首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury(SNI)increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia(DRG)neurons and satellite glial cells. SNI also induced longlasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4–5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNIinduced a sustained increase in TNF-a expression in the DRG and spinal cord. Intraperitoneal injection(i.p.) of the TNF-a synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord.Intrathecal injection(i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI,reduced the behavioral signs of allodynia. Rats given an i.t.or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover,repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in na?¨ve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-a might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain.  相似文献   

3.
The lysine specific demethylase 6B (KDM6B) has been implicated as a coregulator in the expression of proinflammatory mediators, and in the pathogenesis of inflammatory and arthritic pain. However, the role of KDM6B in neuropathic pain has yet to be studied. In the current study, the neuropathic pain was determined by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) following lumbar 5 spinal nerve ligation (SNL) in male rats. Immunohistochemistry, Western blotting, qRT-PCR, and chromatin immunoprecipitation (ChIP)-PCR assays were performed to investigate the underlying mechanisms. Our results showed that SNL led to a significant increase in KDM6B mRNA and protein in the ipsilateral L4/5 dorsal root ganglia (DRG) and spinal dorsal horn; and this increase correlated a markedly reduction in the level of H3K27me3 methylation in the same tissue. Double immunofluorescence staining revealed that the KDM6B expressed in myelinated A- and unmyelinated C-fibers in the DRG; and located in neuronal cells, astrocytes, and microglia in the dorsal horn. Behavioral data showed that SNL-induced mechanical allodynia and thermal hyperalgesia were impaired by the treatment of prior to i.t. injection of GSK-J4, a specific inhibitor of KDM6B, or KDM6B siRNA. Both microinjection of AAV2-EGFP-KDM6B shRNA in the lumbar 5 dorsal horn and sciatic nerve, separately, alleviated the neuropathic pain following SNL. The established neuropathic pain was also partially attenuated by repeat i.t. injections of GSK-J4 or KDM6B siRNA, started on day 7 after SNL. SNL also resulted in a remarkable increased expression of interleukin-6 (IL-6) in the DRG and dorsal horn. But this increase was dramatically inhibited by i.t. injection of GSK-J4 and KDM6B siRNA; and suppressed by prior to microinjection of AAV2-EGFP-KDM6B shRNA in the dorsal horn and sciatic nerve. Results of ChIP-PCR assay showed that SNL-induced enhanced binding of STAT3 with IL-6 promoter was inhibited by prior to i.t. injection of GSK-J4. Meanwhile, the level of H3K27me3 methylation was also decreased by the treatment. Together, our results indicate that SNL-induced upregulation of KDM6B via demethylating H3K27me3 facilitates the binding of STAT3 with IL-6 promoter, and subsequently mediated-increase in the expression of IL-6 in the DRG and dorsal horn contributes to the development and maintenance of neuropathic pain. Targeting KDM6B might a promising therapeutic strategy to treatment of chronic pain.  相似文献   

4.
Accumulating evidence suggests that microglial cells in the spinal cord play an important role in the development of neuropathic pain. However, it remains largely unknown how glia interact with neurons in the spinal cord after peripheral nerve injury. Recent studies suggest that the chemokine fractalkine may mediate neural/microglial interaction via its sole receptor CX3CR1. We have examined how fractalkine activates microglia in a neuropathic pain condition produced by spinal nerve ligation (SNL). SNL induced an upregulation of CX3CR1 in spinal microglia that began on day 1, peaked on day 3, and maintained on day 10. Intrathecal injection of a neutralizing antibody against CX3CR1 suppressed not only mechanical allodynia but also the activation of p38 MAPK in spinal microglia following SNL. Conversely, intrathecal infusion of fractalkine produced a marked p38 activation and mechanical allodynia. SNL also induced a dramatic reduction of the membrane-bound fractalkine in the dorsal root ganglion, suggesting a cleavage and release of this chemokine after nerve injury. Finally, application of fractalkine to spinal slices did not produce acute facilitation of excitatory synaptic transmission in lamina II dorsal horn neurons, arguing against a direct action of fractalkine on spinal neurons. Collectively, our data suggest that (a) fractalkine cleavage (release) after nerve injury may play an important role in neural-glial interaction, and (b) microglial CX3CR1/p38 MAPK pathway is critical for the development of neuropathic pain.  相似文献   

