首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies in humans and experimental animals have demonstrated the vulnerability of the adolescent brain to actions of ethanol and the long-term consequences of binge drinking, including the behavioral and cognitive deficits that result from alcohol neurotoxicity, and increased risk to alcohol abuse and dependence. Although the mechanisms that participate in these effects are largely unknown, we have shown that ethanol by activating innate immune receptors, toll-like receptor 4 (TLR4), induces neuroinflammation, impairs myelin proteins and causes cognitive dysfunctions in adolescent mice. Since neuroimmune signaling is also involved in alcohol abuse, the aim of this study was to assess whether ethanol treatment in adolescence promotes the long-term synaptic and molecular events associated with alcohol abuse and addiction. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3 g/kg) for 2 weeks, we showed that binge-like ethanol treatment in adolescent mice promotes short- and long-term alterations in synaptic plasticity and epigenetic changes in the promoter region of bdnf and fosb, which increased their expression in the mPFC of young adult animals. These molecular events were associated with long-term rewarding and anxiogenic-related behavioral effects, along with increased alcohol preference. Our results further showed the participation of neuroimmune system activation and the TLR4 signaling response since deficient mice in TLR4 (TLR4-KO) are protected against molecular and behavioral alterations of ethanol in the adolescent brain. Our results highlight a new role of the neuroimmune function and open up new avenues to develop pharmacological treatments that can normalize the immune signaling responsible for long-term effects in adolescence, including alcohol abuse and related disorders.  相似文献   

2.
Adolescence is a critical stage of brain maturation in which important plastic and dynamic processes take place in different brain regions, leading to development of the adult brain. Ethanol drinking in adolescence disrupts brain plasticity and causes structural and functional changes in immature brain areas (prefrontal cortex, limbic system) that result in cognitive and behavioral deficits. These changes, along with secretion of sexual and stress‐related hormones in adolescence, may impact self‐control, decision making, and risk‐taking behaviors that contribute to anxiety and initiation of alcohol consumption. New data support the participation of the neuroimmune system in the effects of ethanol on the developing and adult brain. This article reviews the potential pathological bases that underlie the effects of alcohol on the adolescent brain, such as the contribution of genetic background, the perturbation of epigenetic programming, and the influence of the neuroimmune response. Special emphasis is given to the actions of ethanol in the innate immune receptor toll‐like receptor 4 (TLR4), since recent studies have demonstrated that by activating the inflammatory TLR4/NFκB signaling response in glial cells, binge drinking of ethanol triggers the release of cytokines/chemokines and free radicals, which exacerbate the immune response that causes neuroinflammation/neural damage as well as short‐ and long‐term neurophysiological, cognitive, and behavioral dysfunction. Finally, potential treatments that target the neuroimmune response to treat the neuropathological and behavioral consequences of adolescent alcohol abuse are discussed.  相似文献   

3.
Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions.  相似文献   

4.
Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co‐abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3–6 mg/kg/day) via the drinking water between post‐natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long‐term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose‐dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH‐treated mice. These results suggested that the administration of MPH during development promoted long‐term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood.  相似文献   

