首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Cell-to-cell transmission of α-synuclein (α-syn) pathology is considered to underlie the spread of neurodegeneration in Parkinson''s disease (PD). Previous studies have demonstrated that α-syn is secreted under physiological conditions in neuronal cell lines and primary neurons. However, the molecular mechanisms that regulate extracellular α-syn secretion remain unclear. In this study, we found that inhibition of monoamine oxidase-B (MAO-B) enzymatic activity facilitated α-syn secretion in human neuroblastoma SH-SY5Y cells. Both inhibition of MAO-B by selegiline or rasagiline and siRNA-mediated knock-down of MAO-B facilitated α-syn secretion. However, TVP-1022, the S-isomer of rasagiline that is 1000 times less active, failed to facilitate α-syn secretion. Additionally, the MAO-B inhibition-induced increase in α-syn secretion was unaffected by brefeldin A, which inhibits endoplasmic reticulum (ER)/Golgi transport, but was blocked by probenecid and glyburide, which inhibit ATP-binding cassette (ABC) transporter function. MAO-B inhibition preferentially facilitated the secretion of detergent-insoluble α-syn protein and decreased its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Moreover, in a rat model (male Sprague Dawley rats) generated by injecting recombinant adeno-associated virus (rAAV)-A53T α-syn, subcutaneous administration of selegiline delayed the striatal formation of Ser129-phosphorylated α-syn aggregates, and mitigated loss of nigrostriatal dopaminergic neurons. Selegiline also delayed α-syn aggregation and dopaminergic neuronal loss in a cell-to-cell transmission rat model (male Sprague Dawley rats) generated by injecting rAAV-wild-type α-syn and externally inoculating α-syn fibrils into the striatum. These findings suggest that MAO-B inhibition modulates the intracellular clearance of detergent-insoluble α-syn via the ABC transporter-mediated non-classical secretion pathway, and temporarily suppresses the formation and transmission of α-syn aggregates.SIGNIFICANCE STATEMENT The identification of a neuroprotective agent that slows or stops the progression of motor impairments is required to treat Parkinson''s disease (PD). The process of α-synuclein (α-syn) aggregation is thought to underlie neurodegeneration in PD. Here, we demonstrated that pharmacological inhibition or knock-down of monoamine oxidase-B (MAO-B) in SH-SY5Y cells facilitated α-syn secretion via a non-classical pathway involving an ATP-binding cassette (ABC) transporter. MAO-B inhibition preferentially facilitated secretion of detergent-insoluble α-syn protein and reduced its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Additionally, MAO-B inhibition by selegiline protected A53T α-syn-induced nigrostriatal dopaminergic neuronal loss and suppressed the formation and cell-to-cell transmission of α-syn aggregates in rat models. We therefore propose a new function of MAO-B inhibition that modulates α-syn secretion and aggregation.  相似文献   

3.
IntroductionParkinson's disease (PD) is a neurodegenerative disease characterized by the deposition of disease-associated α-synuclein, which is thought to follow a sequential distribution in the human brain. Accordingly, α-Synuclein pathology affects the substantia nigra (SN) only in Braak stage 3 out of 6. Moreover, intracellular accumulation of α-synuclein follows maturation from non-ubiquitinated (p62 negative) to ubiquitinated (p62 positive) forms (Lewy bodies). Mitochondrial dysfunction is thought to be a central player in the pathogenesis of PD. It is not clear whether the nigral neurons already show mitochondrial alterations in stages preceding the deposition of α-synuclein in the SN, and how deposition of pre-aggregates or ubiquitinated mature inclusions relate to this.MethodsUsing cell-based morphometric immunohistochemistry we evaluated the volume density of mitochondrial complex-IV (COX-IV) immunoreactivity in SN neurons lacking or showing α-synuclein deposits in non-diseased individuals and those with Lewy body pathology Braak stage <3 lacking nigral α-synuclein pathology and Braak stage >3 with prominent nigral α-synuclein deposition.ResultsIncreased volume density of COX-IV immunoreactivity appears before detectable pathological α-synuclein in nigral neurons. The volume density decreases significantly as pathological pre-aggregates of α-synuclein accumulates in the neurons and remains at a low level in neurons with p62 positive Lewy bodies.ConclusionsCOX-IV expression shows a change before and during accumulation of α-synuclein in the SN underpinning the role of early mitochondrio protective therapy strategies in PD.  相似文献   

