TCR-transgenic (Tg) RAG-2-deficient (H-Yrag) mice. Negative selection in male H-Yrag mice was not affected by deficiency in CD28 or B7. Surprisingly, absence of CD28 or B7 in H-Yrag females resulted in increased numbers of CD8 single-positive (SP) thymocytes. The CD8 SP thymocytes found in these females were mature and functionally competent. Furthermore, double-positive (DP) thymocytes from CD28-knockout (CD28KO) or B7.1/B7.2 double-KO (B7DKO) females had higher levels of both CD5 and TCR than those from WT females, consistent with a stronger selecting signal. CD28KO H-Yrag fetal thymic organ cultures also had elevated numbers of thymic CD8 SP cells, reflecting increased thymic differentiation and not recirculation of peripheral T cells. Finally, increased selection of mature CD4 and CD8 SP T cells was observed in non-TCR-Tg CD28KO and B7DKO mice, indicating that this function of CD28-B7 interaction is not unique to a TCR-Tg model. Together these findings demonstrate a novel negative regulatory role for CD28 in inhibiting differentiation of SP thymocytes, probably through inhibition of thymic selection.  相似文献   

5.
Positive and negative selection steps in the thymus prevent non-functional or harmful T cells from reaching the periphery. To examine the role of glucocorticoid (GC) hormone and its intracellular receptor (GCR) in thymocyte development we measured the GCR expression in different thymocyte subpopulations of BALB/c mice with or without previous dexamethasone (DX), anti-CD3 mAb, RU-486 and RU-43044 treatment. Four-color labeling of thymocytes allowed detection of surface CD4/CD8/CD69 expression in parallel with intracellular GCR molecules by flow cytometry. Double-positive (DP) CD4+CD8+ thymocytes showed the lowest GCR expression compared to double-negative (DN) CD4-CD8- thymocytes and mature single-positive (SP) cells. DX treatment caused a concentration-dependent depletion of the DP cell population and increased appearance of mature SP cells with reduced GCR levels. GCR antagonists (RU-486 or RU-43044) did not influence the effect of DX on thymocyte composition; however, RU-43044 inhibited the high-dose GC-induced GCR down-regulation in SP and DN cells. GCR antagonists alone did not influence the maturation of thymocytes and receptor numbers. Combined low-dose anti-CD3 mAb and DX treatment caused an enhanced maturation (positive selection) of thymocytes followed by the elevation of CD69+ DP cells. The sensitivity of DP thymocytes with a GCRlow phenotype to GC action and the ineffectiveness of the GCR antagonist treatment may reflect a non-genomic GC action in the thymic selection steps.  相似文献   

6.
T-cell differentiation in the thymus depends on positive selection of CD4+CD8+ double positive (DP) thymocytes by thymic major histocompatibility complex (MHC) molecules. Positive selection allows maturation of only those thymocytes that are capable of self-peptide-MHC recognition. Thymocytes that fail to bind self-peptide-MHC die by apoptosis. An important question in thymocyte differentiation is whether co-stimulation is required for positive selection and on which cells co-stimulatory molecules may be expressed in the thymus. The vascular cell adhesion molecule (VCAM-1) and the intercellular cell adhesion molecule (ICAM-1) are known to be potent co-stimulatory molecules in activation of peripheral T-cells by interacting with the integrins VLA-4 and LFA-1, respectively. We were prompted to investigate whether VCAM-1 and ICAM-1 may also act as co-stimulators during selection of thymocytes. By using recombinant proteins of murine VCAM-1 and ICAM-1 fused to the Fc region of human IgG1 (rVCAM-1, rICAM-1) we examined the capacity of VCAM-1 and ICAM-1 to act as co-stimulatory molecules in positive selection in vitro. Triggering the CD3/TCR complex together with co-stimulation applied by rVCAM-1 or rICAM-1 induced the generation of CD4+ single positive (SP) thymocytes from CD4+CD8+ DP thymocytes whereas either signal alone did not result in generation of CD4+ SP thymocytes. VCAM-1 and ICAM-1 act therefore as co-stimulatory molecules in thymocyte positive selection in vitro. The generation of CD4+ SP cells is accompanied by cell survival both when it was co-stimulated with rVCAM-1 and with rICAM-1. Importantly we show here that VCAM-1 expression in the murine thymus is restricted to cortical F4/80 positive hematopoietic antigen presenting cells (hAPC) present exclusively in the cortex whereas expression of ICAM-1 has been reported on the epithelium both in cortex and medulla. This suggests that not only the cortical epithelium may use the co-stimulatory molecule ICAM-1 to mediate positive selection, but also cortical hAPCs may contribute to positive selection of thymocytes by using the co-stimulator VCAM-1.  相似文献   

