首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis, where disease is mediated by autoantigen-specific T cells. Although there is evidence linking CD4+ T cells that secrete IL-17, termed Th17 cells, and IFN-γ-secreting Th1 cells with the pathogenesis of EAE, the precise contribution of these T cell subtypes or their associated cytokines is still unclear. We have investigated the infiltration of CD4+ T cells that secrete IFN-γ, IL-17 or both cytokines into CNS during development of EAE and have examined the role of T cells in microglial activation. Our findings demonstrate that Th17 cells and CD4+ T cells that produce both IFN-γ and IL-17, which we have called Th1/Th17 cells, infiltrate the brain prior to the development of clinical symptoms of EAE and that this coincides with activation of CD11b+ microglia and local production of IL-1β, TNF-α and IL-6 in the CNS. In contrast, significant infiltration of Th1 cells was only detected after the development of clinical disease. Co-culture experiments, using mixed glia and MOG-specific T cells, revealed that T cells that secreted IFN-γ and IL-17 were potent activators of pro-inflammatory cytokines but T cells that secrete IFN-γ, but not IL-17, were less effective. In contrast both Th1 and Th1/Th17 cells enhanced MHC-class II and co-stimulatory molecule expression on microglia. Our findings suggest that T cells which secrete IL-17 or IL-17 and IFN-γ infiltrate the CNS prior to the onset of clinical symptoms of EAE, where they may mediate CNS inflammation, in part, through microglial activation.  相似文献   

2.
3.
β-Lapachone is a naturally occurring quinine, originally isolated from the bark of the lapacho tree (Tabebuia avellanedae) which is currently being evaluated in clinical trials for the treatment of cancer. In addition, recent investigations suggest its potential application for treatment of inflammatory diseases. Multiple sclerosis (MS) is an autoimmune disorder characterized by CNS inflammation and demyelination. Reactive T cells including IL-17 and IFN-γ-secreting T cells are believed to initiate MS and the associated animal model system experimental autoimmune encephalomyelitis (EAE). IL-12 family cytokines secreted by peripheral dendritic cells (DCs) and CNS microglia are capable of modulating T-cell phenotypes. The present studies demonstrated that β-lapachone selectively inhibited the expression of IL-12 family cytokines including IL-12 and IL-23 by DCs and microglia, and reduced IL-17 production by CD4+ T-cells indirectly through suppressing IL-23 expression by microglia. Importantly, our studies also demonstrated that β-lapachone ameliorated the development on EAE. β-Lapachone suppression of EAE was associated with decreased expression of mRNAs encoding IL-12 family cytokines, IL-23R and IL-17RA, and molecules important in Toll-like receptor signaling. Collectively, these studies suggest mechanisms by which β-lapachone suppresses EAE and suggest that β-lapachone may be effective in the treatment of inflammatory diseases such as MS.  相似文献   

4.
Gintonin (GT), a glycolipoprotein fraction isolated from ginseng, exerts neuroprotective effects in models of neurodegenerative diseases such as Alzheimer’s disease. However, the in vivo role of GT in multiple sclerosis (MS) has not been clearly resolved. We investigated the effect of GT in myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. GT alleviated behavioral symptoms of EAE associated with reduced demyelination, diminished infiltration and activation of immune cells (microglia and macrophage), and decreased expression of inflammatory mediators in the spinal cord of the EAE group compared to that of the sham group. GT reduced the percentages of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the population of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord, in agreement with altered mRNA expression of IFN-γ, IL-17, and TGF-ß in the spinal cord in concordance with mitigated blood–brain barrier disruption. The underlying mechanism is related to inhibition of the ERK and p38 mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways and the stabilization of nuclear factor erythroid 2-related factor 2 (Nrf2) via increased expression of lysophosphatidic acid receptor (LPAR) 1–3. Impressively, these beneficial effects of GT were completely neutralized by inhibiting LPARs with Ki16425, a LPAR1/3 antagonist. Our results strongly suggest that GT may be able to alleviate EAE due to its anti-inflammatory and antioxidant activities through LPARs. Therefore, GT is a potential therapeutic option for treating autoimmune disorders including MS.  相似文献   