5.
6.
Postoperative cognitive dysfunction (POCD) is a common postoperative complication that is associated with increased morbidity and mortality. However, the neuropathogenesis of this complication remains largely unknown. Neuroinflammation, in particular hippocampal inflammation, contributes to POCD. Recently, increasing evidence has supported the involvement of microRNAs (miRNAs) in the regulation of neuroinflammation in human neurological disorders. In the present study, we investigated the role of miR-146a, a key regulator of the innate immune response, in surgery-induced hippocampal inflammation and cognitive impairment.The expression of miR-146a was measured in BV-2 microglial cells stimulated with lipopolysaccharide (LPS) and hippocampal tissues of mice with POCD. Loss of function and overexpression studies were performed via transfection with miR-146a mimic/inhibitor in cultured BV-2 cell lines and intrahippocampal injection of miR-146a agomir/antagomir before surgery/anesthesia to identify the role of miR-146a in neuroinflammation and cognitive impairment. QPCR, Western blot and ELISA were used to determine the expression levels of downstream adaptor proteins and proinflammatory cytokines. Immunofluorescence staining was applied to evaluate the activation of microglia.Increased expression of miR-146a was observed in BV-2 microglial cells stimulated with LPS and hippocampal tissues of mice with POCD. Modulation of miR-146a expression via transfection of microglia with miR-146a mimic or inhibitor regulated the mRNA and protein expression levels of downstream targets of miR-146a (IRAK1 and TRAF6) as well as the release of proinflammatory cytokines (TNF-α, IL-1β and IL-6). In addition, overexpression of miR-146a attenuated hippocampus-dependent learning and memory impairment in mice with POCD, which was accompanied by decreased expression of the IRAK1/TRAF6/nuclear factor (NF)-κB pathway and downregulation of microglial activation in the hippocampus. Conversely, knockdown of miR-146a expression may exacerbate hippocampus-dependent learning and memory deficiency and hippocampal inflammation in mice with POCD.Collectively, our findings demonstrate the important role of miR-146a in the neuropathogenesis of POCD and suggest that miR-146a may be a potential therapeutic target for POCD.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) plays an important role in the induction and maintenance of neuropathic pain. Transforming growth factor-activated kinase 1 (TAK1), a member of the MAPK kinase kinase family, is indispensable for the activation of c-Jun N-terminal kinase (JNK) and p38 MAPK. We now show that TAK1 induced in spinal cord astrocytes is crucial for mechanical hypersensitivity after peripheral nerve injury. Nerve injury induced a striking increase in the expression of TAK1 in the ipsilateral dorsal horn, and TAK1 was increased in hyperactive astrocytes, but not in neurons or microglia. Intrathecal administration of TAK1 antisense oligodeoxynucleotide (AS-ODN) prevented and reversed nerve injury-induced mechanical, but not heat hypersensitivity. Furthermore, TAK1 AS-ODN suppressed the activation of JNK1, but not p38 MAPK, in spinal astrocytes. In contrast, there was no change in TAK1 expression in primary sensory neurons, and TAK1 AS-ODN did not attenuate the induction of transient receptor potential ion channel TRPV1 in sensory neurons. Taken together, these results demonstrate that TAK1 upregulation in spinal astrocytes has a substantial role in the development and maintenance of mechanical hypersensitivity through the JNK1 pathway. Thus, preventing the TAK1/JNK1 signaling cascade in astrocytes might provide a fruitful strategy for treating intractable neuropathic pain.  相似文献   

8.
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague–Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.  相似文献   