7.
8.
HIV-1 often replicates in the thymus of infected individuals, causing thymocyte depletion and thymic dysfunction. Nevertheless, the mechanisms by which thymocyte depletion occurs are not clear. Here we report that HIV-1 infection induced apoptosis primarily in productively infected thymocytes; aldrithiol-2 or Efavirenz treatment largely abrogated HIV-1-induced apoptosis. Moreover, X4-HIV-1 induced apoptosis primarily in immature CD4+ CD8+ (DP) thymocytes whereas most mature CD4 or CD8 single-positive (SP) thymocytes were resistant to X4 HIV-1-induced apoptosis despite infection. Consistent with this, we observed significant induction of several genes involved in negative selection of DP thymocytes. Furthermore, treatment of thymocytes with cycloheximide abrogated HIV-1-induced apoptosis, implying a requirement for de novo protein synthesis. Our results suggest that HIV-1-induced apoptosis of thymocytes requires the activation of caspases and the participation of mitochondrial apoptosis effectors, which serve to amplify the apoptotic signal, a process similar to that elaborated during thymocyte negative selection.  相似文献   

9.
Self versus non-self discrimination is a key feature of immunorecognition. Through TCR-activated apoptotic mechanisms, autoreactive thymocytes are purged at the CD4(+)CD8(+) double-positive (DP) precursor stage prior to maturation to CD4(+) or CD8(+) single-positive (SP) thymocytes. To investigate this selection process in vivo, gene expression analysis by oligonucleotide array was performed in TCR transgenic mice. In total, 244 differentially expressed DP thymocyte genes induced or repressed by TCR triggering in vivo were identified. Genes involved in the biological processes of apoptosis, DNA recombination, antigen processing and adhesion are coordinately engaged. Moreover, analysis of gene expression in thymocyte subsets revealed that TCR ligand-induced expression profiles vary according to their developmental stage, with 48 genes showing DP preference and nine showing SP thymocyte preference. Finally, our data suggest that both the extrinsic and the intrinsic apoptosis pathways are operating in thymic selection.  相似文献   

10.
We have studied the differentiation and repertoire selection during the maturation of CD4+CD8+ (DP) thymocytes into CD4+CD8- (CD4SP) and CD8+CD4- (CD8SP) T cells, in normal mice, mice transgenic for T cell receptor (TcR)-αβ restricted by either class I or class II major histocompatibility (MHC), and in mice deficient in class I or class II MHC expression. Our data suggest that mature CD4 and CD8 T cells derive from different pathways of T cell differentiation in the thymus. Thus, interaction of DP thymocytes with MHC class II leads to the immediate down-regulation of CD8, which occurs simultaneously with an increase in TcR expression; DPTcRloHSAhi thymocytes mature into a CD4+CD8lo TcRhiHSAhi intermediate population. This cell population generates CD4SP thymocytes, the majority of which are still HSAhi. In contrast, interaction with MHC class I induces the up-regulation of TcR, which precedes the down-regulation of CD4; DPTcRlo generate DPTcRhi thymocytes, the majority of which are the committed precursors of CD8SP cells. Further differentiation results in CD4 down-regulation and the transition from DPTcRhi into CD8+CD4lo TcRhiHSAlo and CD8SPTcRhiHSA- T cells. Since down-regulation of CD4 and CD8 occurs at different stages of thymocyte differentiation, our results do not support a stochastic/selective model of lineage commitment in the thymus.  相似文献   