4.
5.
Parkinson’s disease, the second most prevalent neurodegenerative disorder worldwide, is characterized by a progressive loss of dopaminergic neurons in substantia nigra pars compacta, causing motor symptoms. This disorder’s main hallmark is the formation of intraneuronal protein inclusions, named Lewy bodies and neurites. The major component of these arrangements is α-synuclein, an intrinsically disordered and soluble protein that, in pathological conditions, can form toxic and cell-to-cell transmissible amyloid structures. Preventing α-synuclein aggregation has attracted significant effort in the search for a disease-modifying therapy for Parkinson’s disease. Small molecules like SynuClean-D, epigallocatechin gallate, trodusquemine, or anle138b exemplify this therapeutic potential. Here, we describe a subset of compounds containing a single aromatic ring, like dopamine, ZPDm, gallic acid, or entacapone, which act as molecular chaperones against α-synuclein aggregation. The simplicity of their structures contrasts with the complexity of the aggregation process, yet the block efficiently α-synuclein assembly into amyloid fibrils, in many cases, redirecting the reaction towards the formation of non-toxic off-pathway oligomers. Moreover, some of these compounds can disentangle mature α-synuclein amyloid fibrils. Their simple structures allow structure-activity relationship analysis to elucidate the role of different functional groups in the inhibition of α-synuclein aggregation and fibril dismantling, making them informative lead scaffolds for the rational development of efficient drugs.Key Words: amyloid, aromatic rings, dopamine, inhibition, neurodegeneration, oligomers, Parkinson''s disease, protein aggregation, α-synuclein  相似文献   

6.
7.
Abnormal accumulation of α-synuclein contributes to the formation of Lewy bodies in the substantia nigra, which is considered the typical pathological hallmark of Parkinson''s disease. Recent research indicates that angiotensin-(1–7) plays a crucial role in several neurodegenerative disorders, including Parkinson''s disease, but the underlying mechanisms remain elusive. In this study, we used intraperitoneal administration of rotenone to male Sprague-Dawley rats for 4 weeks to establish a Parkinson''s disease model. We investigated whether angiotensin-(1–7) is neuroprotective in this model by continuous administration of angiotensin-(1–7) into the right substantia nigra for 4 weeks. We found that angiotensin-(1–7) infusion relieved characteristic parkinsonian behaviors and reduced α-synuclein aggregation in the substantia nigra. Primary dopaminergic neurons were extracted from newborn Sprague-Dawley rat substantia nigras and treated with rotenone, angiotensin-(1–7), and/or the Mas receptor blocker A-779 for 24 hours. After binding to the Mas receptor, angiotensin-(1–7) attenuated apoptosis and α-synuclein aggregation in rotenone-treated cells. Primary dopaminergic neurons were also treated with angiotensin-(1–7) and/or the autophagy inhibitor 3-methyladenine for 24 hours. Angiotensin-(1–7) increased α-synuclein removal and increased the autophagy of rotenone-treated cells. We conclude that angiotensin-(1–7) reduces α-synuclein aggregation by alleviating autophagy dysfunction in Parkinson''s disease. Therefore, the angiotensin-(1–7)/Mas receptor axis plays an important role in the pathogenesis of Parkinson''s disease and angiotensin-(1–7) has potential therapeutic value for Parkinson''s disease. All experiments were approved by the Biological Research Ethics Committee of Nanjing First Hospital (approval No. DWSY-2000932) in January 2020.