9.
Peripheral nerve injury leads to the activation of spinal cord astrocytes, which contribute to maintaining neuropathic (NP) pain behavior. Fibroblast growth factor-2 (FGF-2), a neurotrophic and gliogenic factor, is upregulated by spinal cord astrocytes in response to ligation of spinal nerves L5 and L6 (spinal nerve ligation [SpNL]). To evaluate the contribution of spinal astroglial FGF-2 to mechanical allodynia following SpNL, neutralizing antibodies to FGF-2 were injected intrathecally. Administration of 18 microg of anti-FGF-2 antibodies attenuated mechanical allodynia at day 21 after SpNL and reduced FGF-2 and glial acidic fibrillary protein mRNA expression and immunoreactivity in the L5 spinal cord segment of rats with SpNL. These results suggest that endogenous astroglial FGF-2 contributes to maintaining NP tactile allodynia associated with reactivity of spinal cord astrocytes and that inhibition of spinal FGF-2 ameliorates NP pain signs.  相似文献   

10.
Ligustilide (LIG) is a major component of Radix Angelica Sinensis, and reportedly has neuroprotective and anti‐inflammatory effects. Recent studies have demonstrated that spinal astrocyte‐mediated neuroinflammation plays an important role in the pathogenesis of chronic pain. Here we investigated the anti‐nociceptive effect of systemic treatment with LIG on chronic inflammatory pain and explored possible mechanisms. Unilateral hindpaw injection of complete Freund's adjuvant (CFA) induced persistent pain hypersensitivity. Repeated daily intravenous treatment with LIG, either before or after CFA injection, attenuated CFA‐induced thermal hyperalgesia and mechanical allodynia. The same treatment also inhibited CFA‐induced keratinocyte‐derived chemokine (KC) and monocyte chemoattractant protein‐1 (MCP‐1) mRNA and protein increases in astrocytes of the spinal cord. In vitro study showed LIG dose‐dependently reduced lipopolysaccharide (LPS)‐induced upregulation of KC and MCP‐1 mRNA in astrocyte cultures. Interestingly, LIG treatment did not affect CFA‐ or LPS‐induced glial fibrillary acidic protein upregulation, but did inhibit CFA‐induced phosphorylated nuclear factor‐κB (p‐NFκB) upregulation in spinal astrocytes. Furthermore, intrathecal injection of NFκB inhibitor attenuated CFA‐induced pain hypersensitivity and upregulation of KC and MCP‐1 in the spinal cord. Finally, single intravenous injection of LIG attenuated intrathecal injection of LPS‐induced mechanical allodynia. The same treatment also decreased LPS‐induced NFκB activation and KC and MCP‐1 upregulation in the spinal cord. These data indicate that LIG attenuates chronic inflammatory pain potentially via inhibiting NFκB‐mediated chemokines production in spinal astrocytes. These results provide direct evidence of the anti‐nociceptive and anti‐inflammatory effects of LIG, suggesting a new application of LIG for the treatment of chronic inflammatory pain.  相似文献   

11.
Recent studies have suggested that activated glia in the spinal cord may play a vital role at different times during spinal nerve ligation (SNL)-induced neuropathic pain; therefore, glial activation inhibitors have been used as effective painkillers. Brain-derived neurotrophic factor (BDNF) is also known to be a powerful pain modulator, but it remains unclear how it contributes to the glial activation inhibitor-based treatment. This study revealed the following results: (1) intrathecal administration of minocycline (a microglial activation inhibitor) could prevent mechanical allodynia during the initiation of SNL-induced neuropathic pain, and its action was associated with the elimination of BDNF overexpression in the dorsal horn; (2) the spinal injection of fluorocitrate (an astrocytic activation inhibitor) but not minocycline could reverse mechanical allodynia during the maintenance phase of SNL-induced pain, and its action was also related to a decrease in BDNF overexpression in the dorsal horn; and (3) treatment with TrkB/Fc (a BDNF-sequestering protein) had a similar effect during both the early development and maintenance periods. These results led to the following conclusions: (1) elevated BDNF expression in the dorsal horn was required to develop and maintain neuropathic pain; (2) minocycline could only prevent mechanical allodynia in the early stages, possibly by inhibiting BDNF release from microglia; and (3) fluorocitrate could reverse existing mechanical allodynia, and its action was associated with the inhibition of BDNF upregulation induced by astrocytic activation.  相似文献   

12.
13.

Background

Inflammation often leads to the occurrence of chronic pain, and many miRNAs have been shown to play a key role in the development of inflammatory pain. However, whether miR-26a-5p relieves pain induced by inflammation and its possible mechanism are still unclear.