5.
6.
Interferon (IFN)-β is a commonly used therapy for relapsing remitting multiple sclerosis (RRMS). However its protective mechanism is still unclear and the failure of many patients to respond has not been explained. We have found that IFN-β suppressed IL-23 and IL-1β production and increased IL-10 production by human dendritic cells (DC) activated with the TLR2 and dectin-1 agonist zymosan. Furthermore, IFN-β impaired the ability of DC to promote IL-17 production by CD4+ T cells, but did not affect IFN-γ production. IFN-β induced IL-27 expression by DC, and neutralisation of IL-27 abrogated the suppressive effects of IFN-β on zymosan-induced IL-1 and IL-23 production and the generation of Th17 cells in vitro. Complementary in vivo studies in a mouse model showed that treatment with IFN-β enhanced expression of IL-27, and reduced IL-17 in the CNS and periphery and attenuated the clinical signs of experimental autoimmune encephalomyelitis (EAE). In addition, the significant suppressive effect of IFN-β on the ability of DC to promote Th17 cells was lost in cells from IL-27 receptor deficient mice. Finally, we showed that PBMC from non-responder RRMS patients produced significantly less IL-27 in response to IFN-β than patients who responded to IFN-β therapy. Our findings suggest that IFN-β mediates its therapeutic effects in MS at least in part via the induction of IL-27, and that IL-27 may represent an alternative therapy for MS patients that do not respond to IFN-β.  相似文献   

7.
Dopamine (DA) is a neurotransmitter produced mainly in the central nervous system (CNS) that has immunomodulatory actions on T cells. As the multiple sclerosis (MS) has long been regarded as an autoimmune disease of CNS mediated by T cells, the objective of this study was to evaluate the impact of DA on in vitro functional status of T cells from relapsing–remitting (RR)–MS patients. Peripheral T-cells from RR–MS patients were activated by mitogens and cell proliferation and cytokine production were assayed by [3H]-thymidine uptake and ELISA, respectively. Our results demonstrated that DA enhanced in vitro T cell proliferation and Th17-related cytokines in MS-derived cell cultures. In addition, this catecholamine reduced Treg-related cytokines (IL-10 and TGF-β) release by activated CD4+ T cells. These DA-induced effects on T cells were mainly dependent on IL-6 production by both polyclonally-activated CD4+ T cells and LPS-stimulated monocytes. Furthermore, the production of IL-17 and IL-6 by MS-derived T cells was directly related with neurological disability (EDSS score), and the release of these cytokines was less sensitive to glucocorticoid inhibition in MS patients than in control group, mainly after DA addition. In conclusion, our data suggest that DA amplifies glucocorticoid-resistant Th17 phenotype in MS patients, and this phenomenon could be, at least in part, due to its ability to induce IL-6 production by monocytes and CD4+ T cells.  相似文献   

8.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) thought to be primarily mediated by T cells. However, emerging evidence supports an important role for B cells in the pathogenesis and inhibition of MS. Glatiramer acetate (GA), a Food and Drug Administration-approved drug for the treatment of MS, has a good safety profile. But GA's mechanism of action in MS is still elusive. In this study, we showed that B cells from GA-treated mice increased production of IL-10 and reduced expression of co-stimulatory molecules viz.: CD80 and CD86. B cells from GA-treated mice also diminished proliferation of myelin oligodendrocyte glycoprotein (MOG35-55) specific T cells. Purified B cells transferred from GA-treated mice suppressed experimental autoimmune encephalomyelitis (EAE) in recipient mice compared with B cells transferred from mice treated with PBS or ovalbumin. The treatment effect of GA in EAE was abrogated in B cell-deficient mice. Transfer of B cells from GA-treated mice inhibited the proliferation of autoreactive T cells as well as the development of Th1 and Th17 cells but promoted IL-10 production in recipient mice. The number of peripheral CD11b+ macrophages in recipient mice also decreased after transfer of B cells from GA-treated mice; however, the number of dendritic cells and regulatory T cells remained unaltered. These results suggest that B cells are important to the protective effects of GA in EAE.  相似文献   