Chinese Library Classification No. R459.9; R363; R364  相似文献   

8.
Human α-synuclein overexpression and its toxic accumulation in neurons or glia are known to play key roles in the pathogenesis of Parkinson's disease and other related neurodegenerative synucleinopathies. Several single point mutations in the α-synuclein gene, as well as gene duplication and triplication, have been linked to familial Parkinson's disease. Moreover, genetic variability of the α-synuclein gene promoter is associated with idiopathic Parkinson's disease. Silencing of the human α-synuclein gene by vector-based RNA interference (RNAi) is a promising therapeutic approach for synucleinopathies. Here, we report identification of a 21-nucleotide sequence in the coding region of human α-synuclein that constitutes an effective target for robust silencing by RNAi and demonstrate allele-specific silencing of the A53T mutant of human α-synuclein. Furthermore, we have developed a plasmid vector-based RNAi for silencing of human α-synuclein in vitro. Lastly, using a dual cassette lentivirus that co-expresses an α-synuclein-targeting small hairpin RNA (shRNA) and enhanced green fluorescent protein (EGFP) as a marker gene, we demonstrate effective silencing of endogenous human α-synuclein in vitro in the human dopaminergic cell line SH-SY5Y and also of experimentally expressed human α-synuclein in vivo in rat brain. Our results demonstrate potent silencing of human α-synuclein expression in vitro and in vivo by viral vector-based RNAi and provide the tools for developing effective gene silencing therapeutics for synucleinopathies, including Parkinson's disease.  相似文献   

9.
Aggregation and deposition of α-synuclein (α-syn) in Lewy bodies within dopamine neurons of substantia nigra (SN) is the pathological hallmark of Parkinson’s disease (PD). These toxic α-syn aggregates are believed to propagate from neuron-to-neuron and spread the α-syn pathology throughout the brain beyond dopamine neurons in a prion-like manner. Targeting propagation of such α-syn aggregates is of high interest but requires identifying pathways involving in this process. Evidence from previous Alzheimer’s disease reports suggests that EGFR may be involved in the prion-like propagation and seeding of amyloid-β. We show here that EGFR regulates the uptake of exogenous α-syn-PFFs and the levels of endogenous α-syn in cell cultures and a mouse model of α-syn propagation, respectively. Thus, we tested the therapeutic potentials of AZD3759, a highly selective BBB-penetrating EGFR inhibitor, in a preclinical mouse model of α-syn propagation. AZD3759 decreases activated EGFR levels in the brain and reduces phosphorylated α-synuclein (pSyn) pathology in brain sections, including striatum and SN. As AZD3759 is already in the clinic, this paper’s results suggest a possible repositioning of AZD3759 as a disease-modifying approach for PD.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01017-6.  相似文献   

10.
Parkinson’s disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease. We discuss new work on growth/differentiation factor 5’s mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson’s disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease.Key Words: adeno-associated virus, bone morphogenetic protein, dopaminergic neurons, growth/differentiation factor 5, neurodegeneration, neuroprotection, neurotrophic factor, Parkinson''s disease, Smad signaling, α-synuclein  相似文献   

11.
MethodsPD patients (n=102) were evaluated using a fatigue severity scale and scales for motor and nonmotor symptoms. The levels of three pathological proteins—α-synuclein oligomer, β-amyloid (Aβ)1-42, and tau—were measured in 102 cerebrospinal fluid (CSF) samples from these PD patients. Linear regression analyses were performed between fatigue score and the CSF levels of the above-listed pathological proteins in PD patients.ResultsThe frequency of fatigue in the PD patients was 62.75%. The fatigue group had worse motor symptoms and anxiety, depression, and autonomic dysfunction. The CSF level of α-synuclein oligomer was higher and that of Aβ1-42 was lower in the fatigue group than in the non-fatigue group. In multiple linear regression analyses, fatigue severity was significantly and positively correlated with the α-synuclein oligomer level in the CSF of PD patients, after adjusting for confounders.ConclusionsPD patients experience a high frequency of fatigue. PD patients with fatigue have worse motor and part nonmotor symptoms. Fatigue in PD patients is associated with an increased α-synuclein oligomer level in the CSF.  相似文献   