Methods

The complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model was employed. Intrathecal or subcutaneous injection of miR-26a-5p agomir was performed after modeling to study its antinociceptive effect and the comparison of different administration methods. Bioinformatics analysis of miRNAs was performed to study the downstream mechanisms of miR-26a-5p. HE staining, RT-qPCR, Western blotting, and immunofluorescence were used for further validation.

Results

A single intrathecal and subcutaneous injection of miR-26a-5p both reversed mechanical hypersensitivity and thermal latency in the left hind paw of mice with CFA-induced inflammatory pain. HE staining and immunofluorescence studies found that both administrations of miR-26a-5p alleviated inflammation in the periphery and spinal cord. Bioinformatics analysis and dual-luciferase reporter gene analysis identified Wnt5a as a direct downstream target gene of miR-26a-5p. Wnt5a was mainly expressed in neurons and microglia in the spinal cord of mice with inflammatory pain. Intrathecal injection of miR-26a-5p could significantly reduce the expression level of Wnt5a and inhibit the downstream molecules of noncanonical Wnt signaling Camk2/NFAT, inhibiting the release of spinal cord inflammatory factors and alleviating the activation of microglia. In addition, miR-26a-5p could also inhibit lipopolysaccharide (LPS)-stimulated BV2 cell inflammation in vitro through a noncanonical Wnt signaling pathway.

Conclusions

miR-26a-5p is a promising therapy for CFA-induced inflammatory pain. Both intrathecal and subcutaneous injections provide relief for inflammatory pain. miR-26a-5p regulated noncanonical Wnt signaling to be involved in analgesia partly through antineuroinflammation, suggesting a pain-alleviating effect via noncanonical Wnt signaling pathway in the CFA-induced inflammatory pain model in vivo.  相似文献   

14.
Members of the miR‐183 family are unique in that they are highly abundant in sensory organs. In a recent study, significant downregulation was observed for miR‐96 and miR‐183 in the L5 dorsal root ganglion (DRG) 2 weeks after spinal nerve ligation (SNL). In this study, we focused on miR‐183, which is the most regulated member of the miR‐183 family, to look at the specific role on neuropathic pain. Persistent mechanical allodynia was induced with the L5 SNL model in 8‐week‐old male Sprague‐Dawley rats. Paw withdrawal thresholds in response to mechanical stimuli were assessed with Von Frey filaments. Expression of miR‐183 in the L5 DRG was assessed with quantitative real‐time polymerase chain reaction (qPCR) analysis. Lentivirions expressing miR‐183 were injected intrathecally into SNL rats. Changes in mechanical allodynia were assessed with Von Frey filaments. In addition, changes in the predicted target genes of miR‐183 were assessed with qPCR. L5 SNL produced marked mechanical allodynia in the ipsilateral hindpaws of adult rats, beginning at postoperative day 1 and continuing to day 14. L5 SNL caused significant downregulation of miR‐183 in adult DRG cells. Intrathecal administration of lentivirions expressing miR‐183 downregulated SNL‐induced increases in the expression of Nav1.3 and brain‐derived neurotrophic factor (BDNF), which correlated with the significant attenuation of SNL‐induced mechanical allodynia. Our results show that SNL‐induced mechanical allodynia is significantly correlated with the decreased expression of miR‐183 in DRG cells. Replacement of miR‐183 downregulates SNL‐induced increases in Nav1.3 and BDNF expression, and attenuates SNL‐induced mechanical allodynia.  相似文献   

15.
ABSTRACT

Background: Morphine plays an irreplaceable role in relieving severe pain clinically, while long-term medication inevitably leads to drug resistance. MicroRNA (miR) 146a has been reported to be a negative regulator in the process of morphine-tolerance formation. This study aimed to investigate how miR-146a affects the development of morphine analgesic tolerance.

Methods: The morphine-tolerance rat model was established by means of one-week continuous morphine administration. Paw withdrawal latency test was performed every day, and spinal cord samples were dissected on the seventh day for Q-PCR and Western blotting to detect the expression level of miR-146a, and IRAK1/TRAF6 participated in TLR4 signaling pathway.