5.
Alcohol abuse and alcoholism can cause brain damage, loss of white matter, myelin fiber disruption, and even neuronal injury. The underlying mechanisms of these alterations remain elusive. We have shown that chronic ethanol intake, by activating glial toll-like receptor 4 (TLR4) receptors, triggers the production of inflammatory mediators and can cause brain damage. Because neuroinflammation may be associated with demyelination and neuronal damage, we evaluate whether the ethanol-induced TLR4-dependent proinflammatory environment in the brain could be involved in the myelin disruptions observed in alcoholics. Using brains from wild-type (WT) and TLR4 knockout (KO, TLR4(-/-) ) mice, we demonstrate that chronic ethanol treatment downregulated proteins involved in myelination [proteolipid protein (PLP), myelin basic protein (MBP), myelin-oligodendrocyte glycoprotein, 2,3-cyclic-nucleotide-3-phosphodiesterase, and myelin-associated glycoprotein], while increased chondroitin sulfate proteoglycan NG2 (NG2)-proteoglycan in several brain regions of ethanol-treated WT mice. The immunohistochemistry analysis also revealed that ethanol-treatment-altered myelin morphology reduced the number of MBP-positive fibers and caused oligodendrocyte death, as demonstrated by an increase in caspase-3-positive oligodendrocytes. The in vivo imaging system further confirmed that chronic ethanol intake markedly reduced the PLP in WT mice. Most myelin alterations were not observed in brains from ethanol-treated TLR4(-/-) mice. Electron microscopy studies revealed that although 41-47% of axons showed myelin sheath disarrangements in the cerebral cortex and corpus callosum of WT ethanol-treated mice, respectively, small focal fiber disruptions were noticed in these brain areas of ethanol-treated TLR4(-/-) mice. In summary, the present results suggest that ethanol-induced neuroinflammation might be involved in myelin disruptions and white matter loss observed in human alcoholics.  相似文献   

6.
Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part through D1DR receptors, in a network activated by nicotine. The adolescent nicotine effects reviewed here suggest that modification of late CNS development constitutes a hazard of adolescent nicotine use.  相似文献   

7.
8.
ObjectiveToll-like receptor-2 (TLR2), a member of TLR family, plays an important role in the induction and regulation of immune/inflammation. TLR2 gene knockout (TLR2KO) mice have been widely used for animal models of neurological diseases. Since there is close relationship between immune system and neurobehavioral functions, it is important to clarify the exact role of TLR2 defect itself in neurobehavioral functions. The present study aimed to investigate the effect of TLR2KO on neurobehavioral functions in mice and the mechanisms underlying the observed changes.MethodsMale TLR2KO and wild type (WT) mice aged 3, 7, and 12 months were used for neurobehavioral testing and detection of protein expression by Western blot. Brain magnetic resonance imaging (MRI), electrophysiological recording, and Evans blue (EB) assay were applied to evaluate regional cerebral blood flow (rCBF), synaptic function, and blood–brain barrier (BBB) integrity in 12-month-old TLR2KO and age-matched WT mice.ResultsCompared to WT mice, TLR2KO mice showed decreased cognitive function and locomotor activity, as well as increased anxiety, which developed from middle age (before 7-month-old) to old age. In addition, significantly reduced regional cerebral blood flow (rCBF), inhibited long-term potentiation (LTP), and increased blood–brain barrier (BBB) permeability were observed in 12-month-old TLR2KO mice. Furthermore, compared with age-matched WT mice, significant reduction in protein levels of tight junction proteins (ZO-1, Occludin, and Claudin-5) and increased neurofilament protein (SMI32) were observed in 7 and 12-month-old TLR2KO mice, and that myelin basic protein (MBP) decreased in 12-month-old TLR2KO mice.ConclusionOur data demonstrated that TLR2 defect resulted in significantly observable neurobehavioral dysfunctions in mice starting from middle age, as well as multiple abnormalities in brain structure, function, and molecular metabolism.  相似文献   

