首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Research in microbiology》2014,165(8):630-638
LicC has been identified as a virulence factor of Streptococcus pneumoniae. However, its role in virulence is still not fully understood because deletion of licC is lethal for the bacterium. In this study, a mutant with 78-bp truncation at the C-terminus of licC was obtained from a signature-tagged mutagenesis (STM) library. The mutant was viable with a large reduction in enzymatic activity as CTP:phosphocholine cytidylyltransferase detected in vitro using a firefly luciferase assay. The mutation attenuated the adhesion and invasion of S. pneumoniae ST556 (serotype 19F) to epithelial cells by 72% and 80%, respectively, and increased the phagocytosis by macrophages for 16.5%, compared to the parental strain. When the mutation was introduced into the encapsulated D39 strain (serotype 2), it led to attenuated virulence in mouse models either by intranasal colonization or by intraperitoneal infection. In addition, the phosphocholine (PCho) on cell surface was decreased, and the choline binding proteins (CBPs) were impaired, which may explain the attenuated virulence of the mutant. These observations indicate that C-terminus of licC is accounted for the main activity of LicC in PCho metabolism and is essential for the virulence of S. pneumoniae, which provides a novel target for drug design against pneumococcal infection.  相似文献   

2.
Carbon monoxide (CO) releasing molecules (CO-RMs) have been shown to inhibit growth of commensal Escherichia coli (E. coli). In the present study we examined the effect of CORM-2 on uropathogenic E. coli (UPEC) that produces extended-spectrum β-lactamase (ESBL). Viability experiments showed that CORM-2 inhibited the growth of several different ESBL-producing UPEC isolates and that 500 μM CORM-2 had a bactericidal effect within 4 h. The bactericidal effect of CORM-2 was significantly more pronounced than the effect of the antibiotic nitrofurantoin. CORM-2 demonstrated a low level of cytotoxicity in eukaryotic cells (human bladder epithelial cell line 5637) at the concentrations and time-points where the antibacterial effect was obtained. Real-time RT-PCR studies of different virulence genes showed that the expression of capsule group II kpsMT II and serum resistance traT was reduced and that some genes encoding iron acquisition systems were altered by CORM-2. Our results demonstrate that CORM-2 has a fast bactericidal effect against multiresistant ESBL-producing UPEC isolates, and also identify some putative UPEC virulence factors as targets for CORM-2. CO-RMs may be candidate drugs for further studies in the field of finding new therapeutic approaches for treatment of uropathogenic ESBLproducing E. coli.  相似文献   

3.
4.
Vibrio vulnificus, an opportunistic marine bacterium that causes a serious, often fatal, infection in humans, requires iron for its pathogenesis. This bacterium exports vulnibactin for iron acquisition from the environment. The mechanisms of vulnibactin biosynthesis and ferric-vulnibactin uptake systems have recently been reported, while the vulnibactin export system has not been reported. Mutant growth under low-iron concentration conditions and a bioassay of the culture supernatant indicate that the VV1_0612 protein plays a crucial role in the vulnibactin secretion as a component of the resistance-nodulation-division (RND)-type efflux system in V. vulnificus M2799. To identify which RND protein(s) together with VV1_0612 TolC constituted the RND efflux system for vulnibactin secretion, deletion mutants of 11 RND protein-encoding genes were constructed. The growth inhibition of a multiple mutant (Δ11) of the RND protein-encoding genes was observed 6 h after the beginning of the culture. Furthermore, ΔVV1_1681 exhibited a growth curve that was similar to that of Δ11, while the multiple mutant except ΔVV1_1681 showed the same growth as the wild-type strain. These results indicate that the VV1_1681 protein is involved in the vulnibactin export system of V. vulnificus M2799. This is the first genetic evidence that vulnibactin is secreted through the RND-type efflux systems in V. vulnificus.  相似文献   