12.
Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic.  相似文献   

13.
The over-expression of α-synuclein is a major factor in the death of dopaminergic neurons in a methamphetamine-induced model of Parkinson's disease. In the present study, α-synuclein knockdown rats were created by injecting α-synuclein-shRNA lentivirus stereotaxically into the right striatum of experimental rats. At 2 weeks post-injection, the rats were injected intraper-itoneally with methamphetamine to establish the model of Parkinson's disease. Expression of α-synuclein mRNA and protein in the right striatum of the injected rats was significantly down-regulated. Food intake and body weight were greater in α-synuclein knockdown rats, and water intake and stereotyped behavior score were lower than in model rats. Striatal dopamine and tyrosine hydroxylase levels were significantly elevated in α-synuclein knockdown rats. Moreover, superoxide dismutase activity was greater in α-synuclein knockdown rat striatum, but the levels of reactive oxygen species, malondialdehyde, nitric oxide synthase and nitrogen monoxide were lower compared with model rats. We also found that α-synuclein knockdown inhibited metham-phetamine-induced neuronal apoptosis. These results suggest that α-synuclein has the capacity to reverse methamphetamine-induced apoptosis of dopaminergic neurons in the rat striatum by inhibiting oxidative stress and improving dopaminergic system function.  相似文献   

14.
15.
Patients with Parkinson’s disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.

Chinese Library Classification No. R453; R741; Q421  相似文献   

16.
17.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the appearance of intracytoplasmic inclusions called Lewy bodies (LB) in dopamine neurons in the substantia nigra and the progressive loss of these neurons. Recently, mutations in the α-synuclein gene have been identified in early-onset familial PD, and α-synuclein has been shown to be a major component of LB in all patients. Yet, the pathophysiological function of α-synuclein remains unknown. In this report, we have investigated the toxic effects of adenovirus-mediated α-synuclein overexpression on dopamine neurons in rat primary mesencephalic cultures and in a rat dopaminergic cell line – the large T-antigen immortalized, mesencephalon-derived 1RB3AN27 (N27). Adenovirus-transduced cultures showed high-level expression of α-synuclein within the cells. Overexpression of human mutant α-synuclein (Ala53Thr) selectively induced apoptotic programmed cell death of primary dopamine neurons as well as N27 cells. The mutant protein also potentiated the neurotoxicity of 6-hydroxydopamine (6-OHDA). By contrast, overexpression of wild-type human α-synuclein was not directly neurotoxic but did increase cell death after 6-OHDA. Overexpression of wild-type rat α-synuclein had no effect on dopamine cell survival or 6-OHDA neurotoxicity. These results indicate that overexpression of human mutant α-synuclein directly leads to dopamine neuron death, and overexpression of either human mutant or human wild-type α-synuclein renders dopamine neurons more vulnerable to neurotoxic insults.  相似文献   