9.
Neuro-inflammation plays a key role in the occurrence and development of postoperative cognitive dysfunction (POCD). Although S100A8 and Toll-like receptor 4 (TLR4) have been increasingly recognized to contribute to neuro-inflammation, little is known about the interaction between S100A8 and TLR4/MyD88 signaling in the process of systemic inflammation that leads to neuro-inflammation. Firstly, we demonstrated that C57BL/6 wide-type mice exhibit cognitive deficit 24 h after the tibial fracture surgery. Subsequently, increased S100A8 and S100A9 expression was found in the peripheral blood mononuclear cells (PBMCs), spleen, and hippocampus of C57BL/6 wide-type mice within 48 h after the surgery. Pre-operative administration of S100A8 antibody significantly inhibited hippocampal microgliosis and improved cognitive function 24 h after the surgery. Secondly, we also observed TLR4/MyD88 activation in the PBMCs, spleen, and hippocampus after the surgery. Compared with those in their corresponding wide-type mice, TLR4−/− and MyD88−/− mice showed lower immunoreactive area of microglia in the hippocampal CA3 region after operation. TLR4 deficiency also led to reduction of CD45hiCD11b+ cells in the brain and better performance in both Y maze and open field test after surgery, suggesting a new regulatory mechanism of TLR4-dependent POCD. At last, the co-location of S100A8 and TLR4 expression in spleen after operation suggested a close relationship between them. On the one hand, S100A8 could induce TLR4 activation of CD11b+ cells in the blood and hippocampus via intraperitoneal or intracerebroventricular injection. On the other hand, TLR4 deficiency conversely alleviated S100A8 protein-induced hippocampal microgliosis. Furthermore, the increased expression of S100A8 protein in the hippocampus induced by surgery sharply decreased in both TLR4 and MyD88 genetically deficient mice. Taken together, these data suggest that S100A8 exerts pro-inflammatory effect on the occurrence and development of neuro-inflammation and POCD by activating TLR4/MyD88 signaling in the early pathological process of the postoperative stage.  相似文献   

10.
Puberty and adolescence are major life transitions during which an individual’s physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain’s response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.  相似文献   

11.
Excessive ethanol drinking in rodent models may involve activation of the innate immune system, especially toll-like receptor 4 (TLR4) signaling pathways. We used intracellular recording of evoked GABAergic inhibitory postsynaptic potentials (eIPSPs) in central amygdala (CeA) neurons to examine the role of TLR4 activation by lipopolysaccharide (LPS) and deletion of its adapter protein CD14 in acute ethanol effects on the GABAergic system. Ethanol (44, 66 or 100 mM) and LPS (25 and 50 μg/ml) both augmented eIPSPs in CeA of wild type (WT) mice. Ethanol (44 mM) decreased paired-pulse facilitation (PPF), suggesting a presynaptic mechanism of action. Acute LPS (25 μg/ml) had no effect on PPF and significantly increased the mean miniature IPSC amplitude, indicating a postsynaptic mechanism of action. Acute LPS pre-treatment potentiated ethanol (44 mM) effects on eIPSPs in WT mice and restored ethanol’s augmenting effects on the eIPSP amplitude in CD14 knockout (CD14 KO) mice. Both the LPS and ethanol (44–66 mM) augmentation of eIPSPs was diminished significantly in most CeA neurons of CD14 KO mice; however, ethanol at the highest concentration tested (100 mM) still increased eIPSP amplitudes. By contrast, ethanol pre-treatment occluded LPS augmentation of eIPSPs in WT mice and had no significant effect in CD14 KO mice. Furthermore, (+)-naloxone, a TLR4-MD-2 complex inhibitor, blocked LPS effects on eIPSPs in WT mice and delayed the ethanol-induced potentiation of GABAergic transmission. In CeA neurons of CD14 KO mice, (+)-naloxone alone diminished eIPSPs, and subsequent co-application of 100 mM ethanol restored the eIPSPs to baseline levels. In summary, our results indicate that TLR4 and CD14 signaling play an important role in the acute ethanol effects on GABAergic transmission in the CeA and support the idea that CD14 and TLR4 may be therapeutic targets for treatment of alcohol abuse.  相似文献   