5.
Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function.  相似文献   

6.
This study involves the comparison between the exoproteomes of two different strains of Corynebacterium pseudotuberculosis, the etiologic agent of caseous lymphadenitis in small ruminants. In a previous study, based on a gel-free system (TPP-LC/MSE), 70 exoproteins for the strain 1002 and 67 for the strain C231, totaling 93 different extracellular proteins for C. pseudotuberculosis, were identified. In the present work, we have used 2D gel electrophoresis to resolve the extracellular proteins of both strains, which were then digested with trypsin, analyzed by MALDI-TOF/TOF and identified with the software MASCOT®. A total of 45 extracellular proteins of C. pseudotuberculosis were identified by this approach. The comparative analysis between the strains 1002 and C231 identified 13 and 3 strain-specific proteins, respectively, 11 of which are novel. These newly identified proteins may play an important role in the physiology and virulence of C. pseudotuberculosis.  相似文献   

7.
Histamine has a key role in the regulation of inflammatory and innate immune responses in vertebrates. Gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost of great commercial value, was the first fish species shown to possess histamine-containing mast cells (MCs) at mucosal tissues. MCs are highly abundant in the peritoneal exudate of gilthead seabream and compound 48/80 (Co 48/80), often used to promote MC activation and histamine release, is able to promote histamine release from gilthead seabream MCs in vitro and in vivo. The aim of the present study was to analyze the effect of histamine and Co 48/80 on the immune responses of gilthead seabream. For this purpose, histamine and Co 48/80 were intraperitoneally injected alone or combined with 109 heat-killed Vibrio anguillarum cells and their effects on head kidney and peritoneal exudate were analyzed. The results indicated that although histamine and Co 48/80 were both able to alter the percentage of peritoneal exudate and head kidney immune cell types, only Co 48/80 increased reactive oxygen species production by peritoneal leukocytes. In addition, histamine, but not Co 48/80, was able to slightly impair the humoral adaptive immune response, i.e. production of specific IgM to V. anguillarum. Notably, both histamine and Co 48/80 reduced the expression of the gene encoding histamine receptor H2 in peritoneal exudate leukocytes. These results show for the first time in fish that although systemic administration of histamine and Co 48/80 is safe, neither compound can be regarded as an efficient adjuvant for gilthead seabream vaccination.  相似文献   

8.
9.
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.  相似文献   

10.
Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection.  相似文献   

11.
12.
《Research in microbiology》2018,169(10):628-637
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.  相似文献   

13.
Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination.Impact statementNanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.  相似文献   

14.
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs’ liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.  相似文献   

15.
Penaeidins are an important family of antimicrobial peptides (AMPs) in penaeid shrimp. To date, five groups of penaeidins have been identified in penaeid shrimp. All are composed of a proline-rich N-terminus and a C-terminus containing six cysteine residues engaged in three disulfide bridges. In this study, a new type of penaeidin from Marsupenaeus japonicus was identified. The full-length penaeidin contains a unique serine-rich region and a penaeidin domain, which consists of a proline-rich region and a cysteine-rich region. Here, we classify all penaeidins into two subfamilies. All reported penaeidins are in subfamily I, and the new penaeidin identified in M. japonicus is designated as Penaeidin subfamily II (MjPen-II). MjPen-II was expressed in hemocytes, heart, hepatopancreas, gills, stomach and intestine, and was upregulated after bacterial challenge. A liquid bacteriostatic assay showed that MjPen-II had antibacterial activity to some Gram-positive and Gram-negative bacteria. MjPen-II could bind to bacteria by binding to polysaccharides on the surface of bacteria, thus promoting bacterial agglutination. The serine-rich region enhanced the agglutination activity of MjPen-II. The proline-rich domain had a stronger bacterial-binding activity and polysaccharide-binding activity than the cysteine-rich domain. MjPen-II was also found to be involved in the phagocytosis of bacteria and efficiently improved the phagocytosis rate. Therefore, MjPen-II eliminates bacteria through direct bacterial inhibition as well as by promoting phagocytosis in shrimp.  相似文献   

16.
Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol®) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations.  相似文献   