18.
Glucagon-like peptide-1 (GLP-1) receptor stimulation ameliorates parkinsonian motor and non-motor deficits in both experimental animals and patients; however, the disease-modifying mechanisms of GLP-1 receptor activation have remained unknown. The present study investigated whether exendin-4 (a GLP-1 analogue) can rescue motor deficits and exert disease-modifying effects in a parkinsonian rat model of α-synucleinopathy. This model was established by unilaterally injecting AAV-9-A53T-α-synuclein into the right substantia nigra pars compacta, followed by 4 or 8 weeks of twice-daily intraperitoneal injections of exendin-4 (5 μg/kg/day) starting at 2 weeks after AAV-9-A53T-α-synuclein injections. Positron emission tomography/computed tomography (PET/CT) scanning and immunostaining established that treatment with exendin-4 attenuated tyrosine-hydroxylase-positive neuronal loss and terminal denervation and mitigated the decrease in expression of vesicular monoamine transporter 2 within the nigrostriatal dopaminergic systems of rats injected with AAV-9-A53T-α-synuclein. It also mitigated the parkinsonian motor deficits assessed in behavioral tests. Furthermore, through both in vivo and in vitro models of Parkinson’s disease, we showed that exendin-4 promoted autophagy and mediated degradation of pathological α-synuclein, the effects of which were counteracted by 3-methyladenine or chloroquine, the autophagic inhibitors. Additionally, exendin-4 attenuated dysregulation of the PI3K/Akt/mTOR pathway in rats injected with AAV-9-A53T-α-synuclein. Taken together, our results demonstrate that exendin-4 treatment relieved behavioral deficits, dopaminergic degeneration, and pathological α-synuclein aggregation in a parkinsonian rat model of α-synucleinopathy and that these effects were mediated by enhanced autophagy via inhibiting the PI3K/Akt/mTOR pathway. In light of the safety and tolerance of exendin-4 administration, our results suggest that exendin-4 may represent a promising disease-modifying treatment for Parkinson’s disease.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01018-5.  相似文献   

19.
Although the functions of α-, β-, and γ-synuclein (αS, βS, γS, respectively) are unknown, these synaptic proteins are implicated in the pathogenesis of Parkinson's disease (PD) and related disorders. For example, αS forms Lewy bodies (LBs) in substantia nigra (SN) neurons of PD. However, since it is not known how these hallmark PD lesions contribute to the degeneration of SN neurons or what the normal function of αS is in SN neurons, we studied the developing human SN from 11 weeks gestational age (GA) to 16 years of age using immunohistochemistry and antibodies to αS, βS, γS, other synaptic proteins, and tyrosine hydoxylase (TH). SN neurons expressed TH at 11 weeks GA and αS, βS, and γS appeared initially at 15, 17, and 18 weeks GA, respectively. These synucleins first appeared in perikarya of SN neurons after synaptophysin, but about the same time as synaptotagmin and synaptobrevin. Redistribution of αS from perikarya to processes of SN neurons occurred by 18 weeks GA in parallel with synaptophysin, while βS and synaptotagmin were redistributed similarly between 20 and 28 weeks GA and this also occurred with γS and synaptobrevin between 33 weeks GA and 9 months postnatal. These data suggest that αS, βS, and γS may play a functional role in the development and maturation of SN neurons, but it remains to be determined how sequestration of αS as LBs in PD contributes to the degeneration of SN neurons.  相似文献   

20.
IntroductionAstrocytes are involved in Parkinson''s disease (PD) where they could contribute to α‐Synuclein pathology but also to neuroprotection via α‐Synuclein clearance. The molecular signature underlying their dual role is still elusive. Given that vitamin D has been recently suggested to be protective in neurodegeneration, the aim of our study was to investigate astrocyte and neuron vitamin D pathway alterations and their correlation with α‐Synuclein aggregates (ie, oligomers and fibrils) in human brain obtained from PD patients.MethodsThe expression of vitamin D pathway components CYP27B1, CYP24A1, and VDR was examined in brains obtained from PD patients (Braak stage 6; n = 9) and control subjects (n = 4). We also exploited proximity ligation assay to identified toxic α‐Synuclein oligomers in human astrocytes.ResultsWe found that vitamin D‐activating enzyme CYP27B1 identified a subpopulation of astrocytes exclusively in PD patients. CYP27B1 positive astrocytes could display neuroprotective features as they sequester α‐Synuclein oligomers and are associated with Lewy body negative neurons.ConclusionThe presence of CYP27B1 astrocytes distinguishes PD patients and suggests their contribution to protect neurons and to ameliorate neuropathological traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号