9.
Infection with an avirulent strain of Semliki Forest virus (SFV-A7) facilitates the development of experimental allergic encephalomyelitis (EAE) in a genetically resistant BALB/c mouse strain. Irradiation which is necessary for EAE induction caused a decrease in the total number of lymphocytes and an increase in CD4+/CD8+ T cell ratio in the spleen of BALB/c mice. EAE induction increased the ratio further until clinical and histological signs of EAE appeared. Entry of perivascular CD4+ and CD8+ cells preceded the onset of clinical signs and the appearance of MAC-1+ cells in the central nervous system (CNS). In the acute phase of EAE, cellular infiltrates, which were sparse, consisted mainly of MAC-1+ cells and a few CD4+ and CD8+ cells. Inflammatory cells gradually disappeared during the recovery phase. SFV-A7 infection after irradiation and EAE induction did not significantly change the CD4+/CD8+ ratio in the spleen or in the CNS infiltrates but enhanced the entry of inflammatory cells into the CNS. Similar perivascular cell influx was also seen in untreated mice infected with SFV-A7. We conclude that observed rapid reduction of splenic mononuclear cells and increase of the CD4+/CD8+ T cell ratio caused by irradiation prior EAE induction are early crucial events in disease induction in this resistant strain of mice. SFV-A7 infection, which further facilitates the development of EAE, does not induce immunoregulatory changes but provides its effect by enhancing the entry of inflammatory cells into the CNS. The combination of these two mechanisms thus effectively breaks the natural resistance against EAE in this genetically resistant mouse strain.  相似文献   

10.
Gene silencing with siRNAs is important as a therapeutic tool in autoimmune diseases. In this study, we administered siRNAs specific for cytokines that may be involved in pathogenesis of experimental autoimmune encephalomyelitis (EAE). siRNA specific for IL-23p19 (siRNA-IL-23) suppressed EAE almost completely, whereas siRNA-IL-17A did not modulate the clinical course. Flow cytometric analysis revealed that siRNA-IL-23 significantly reduced the proportion of both IFN-γ+IL-17? Th1 and IFN-γ?IL-17+ Th17 cells in the spinal cord. Consistent with this finding, siRNA-IL-23 treatment downregulated IL-12, IL-17 and IL-23 mRNAs. These findings indicate that IL-23, but not IL-17, play an important role in the development of EAE.  相似文献   

11.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) mediated by myelin-reactive CD4+ T cells. An unresolved issue that has important clinical implications concerns the cytokines produced by myelin-reactive T cells that determine their pathogenicity. Initially, IL-12 polarized, IFNγ producing Th1 cells were thought to be essential for the development of EAE. More recently, IL-23 polarized, IL-17 producing Th17 cells have been highlighted as critical encephalitogenic effectors. There is growing evidence that parallel autoimmune pathways can result in common clinical and histopathological endpoints. In the current study, we describe a form of EAE induced by the transfer of IL-23 modulated CD4+ T cells into IL-17 receptor (IL-17R) deficient hosts. We found that IL-23 stimulates myelin-reactive T cells to produce both IFNγ and IL-17. Surprisingly, in this model the development of EAE is IFNγ dependent. Our findings illustrate a novel mechanism by which IL-23 promotes encephalitogenicity and they further expand the spectrum of autoreactive T cells capable of mediating inflammatory demyelinating disease of the CNS.  相似文献   