Results: The expression of miR-146 was significantly decreased in morphine-tolerant model. Also, overexpression of miR-146a reduced the resistance caused by morphine, followed by the down-regulation of IRAK1/TRAF6 in TLR4 pathway. The inhibition of miR-146a remarkably decreased paw withdrawal latency as well as increased the expression levels of TLR4 signaling pathway-related molecules, IRAK1 and TRAF6.

Conclusion: This study suggests that miR-146a attenuates morphine tolerance by inhibiting the expression of IRAK1/TRAF6 in TLR4 pathway, which could provide an essential experimental basis for the settlement of morphine resistance-associated matters.  相似文献   

16.
ABSTRACT

Objective: To explore the potential regulation mechanisms of miR-384-5p in Neuropathic pain (NP).

Methods: Rat model of chronic constriction injury (CCI) was established to induce NP in vivo. NP levels were assessed using Withdrawal Threshold (PWT) and Paw Withdrawal Latency (PWL). qPCR and Western blotting were used to determine the relative expression of miR-384-5p and SCN3A. The inflammation response in spinal microglia cells was determined by ELISA assay. Immunofluorescence assay was used to demonstrate the co-localization of miR-384-5p with SCN3A in rat dorsal root ganglions (DRGs). The target genes of miR-384-5p were verified by dual-luciferase report assays.

Results: In the current study, the miR-384-5p expression level was significantly downregulated in CCI rats when comparing to the sham group. In addition, miR-384-5p agomir significantly repressed mechanical allodynia and heat hyperalgesia in CCI rats. Meanwhile, the current study indicated miR‐384‐5p could decrease inflammation progress in spinal microglia cells incubated in lipopolysaccharide. Consistently, overexpression of miR-384-5p obviously depressed inflammation cytokine levels in CCI rats. Dual-luciferase reporter assays indicated that SCN3A is a target gene of miR-384-5p.

Conclusion: miR-384-5p is a negative regulator in the development of neuropathic pain by regulating SCN3A, indicating that miR-384-5p might be a promising therapeutic target in the treatment of neuropathic pain.

Abbreviations: CCI: Chronic constriction injury; ZEB1: Zinc finger E box binding protein-1; MAPK6: Mitogen-activated protein kinase 6; COX-2: cyclooxygenase-2.  相似文献   

17.
Yong‐Jing Gao  Ling Zhang  Ru‐Rong Ji 《Glia》2010,58(15):1871-1880
Accumulating evidence suggests that spinal astrocytes play an important role in the genesis of persistent pain, by increasing the activity of spinal cord nociceptive neurons, i.e., central sensitization. However, direct evidence of whether activation of astrocytes is sufficient to induce chronic pain symptoms is lacking. We investigated whether and how spinal injection of activated astrocytes could produce mechanical allodynia, a cardinal feature of chronic pain, in naïve mice. Spinal (intrathecal) injection of astrocytes, which were prepared from cerebral cortexes of neonatal mice and briefly stimulated by tumor necrosis factor‐alpha (TNF‐α), induced a substantial decrease in paw withdrawal thresholds, indicating the development of mechanical allodynia. This allodynia was prevented when the astrocyte cultures were pretreated with a peptide inhibitor of c‐Jun N‐terminal kinase (JNK), D‐JNKI‐1. Of note a short exposure of astrocytes to TNF‐α for 15 min dramatically increased the expression and release of the chemokine monocyte chemoattractant protein‐1 (MCP‐1), even 3 h after TNF‐α withdrawal, in a JNK‐dependent manner. In parallel, intrathecal administration of TNF‐α induced MCP‐1 expression in spinal cord astrocytes. In particular, mechanical allodynia induced by TNF‐α‐activated astrocytes was reversed by a MCP‐1 neutralizing antibody. Finally, pretreatment of astrocytes with MCP‐1 siRNA attenuated astrocytes‐induced mechanical allodynia. Taken together, our results suggest that activated astrocytes are sufficient to produce persistent pain symptom in naïve mice by releasing MCP‐1. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Xing GG  Liu FY  Qu XX  Han JS  Wan Y 《Experimental neurology》2007,208(2):323-332
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.  相似文献   

19.
Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (< 5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号