17.
18.
Anopheles gambiae is a major vector of human malaria and its immune system in part determines the fate of ingested parasites. Proteins, hemocytes and fat body in hemolymph are critical components of this system, mediating both humoral and cellular defenses. Here we assessed differences in the hemolymph proteomes of water- and E. coli-pricked mosquito larvae by a gel-LC-MS approach. Among the 1756 proteins identified, 603 contained a signal peptide but accounted for two-third of the total protein amount on the quantitative basis. The sequence homology search indicated that 233 of the 1756 may be related to defense. In general, we did not detect substantial differences between the control and induced plasma samples in terms of protein numbers or levels. Protein distributions in the gel slices suggested post-translational modifications (e.g. proteolysis) and formation of serpin-protease complexes and high Mr immune complexes. Based on the twenty-five most abundant proteins, we further suggest that major functions of the larval hemolymph are storage, transport, and immunity. In summary, this study provided first data on constitution, levels, and possible functions of hemolymph proteins in the mosquito larvae, reflecting complex changes occurring in the fight against E. coli infection.  相似文献   

19.
Streptococcus suis (S. suis) serotype 2 usually cause infection in swine. Recently, two large-scale outbreaks in China with severe streptococcal toxic shock syndrome (STSS) and high mortality raised worldwide concern to human S. suis infection. To reveal the molecular pathogenesis of S. suis 2 during human infection, in-vivo induced antigen technology (IVIAT) was applied to identify the in-vivo induced genes (ivi genes) of S. suis 05ZYH33. The ivi genes are specifically expressed or up-regulated in-vivo and always associated with the in-vivo survival and pathogenicity of pathogens. In present study, convalescent sera from S. suis 05ZYH33 infected patients were pooled and fully adsorbed with in-vitro grown S. suis 05ZYH33 and Escherichia coli BL21 (DE3). Genomic expression library of 05ZYH33 was repeatedly screened with colony immunoblot assay using adsorbed sera. Finally, 19 genes were assessed as ivi genes of 05ZYH33. Fifteen of 19 genes encode proteins with biological functions in substance transport and metabolism, cell structure biogenesis, cell cycle control, replication, translation and other functions. The 4 remaining genes encode proteins with unknown functions. Of the 19 ivi genes, five (SSU05_0247, 0437, 1577, 1664 and 2144) encode proteins with no immunoreactivity to control sera from healthy individuals never exposed to 05ZYH33. The successful identification of ivi genes not only sheds light on understanding the pathogenesis of S. suis 05ZYH33 during its human infection, but also provides potential targets for the developments of new vaccines, therapeutic drugs and diagnostic reagents against human S. suis infection.  相似文献   

20.
Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D. Strong evidence for global hypomethylation of CpG sites within promoter regions in MZ twins with TID compared to twins without T1D was observed. DNA methylation data were then grouped into three categories of CpG sites for further analysis, including those within: 1) the major histocompatibility complex (MHC) region, 2) non-MHC genes with reported T1D association through genome wide association studies (GWAS), and 3) the epigenome, or remainder of sites that did not include MHC and T1D associated genes. Initial results showed modest methylation differences between discordant MZ twins for the MHC region and T1D-associated CpG sites, BACH2, INS-IGF2, and CLEC16A (DNAm difference range: 2.2%–5.0%). In the epigenome CpG set, the greatest methylation differences were observed in MAGI2, FANCC, and PCDHB16, (DNAm difference range: 6.9%–16.1%). These findings were not observed in the HLA-identical NTS pairs. Targeted pyrosequencing of five candidate CpG loci identified using the 450k array in the original discordant MZ twins produced similar results using control DNA samples, indicating strong agreement between the two DNA methylation profiling platforms. However, findings for the top five candidate CpG loci were not replicated in six additional T1D-discordant MZ twin pairs. Our results indicate global DNA hypomethylation within gene promoter regions may contribute to T1D; however, findings do not support the involvement of large DNAm differences at single CpG sites alone in T1D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号