12.
The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-β (=lymphotoxin-α) and cytolysin appeared early and before onset of clinical signs of EAE; (ii) TNF-α peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-γ (IFN-γ) mRNA shown previously is consistent with a role of IL-12 in promoting proliferation and activation of T helper 1 (Th1) type cells producing IFN-γ. The TNF-β mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-α was suggested from these observations that TNF-α mRNA expression roughly paralleled the clinical signs of EAE. This may be the case also for cytolysin. IL-10-expressing cells gradually increased to high levels in the recovery phase of EAE, consistent with a function in down-regulating the CNS inflammation. From these data we conclude that there is an ordered appearance of putative disease-promoting and -limiting cytokines in the CNS during acute monophasic EAE.  相似文献   

13.
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) involving demyelinating and neurodegenerative processes. Several of the major pathological CNS alterations and behavioral deficits of MS are recapitulated in the experimental autoimmune encephalitis (EAE) mouse model in which the disease process is induced by administration of myelin peptides. Development of EAE requires infiltration of inflammatory cytokine-generating monocytes and macrophages, and auto-reactive T cells, into the CNS. Very late antigen-4 (VLA-4, α4β1) is an integrin molecule that plays a role in inflammatory responses by facilitating the migration of leukocytes across the blood–brain barrier during inflammatory disease, and antibodies against VLA-4 exhibit therapeutic efficacy in mouse and monkey MS models. Here, we report that the tellurium compound AS101 (ammonium trichloro (dioxoethylene-o,o′) tellurate) ameliorates EAE by inhibiting monocyte and T cell infiltration into the CNS. CD49d is an alpha subunit of the VLA-4 (α4β1) integrin. During the peak stage of EAE, AS101 treatment effectively ameliorated the disease process by reducing the number of CD49d+ inflammatory monocyte/macrophage cells in the spinal cord. AS101 treatment markedly reduced the pro-inflammatory cytokine levels, while increasing anti-inflammatory cytokine levels. In contrast, AS101 treatment did not affect the peripheral populations of CD11b+ monocytes and macrophages. AS101 treatment reduced the infiltration of CD4+ and CD49+/VLA4 T cells. In addition, treatment of T cells from MS patients with AS101 resulted in apoptosis, while such treatment did not affect T cells from healthy donors. These results suggest that AS101 reduces accumulation of leukocytes in the CNS by inhibiting the activity of the VLA-4 integrin and provide a rationale for the potential use of Tellurium IV compounds for the treatment of MS.  相似文献   

14.
15.
Epstein–Barr virus-induced gene 3 (EBI3) associates with p28 and p35 to form the immunomodulatory cytokines IL-27 and IL-35, respectively. Infection of EBI3 ?/? mice with the neuroadapted JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality that was not associated with impaired ability to control viral replication but enhanced T cell and macrophage infiltration into the CNS. IFN-γ secretion from virus-specific CD4 + and CD8 + T cells isolated from infected EBI3 ?/? mice was augmented while IL-10 expression muted in comparison to infected WT mice. These data demonstrate a regulatory role for EBI3-associated cytokines in controlling host responses following CNS viral infection.  相似文献   

16.
The association of vital infections with autoimmune central nervous system (CNS) diseases such as post-infectious encephalomyelitis and possibly multiple sclerosis (MS) prompted the investigation to understand how virus infection could modulate autoimmune responses. Recombinant vaccinia viruses encoding an encephalitogenic portion of myelin basic protein (MBP) were evaluated in an animal model for human demyelinating disease, experimental allergic encephalomyelitis (EAE). We have determined that mice vaccinated with recombinant viruses encoding an encephalitogenic region of MBP were protected from EAE. In vivo depletion of CD8+ T cells did not abrogate this protection, suggesting lack of regulation by this cell type. These studies demonstrate that virus infection may be a means to modulate immune responsiveness to CNS disease.  相似文献   