11.
To determine the effect of thymic stromal cells on the functional maturation of CD4 single-positive (SP) thymocytes, the functional status of isolated CD4 SP thymocyte subgroups was investigated by means of cell proliferation and cytokine production in response to concanavalin A (Con A) prior and after co-culturing with a murine thymic epithelial cell line (MTEC1). Mouse medullary CD4 SP thymocytes were phenotypically divided into seven discrete subgroups predicted to reflect the maturation pathway from newly emerging CD4 SP thymocytes to terminally differentiated cells. For functional analysis, six major subgroups (6C10(+)CD69(+), 6C10(-)CD69(+), 6C10(-)CD69(-)3G11(+)Qa-2(-), 6C10(-)CD69(-)3G11(+)Qa-2(+), 6C10(-)CD69(-)3G11(-)Qa-2(-) and 6C10(-)CD69(-)3G11(-)Qa-2(+)) cells were isolated and their functional status in response to Con A stimulation assessed. A functional hierarchy is revealed among these subgroups, consistent with their phenotypic maturation status, which may imply that these cells undergo a functional maturation process within thymic medulla. The function of cytokine production by CD4 SP thymocytes is acquired in a stepwise manner from a low to high level and characterized by T(h)0-type cytokines in the main stream of differentiation pathway. However, a minor subgroup that appeared at the late stage as 3G11(-)6C10(-) cells was biased to produce T(h)2-type cytokines. Nevertheless, the functional capacity of the final two Qa-2(+) subgroups of CD4 SP thymocytes was still significantly lower than that of spleen CD4(+) T cells. After co-cultivation with MTEC1 cells, four subgroups of TCRalphabeta(+)CD4(+)CD8(-) thymocytes exhibited significantly higher levels of proliferation capability and modulation in cytokine production capability. However, co-culturing with MTEC1 cells did not change the pattern of T(h)0- or T(h)2-like cytokine production by respectively medullary CD4 SP thymocyte subgroups nor could MTEC1 induce CD4 SP thymocytes to secrete T(h)1-type cytokines. The results suggest that MTEC1 can regulate the functional status of these thymocyte subgroups.  相似文献   

12.
The hedgehog (Hh) signaling pathway is involved in the development of many tissues. Here we show that sonic hedgehog (Shh) is involved in thymocyte development. Our data suggest that termination of Hh signaling is necessary for differentiation from CD4-CD8-double-negative (DN) to CD4+CD8+ double-positive (DP) thymocyte. Shh is produced by the thymic stroma, and Patched and Smoothened (Smo), the transmembrane receptors for Shh, are expressed in DN thymocytes. A neutralizing monoclonal antibody against Shh increases differentiation of DN to DP thymocytes, and Shh protein arrests thymocyte differentiation at the CD25+ DN stage, after T cell receptor beta (TCRbeta) gene rearrangement. We show that one consequence of pre-TCR signaling is downregulation of Smo, allowing DN thymocytes to proliferate and differentiate.  相似文献   

13.
Death of T cell precursors in the human thymus: a role for CD38   总被引:2,自引:0,他引:2  
Thymic T cell maturation depends on interactions between thymocytes and cells of epithelial and hematopoietic lineages that control a selective process whereby developing T cells with inappropriate or self-reactive receptors die. Molecules involved in this process are the TCR expressed on thymocytes together with the CD3 complex and MHC-peptide on accessory cells. However, other molecules may favor or prevent death of thymocytes, thus playing a role in selection. CD38 is expressed by the majority of human thymocytes, mainly at the double-positive (DP) stage. In contrast, CD38 is not found on subcapsular double-negative (DN) thymocytes and on a proportion of medullary single-positive (SP) thymocytes. CD38 enhances death of thymocytes when it is cross-linked by goat anti-mouse (GAM) antiserum or by one of its ligands, CD31, expressed by thymic epithelial cells or transfected into murine fibroblasts (L cells). As most thymocytes are at an intermediate (DP) stage of development, it is likely that these cells are most vulnerable to death mediated via MHC-peptide-TCR interactions that is increased by CD38 cross-linking. DN and SP thymocytes are refractory to CD38-induced apoptosis. Accessory molecules, e.g. CD38, are expressed during thymic cell maturation and their presence is relevant for the survival or death of DP T cells in the course of selection. Based on our data, CD38 enhances thymocyte death by interacting with CD31 expressed by accessory cells. In addition, CD28 expression on developing thymocytes also appears to play a role for their selection and it synergizes with CD38 to induce apoptosis of DP thymocytes.  相似文献   