12.
Early-life inflammation has been shown to exert profound effects on brain development and behavior, including altered emotional behavior, stress responsivity and neurochemical/neuropeptide receptor expression and function. The current study extends this research by examining the impact of inflammation, triggered with the bacterial compound lipopolysaccharide (LPS) on postnatal day (P) 14, on social behavior during adolescence. We investigated the role that the endocannabinoid (eCB) system plays in sociability after early-life LPS. To test this, multiple cohorts of Sprague Dawley rats were injected with LPS on P14. In adolescence, rats were subjected to behavioral testing in a reciprocal social interaction paradigm as well as the open field. We quantified eCB levels in the amygdala of P14 and adolescent animals (anandamide and 2-arachidonoylglycerol) as well as adolescent amygdaloid cannabinoid receptor 1 (CB1) binding site density and the hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which metabolizes the eCB anandamide. Additionally, we examined the impact of FAAH inhibition on alterations in social behavior. Our results indicate that P14 LPS decreases adolescent social behavior (play and social non-play) in males and females at P40. This behavioral alteration is accompanied by decreased CB1 binding, increased anandamide levels and increased FAAH activity. Oral administration of the FAAH inhibitor PF-04457845 (1 mg/kg) prior to the social interaction task normalizes LPS-induced alterations in social behavior, while not affecting social behavior in the control group. Infusion of 10 ng PF-04457845 into the basolateral amygdala normalized social behavior in LPS injected females. These data suggest that alterations in eCB signaling following postnatal inflammation contribute to impairments in social behavior during adolescence and that inhibition of FAAH could be a novel target for disorders involving social deficits such as social anxiety disorders or autism.  相似文献   

13.
Amphetamine-type psychostimulants (ATS), such as amphetamine (AMPH), 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) are psychoactive substances widely abused, due to their powerful central nervous system (CNS) stimulation ability. Young people particularly use ATS as recreational drugs. Moreover, AMPH is used clinically, particularly for attention deficit hyperactivity disorder, and has the ability to cause structural and functional brain alterations. ATS are known to interact with monoamine transporter sites and easily diffuse across cellular membranes, attaining high levels in several tissues, particularly the brain. Strong evidence suggests that ATS induce neurotoxic effects, raising concerns about the consequences of drug abuse.Considering that many teenagers and young adults commonly use ATS, our main aim was to review the neurotoxic effects of amphetamines, namely AMPH, MDMA, and METH, in the adolescence period of experimental animals. Reports agree that adolescent animals are less susceptible than adult animals to the neurotoxic effects of amphetamines. The susceptibility to the neurotoxic effects of ATS seems roughly located in the early adolescent period of animals. Many authors report that the age of exposure to ATS is crucial for the neurotoxic outcome, showing that the stage of brain maturity has a strong importance. Moreover, recent studies have been undertaken in young adults and/or consumers during adolescence that clearly indicate brain or behavioural damage, arguing for long-term neurotoxic effects in humans. There is an urgent need for more studies during the adolescence period, in order to unveil the mechanisms and the brain dysfunctions promoted by ATS.  相似文献   

14.
Methylmercury (MeHg) readily crosses the blood brain barrier and is a known neuro-toxicant. MeHg accumulation in the brain causes histopathological alterations, neurobehavioral changes, and impairments to cognitive motor functions in mammalian models. However, in birds the neurotoxic effects of MeHg on the developing pre-hatching brain and consequent behavioral alterations in adult birds have not received much attention. Moreover, passerine birds are poorly represented in MeHg neurotoxicology studies in comparison to other avian orders. Hence in this study, we used the egg injection method to investigate the long term effects of in ovo MeHg exposure on brain histopathology and courtship behavior in a model songbird species, the zebra finch (Taeniopygia guttata). Egg treatment groups included: a low MeHg dose of 0.2 μg Hg g−1 egg, a high MeHg dose of 3.2 μg Hg g−1 egg, and a vehicle control (water). No adverse effects of in ovo MeHg treatment were detected on courtship song quality or on mating behavior in experimental males at sexually maturity which would suggest that observable neurobehavioral effects of MeHg exposure may depend on the timing of exposure during offspring development. However, neuroanatomical analysis indicated an increase in telencephalon volume with increased MeHg concentrations which may suggest a prolonged inflammatory response in this region of the brain.  相似文献   