17.
In experimental allergic encephalomyelitis (EAE), autoimmune T cells infiltrate the central nervous system (CNS) and initiate demyelinating pathology. We have used flow cytometry to directly analyse the migration to the CNS of MBP-reactive CD4+ T cells labelled with a lipophilic fluorescent dye (PKH2), in SJL/J mice with passively transferred EAE. Labelled cells constituted about 45% of the CNS CD4+ population at the time of EAE onset. Almost all (>90%) of the PKH2-labelled CD4+ T cells from EAE CNS were blasts and were α/β T cell receptor (TCR)+, CD44(Pgp-1)high, and the majority were CD45RBlow. By contrast, most PKH2-labelled CD4+ T cells in lymph nodes, although CD44high, were CD45RBhigh cells. The cells that were transferred to induce EAE were essentially similar to antigen-primed lymph node cell populations, containing less than 15% CD44high cells, and most of them were CD45RBhigh. The CD44high CD45RBlow phenotype is characteristic of memory/effector T cells that have been activated by antigen recognition. The difference in CD45RB expression between CNS and LN could therefore reflect differential exposure and/or response to antigen. Consistent with this, PKH2-labelled CD4+ cells isolated from the CNS were responsive to MBP in vitro, whereas PKH2+ CD4+ cells from lymph nodes showed almost undetectable responses. In control experiments in which ovalbumin (OVA)-reactive T cells were transferred, a small number of fluorescent-labelled CD4+ T cells were also detected in CNS, but there were very few blasts, and these remained CD45RBhigh. These results argue for induction of the memory/effector phenotype of CD4+ cells, their selective retention in the CNS, as a consequence of antigen recognition.  相似文献   

18.
IntroductionMarkers of low-grade peripheral inflammation have been reported amongst people with epilepsy. The mechanisms underlying this phenomenon are unknown. We attempted to characterize peripheral immune cells and their activation status in people with temporal lobe epilepsy (TLE) and healthy controls.Methods and resultsTwenty people with TLE and 19 controls were recruited, and peripheral blood lymphocyte and monocyte subsets evaluated ex vivo by multi-color flow cytometry. People with TLE had higher expression of HLA-DR, CD69, CTLA-4, CD25, IL-23R, IFN-γ, TNF and IL-17 in CD4+ lymphocytes than controls. Granzyme A, CTLA-4, IL-23R and IL-17 expression was also elevated in CD8+ T cells from people with TLE. Frequency of HLA-DR in CD19+ B cells and regulatory T cells CD4+CD25+Foxp3+ producing IL-10 was higher in TLE when compared with controls. A negative correlation between CD4+ expressing co-stimulatory molecules (CD69, CD25 and CTLA-4) with age at onset of seizures was found. The frequency of CD4+CD25+Foxp3+ cells was also positively correlated with age at onset of seizures.ConclusionImmune cells of people with TLE show an activation profile, mainly in effector T cells, in line with the low-grade peripheral inflammation.  相似文献   

19.
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler’s murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4+ or CD8+ T cells, we found that stress reduced IFN-γ producing virus-specific CD4+ and CD8+ T cells in the spleen and CD8+ T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.  相似文献   

20.
SJL/J mice recover from clinical signs of experimental allergic encephalomyelitis (EAE) 2 to 3 days following the onset of the initial attack. The immunoregulatory events that induce clinical recovery are not well understood. In this paper we have compared the activation state of the T cells infiltrating the central nervous system (CNS) in symptomatic and remitted mice. We isolated mononuclear cells from the CNS at various time points during the course of EAE and used flow cytometry to describe the kinetics of CNS infiltration by CD45+, CD2+, CD3+, TCRαβ+, CD4+ cells. There was a 30-fold reduction in the number of CNS CD4+ T cells in remitted mice 10 days following the initial attack. More than 60% of CNS CD4+ cells were of a CD44high, CD45RBlow memory/effector phenotype both in active EAE, peak EAE and in remission, contrast to lymph nodes where this phenotype never constituted more than 17%. The proportion of CD8+ T cells was not increased in remitted mice, and we detected no TCRγδ+ cells within the CNS. Our findings demonstrate an overt loss of CD4+ T cells from the CNS and the maintenance of an activated state by T cells within the CNS and during remission from EAE. This argues against downregulation of T cell function as a mechanism for remission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号