14.
Huang F  Kitaura Y  Jang I  Naramura M  Kole HH  Liu L  Qin H  Schlissel MS  Gu H 《Immunity》2006,25(4):571-581
Casitas B cell lymphoma (Cbl) proteins are negative regulators for T cell antigen receptor (TCR) signaling. Their role in thymocyte development remains unclear. Here we show that simultaneous inactivation of c-Cbl and Cbl-b in thymocytes enhanced thymic negative selection and altered the ratio of CD4(+) and CD8(+) T cells. Strikingly, the mutant thymocytes developed into CD4(+)- and CD8(+)-lineage T cells independent of the major histocompatibility complex (MHC), indicating that the CD4(+)- and CD8(+)-lineage development programs are constitutively active in the absence of c-Cbl and Cbl-b. The mutant double-positive (DP) thymocytes exhibited spontaneous hyperactivation of nuclear factor-kappa B (NF-kappaB). Additionally, they failed to downregulate the pre-TCR and pre-TCR signaling. Thus, our data indicate that Cbl proteins play a critical role in establishing the MHC-dependent CD4(+) and CD8(+) T cell development programs. They likely do so by suppressing MHC-independent NF-kappaB activation, possibly through downmodulating pre-TCR signaling in DP thymocytes.  相似文献   

15.
C J Ong  J P Dutz  D Chui  H S Teh    J D Marth 《Immunology》1997,91(1):95-103
T-cell development is arrested at the CD4+CD8+ (DP; double-positive) stage of thymocyte development in CD45 null mice. However, the mechanism by which CD45 participates in the positive selection of T cells remains to be investigated. In this report we describe a DP thymocyte population that associates positive selection with expression of high levels of CD45, CD4 and CD8. DP thymocytes of this phenotype are large, cycling cells and represent approximately 20% of DP thymocytes in normal mice. In mice expressing a transgenic T-cell receptor (TCR) specific for the male antigen presented by H-2Db (H-Y TCR), the up-regulation of TCR, CD5 and CD69 in this large DP population occurred in a major histocompatibility complex (MHC)-restricted manner. To investigate further the role of CD45 in positive selection, we determined whether thymocytes that expressed a transgenic CD45RO molecule under the control of the proximal lck promoter can influence the positive selection of T cells in H-Y TCR transgenic mice. It was found that in female H-Y TCR transgenic mice, MHC-restricted positive selection of CD4- CD8+ H-Y TCR+ thymocytes was enhanced by increased CD45RO expression. Thus, CD45 increases the efficacy of positive selection of CD4- CD8+ thymocytes that express H-Y TCR.  相似文献   

16.
The chemokine CCL25 is constitutively expressed in the thymus, and its receptor CCR9 is expressed on subsets of developing thymocytes. Nevertheless, the function of CCL25/CCR9 in adult thymopoiesis remains unclear. Here, we demonstrate that purified CCR9(-/-) hematopoietic stem cells are deficient in their ability to generate all major thymocyte subsets including double-negative 1 (DN1) cells in competitive transfers. CCR9(-/-) bone marrow contained normal numbers of lineage(-) Sca-1+c-kit+, common lymphoid progenitors, and lymphoid-primed multipotent progenitors (LMPP), and CCR9(-/-) LMPP showed similar T cell potential as their wild-type (WT) counterparts when cultured on OP9-delta-like 1 stromal cells. In contrast, early thymic progenitor and DN2 thymocyte numbers were reduced in the thymus of adult CCR9(-/-) mice. In fetal thymic organ cultures (FTOC), CCR9(-/-) DN1 cells were as efficient as WT DN1 cells in generating double-positive (DP) thymocytes; however, under competitive FTOC, CCR9(-/-) DP cell numbers were reduced significantly. Similarly, following intrathymic injection into sublethally irradiated recipients, CCR9(-/-) DN cells were out-competed by WT DN cells in generating DP thymocytes. Finally, in competitive reaggregation thymic organ cultures, CCR9(-/-) preselection DP thymocytes were disadvantaged significantly in their ability to generate CD4 single-positive (SP) thymocytes, a finding that correlated with a reduced ability to form TCR-MHC-dependent conjugates with thymic epithelial cells. Together, these results highlight a role for CCR9 at several stages of adult thymopoiesis: in hematopoietic progenitor seeding of the thymus, in the DN-DP thymocyte transition, and in the generation of CD4 SP thymocytes.  相似文献   