15.
Nearly all smokers begin tobacco use in adolescence, and approximately 25% of US teenagers are daily smokers. Prenatal nicotine exposure is known to produce brain damage, to alter synaptic function and to cause behavioral anomalies, but little or no work has been done to determine if the adolescent brain is also vulnerable. We examined the effect of adolescent nicotine exposure on indices of cell damage in male and female rats with an infusion paradigm designed to match the plasma levels found in human smokers or in users of the transdermal nicotine patch. Measurements were made of DNA and protein as well as expression of mRNAs encoding genes involved in differentiation and apoptosis (p53, c-fos) in cerebral cortex, midbrain and hippocampus. Following nicotine treatment from postnatal days 30-47.5, changes in macromolecular constituents indicative of cell loss (reduced DNA) and altered cell size (protein/DNA ratio) were seen across all three brain regions. In addition, expression of p53 showed region- and gender-selective alterations consistent with cell damage; c-fos, which is constitutively overexpressed after gestational nicotine exposure, was unaffected with the adolescent treatment paradigm. Although these measures indicate that the fetal brain is more vulnerable to nicotine than is the adolescent brain, the critical period for nicotine-induced developmental neurotoxicity clearly extends into adolescence. Effects on gene expression and cell number, along with resultant or direct effects on synaptic function, may contribute to increased addictive properties and long-term behavioral deficits.  相似文献   

16.
The neural cell adhesion molecule CHL1 is implicated in neural development in the mouse and has been related to psychiatric disorders in humans. Here we report that mice constitutively deficient for CHL1 display reduced reactivity to environmental stimuli and reduced expression of social behaviors, whereas cognitive, motor and olfactory functions are normal. Basal synaptic transmission and plasticity in seven major excitatory connections in the hippocampus were analyzed to test whether dysfunctions in this brain region, which controls complex behaviors, correlate with the behavioral alterations of CHL1 deficient mice. We found that basal synaptic transmission in lateral and medial perforant path projections to the dentate gyrus is elevated in CHL1-deficient mice. Taking in consideration the function of these synapses in processing information from cortical areas, we hypothesize that constitutive ablation of CHL1 leads to reduced capability to react to external stimuli due to dysfunctions in the dentate gyrus.  相似文献   

17.
Patients with 22q11DS are at risk of behavioral problems and cognitive impairment. Recent studies suggest a possible intellectual decline in 22q11DS children. To date it is unknown if cognitive development is related to the behavioral problems in 22q11DS. We studied 53 children with 22q11DS who underwent cognitive and behavioral assessments at 9.5 years (T1) and 15.3 years (T2). In about one third, IQ data obtained at 7.5 years (T0) were also available. Results showed that internalizing behaviors intensified while externalizing behaviors decreased. Simultaneously, in about a third a significant decline in IQ was found, which, surprisingly, was unrelated to the behavioral changes. It can be concluded that children with 22q11DS follow a unique developmental trajectory. Cognitive deterioration is severe in some but does not appear to predict behavioral problems in early adolescence.  相似文献   

18.
We previously demonstrated that the dopamine D3 receptor (D3R) inhibitor, NGB2904, increases susceptibility to depressive-like symptoms, elevates pro-inflammatory cytokine expression, and alters brain-derived neurotrophic factor (BDNF) levels in mesolimbic dopaminergic regions, including the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral tegmental area (VTA) in mice. The mechanisms by which D3R inhibition affects neuroinflammation and onset of depression remain unclear. Here, using D3R-knockout (D3RKO) and congenic wild-type C56BL/6 (WT) mice, we demonstrated that D3RKO mice displayed depressive-like behaviors, increased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 levels, and altered BDNF expression in selected mesolimbic dopaminergic regions. D3R expression was localized to astrocytes or microglia in the mPFC, NAc, and VTA in WT mice. D3RKO mice exhibited a large number of Iba1-labelled microglia in the absence of glial fibrillary acidic protein (GFAP)-labelled astrocytes in mesolimbic dopaminergic brain areas. Inhibition or ablation of microglia by minocycline (25 mg/kg and 50 mg/kg) or PLX3397 (40 mg/kg) treatment ameliorated depressive-like symptoms, alterations in pro-inflammatory cytokine levels, and BDNF expression in the indicated brain regions in D3RKO mice. Minocycline therapy alleviated the increase in synaptic density in the NAc in D3RKO mice. These findings suggest that microglial activation in selected mesolimbic reward regions affects depressive-like behaviors induced by D3R deficiency.  相似文献   

19.
Adolescent brain development seems to be important for the maturation of brain structures and behaviour. Intermittent binge ethanol drinking is common among adolescents, and this type of drinking can induce brain damage. Because we have demonstrated that chronic ethanol treatment induces inflammatory processes in the brain, we investigate whether intermittent ethanol intoxication enhances cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in adolescent rats, and whether these mediators induce brain damage and cause permanent cognitive dysfunctions. Adolescent rats were exposed to ethanol (3.0 g/kg) for two consecutive days at 48-h intervals over 14 days. Levels of COX-2, iNOS and cell death were assessed in the neocortex, hippocampus and cerebellum 24 h after the final ethanol administration. The following day or 20 days after the final injection (adult stage), animals were tested for different behavioural tests (conditional discrimination learning, rotarod, object recognition, beam-walking performance) to assess cognitive and motor functions. Our results show that intermittent ethanol intoxication upregulates COX-2 and iNOS levels, and increases cell death in the neocortex, hippocampus and cerebellum. Furthermore, animals treated with ethanol during adolescence exhibited behavioural deficits that were evident at the end of ethanol treatments and at the adult stage. Administration of indomethacin, a COX-2 inhibitor, abolishes the induction of COX-2 and iNOS expression and cell death, preventing ethanol-induced behavioural deficits. These findings indicate that binge pattern exposure to ethanol during adolescence induces brain damage by inflammatory processes and causes long-lasting neurobehavioural consequences. Accordingly, administering indomethacin protects against ethanol-induced brain damage and prevents detrimental ethanol effects on cognitive and motor processes.  相似文献   

20.
The prevalence of neurodevelopmental disorders such as autism is increasing, however the etiology of these disorders is unclear and thought to involve a combination of genetic, environmental and immune factors. A recent epidemiological study found that gestational viral exposure during the first trimester increases risk of autism in offspring by twofold. In mice gestational viral exposures alter behavior of offspring, but the biological mechanisms which underpin these behavioral changes are unclear. We hypothesized that gestational viral exposure induces changes in affiliative hormones, brainstem autonomic nuclei and neurotransmitters which are associated with behavioral alterations in offspring. To address this hypothesis, we exposed pregnant mice to influenza A virus (H3N2) on gestational day 9 and determined behavioral, hormonal and brainstem changes in male and female offspring. We found that gestational flu exposure induced dose-dependent alterations in social and aggressive behaviors (p  0.05) in male and female offspring and increases in locomotor behaviors particularly in male offspring (p  0.05). We found that flu exposure was also associated with reductions in oxytocin and serotonin (p  0.05) levels in male and female offspring and sex-specific changes in dopamine metabolism. In addition we found changes in catecholaminergic and microglia density in brainstem tissues of male flu exposed offspring only (p  0.05). This study demonstrates that gestational viral exposure induces behavioral changes in mice, which are associated with alterations in affiliative hormones. In addition we found sex-specific changes in locomotor behavior, which may be associated with sex-specific alterations in dopamine metabolism and brainstem inflammation. Further investigations into maternal immune responses are necessary to unravel the molecular mechanisms which underpin abnormal hormonal, immune and behavioral responses in offspring after gestational viral exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号