17.
The Ras/MAPK cascade and the control of positive selection   总被引:7,自引:0,他引:7  
Immature double positive (DP) thymocytes bearing a T cell receptor (TCR) that interacts with self‐major histocompatibility complex (MHC) molecules receive signals that induce either their differentiation (positive selection) or apoptosis (negative selection). Furthermore, those cells that are positively selected develop into two different lineages, CD4 or CD8, depending on whether their TCRs bind to MHC class II or I, respectively. Positive selection therefore involves rescue from the default fate (death), lineage commitment, and progression to the single positive (SP) stage. These are probably temporally distinct events that may require both unique and overlapping signals. Work in the past several years has started to unravel the signaling networks that control these processes. One of the first pathways identified as important for positive selection was Ras and its downstream effector, the Erk mitogen‐activated protein kinase (MAPK) cascade. In this review we examine the factors that connect the TCR to the Ras/Erk cascade in DP thymocytes, as well as what we know about the downstream effectors of the Ras/Erk cascade important for positive selection. We also consider the possible role of this cascade in CD4/CD8 lineage development, and the possible interactions of the Ras/Erk cascade with Notch during these cell fate determination processes.  相似文献   

18.
The development of T cells in the thymus is dependent on interactions between thymocytes and thymic stromal cells, on stimulation by growth factors, and on the binding to and migration along extracellular matrix (ECM) components. As metalloproteinases (MP) are involved in processes such as growth factor release and ECM modelling, we assessed the effect of MP inhibitors on T-cell development using fetal thymic organ culture systems. MP inhibitors significantly reduced the numbers of CD4/CD8 double-positive (DP) and mature single-positive thymocytes generated, correlated with a reduced number of cell cycles between the double-negative (DN)3 and DP stages. The progression of early thymocyte progenitors through the DN1-4 stages of development was also severely affected, including incomplete upregulation of CD25, decreased DN3 cell numbers, reduced rearrangement of the T-cell receptor (TCR)-beta locus and expression of intracellular TCR-beta by fewer DN3 cells. When purified DN1 cells were utilized as donor cells in reaggregate thymic organ cultures, essentially no DP thymocytes were produced in the presence of MP inhibitors. The results suggest that MP inhibitors affect the differentiation of developing thymocytes before, and reduce proliferation after, pre-TCR-mediated selection.  相似文献   

19.
The present study aimed to determine whether the frequency of double positive (DP) thymocytes expressing alphabeta T-cell receptor (TCR) clonotypes at the time of selection regulates peripheral CD4 T-cell compartment size. Scid recipients were inoculated with various ratios of TCR Calpha(0/0) and wild-type bone marrow (BM) stem cells. Increasing the frequency of TCR Calpha(0/0) thymocytes at steady-state introduced a graded decrease in the maturation probability of the total DP thymocyte pool. At 12-14 weeks following BM inoculation, the frequency of TCR Calpha(0/0) DP thymocytes was inversely correlated with that of CD4 single positive (SP) thymocytes. Notwithstanding, a decreased frequency of wild-type DP thymocytes led to a marked increase in their transit efficiency from the DP to SP compartments. The frequency-dependent increase in thymocyte transit efficiency was associated with a CD4 SP cell surface phenotype indicative of increased antigenic experience. Importantly, the frequency of DP thymocytes capable of expressing TCR clonotypes dictated the steady-state size of the peripheral CD4 T cell compartment and its potential for homeostatic proliferation. Collectively, these results indicate that the efficiency of DP to CD4 SP transit is a frequency dependent process, which determines (1) the steady-state size of the peripheral T cell compartment and (2) the threshold for homeostatic expansion of peripheral CD4 T cells.  相似文献   

20.
BALB/c thymocytes can be divided into three distinct subsets according to the expression of a ligand for the NK activation receptor NKG2D (NKG2D-L) and the expression of MHC class I (MHC-I). The first subset (MHC-Imid/NKG2D-Lhigh or "N+") is predominately CD4+CD8+ double positive (DP), comprises approximately 35% of thymocytes in a 6-8-week-old adult and contains uncommitted cells that have neither undergone selection nor are committed to death by neglect. The second subset (MHC-Ilow/NKG2D-Llow or "M-"), also mostly DP cells, comprises approximately 50% of thymocytes and consists of cells committed to death by apoptosis, likely due to neglect. By contrast, the third subset (MHC-Ihigh/NKG2D-Llow or "M+") is largely single positive (SP), represents approximately 15% of thymocytes and mostly contains more mature cells that have undergone successful positive selection. The major advantage of the analysis is that it splits DP cells into two subpopulations, one committed to death by apoptosis and the other subjected to selection. The analysis also suggests that NKG2D-L may play a role in thymocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号