首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mild traumatic brain injury (mTBI) is a risk factor for Alzheimer’s disease (AD), and evidence suggests cerebrovascular dysregulation initiates deleterious neurodegenerative cascades. We examined whether mTBI history alters cerebral blood flow (CBF) and cortical thickness in regions vulnerable to early AD-related changes. Seventy-four young to middle-aged Veterans (mean age = 34, range = 23–48) underwent brain scans. Participants were divided into: (1) Veteran Controls (n =27), (2) 1–2 mTBIs (n =26), and (2) 3+ mTBIs (n =21) groups. Resting CBF was measured using MP-PCASL. T1 structural scans were processed with FreeSurfer. CBF and cortical thickness estimates were extracted from nine AD-vulnerable regions. Regression analyses examined whether mTBI moderated the association between age, CBF, and cortical thickness. Regressions adjusting for sex and posttraumatic stress revealed mTBI moderated the association between age and CBF of the precuneus as well as superior and inferior parietal cortices (p’s < .05); increasing age was associated with lower CBF in the 3+ mTBIs group, but not in the VCs or 1–2 mTBIs groups. mTBI did not moderate associations between age and cortical thickness (p’s >.05). Repetitive mTBI is associated with cerebrovascular dysfunction in AD-vulnerable regions and may accelerate pathological aging trajectories.  相似文献   

2.
Clinical evidence shows vascular factors may co-occur and complicate the expression of Alzheimer’s disease (AD); yet, the pathologic mechanisms and involvement of different compartments of the vascular network are not well understood. Diseases such as arteriosclerosis diminish vascular compliance and will lead to arterial stiffness, a well-established risk factor for cardiovascular morbidity. Arterial stiffness can be assessed using pulse wave velocity (PWV); however, this is usually done from carotid-to-femoral artery ratios. To probe the brain vasculature, intracranial PWV measures would be ideal. In this study, high temporal resolution 4D flow MRI was used to assess transcranial PWV in 160 subjects including AD, mild cognitive impairment (MCI), healthy controls, and healthy subjects with apolipoprotein ɛ4 positivity (APOE4+) and parental history of AD dementia (FH+). High temporal resolution imaging was achieved by high temporal binning of retrospectively gated data using a local-low rank approach. Significantly higher transcranial PWV in AD dementia and MCI subjects was found when compared to old-age-matched controls (AD vs. old-age-matched controls: P <0.001, AD vs. MCI: P = 0.029, MCI vs. old-age-matched controls P = 0.013). Furthermore, vascular changes were found in clinically healthy middle-age adults with APOE4+ and FH+ indicating significantly higher transcranial PWV compared to controls (P <0.001).  相似文献   

3.
There is a need for increased nosological knowledge to enable rational trials in Alzheimer’s disease (AD) and related disorders. The ongoing Gothenburg mild cognitive impairment (MCI) study is an attempt to conduct longitudinal in-depth phenotyping of patients with different forms and degrees of cognitive impairment using neuropsychological, neuroimaging, and neurochemical tools. Particular attention is paid to the interplay between AD and subcortical vascular disease, the latter representing a disease entity that may cause or contribute to cognitive impairment with an effect size that may be comparable to AD. Of 664 patients enrolled between 1999 and 2013, 195 were diagnosed with subjective cognitive impairment (SCI), 274 with mild cognitive impairment (MCI), and 195 with dementia, at baseline. Of the 195 (29%) patients with dementia at baseline, 81 (42%) had AD, 27 (14%) SVD, 41 (21%) mixed type dementia (=AD + SVD = MixD), and 46 (23%) other etiologies. After 6 years, 292 SCI/MCI patients were eligible for follow-up. Of these 292, 69 (24%) had converted to dementia (29 (42%) AD, 16 (23%) SVD, 15 (22%) MixD, 9 (13%) other etiologies). The study has shown that it is possible to identify not only AD but also incipient and manifest MixD/SVD in a memory clinic setting. These conditions should be taken into account in clinical trials.  相似文献   

4.
White matter hyperintensities (WMHs) are associated with vascular risk and Alzheimer’s disease. In this study, we examined relations between WMH load and distribution, amyloid pathology and vascular risk in 339 controls and cases with either subjective (SCD) or mild cognitive impairment (MCI). Regional deep (DWMH) and periventricular (PWMH) WMH loads were determined using an automated algorithm. We stratified on Aβ1-42 pathology (Aβ+/−) and analyzed group differences, as well as associations with Framingham Risk Score for cardiovascular disease (FRS-CVD) and age. Occipital PWMH (p = 0.001) and occipital DWMH (p = 0.003) loads were increased in SCD-Aβ+ compared with Aβ− controls. In MCI-Aβ+ compared with Aβ− controls, there were differences in global WMH (p = 0.003), as well as occipital DWMH (p = 0.001) and temporal DWMH (p = 0.002) loads. FRS-CVD was associated with frontal PWMHs (p = 0.003) and frontal DWMHs (p = 0.005), after adjusting for age. There were associations between global and all regional WMH loads and age. In summary, posterior WMH loads were increased in SCD-Aβ+ and MCI-Aβ+ cases, whereas frontal WMHs were associated with vascular risk. The differences in WMH topography support the use of regional WMH load as an early-stage marker of etiology.  相似文献   

5.
6.
Blood–brain barrier (BBB) disruption, modulated by APOE4 mutation, is implicated in the pathogenesis of cognitive decline. We determined whether BBB permeability differed according to cognitive functioning and APOE4 status in elderly subjects without dementia. In this prospective study, 33 subjects with mild cognitive impairment (MCI) and 33 age-matched controls (normal cognition [NC]) underwent 3 T brain magnetic resonance imaging. The Patlak model was used to calculate tissue permeability (Ktrans). A region-of interest analysis of Ktrans was performed to compare relevant brain regions. Effects of Ktrans on cognitive functioning were evaluated with linear regression analysis adjusted for confounding factors. NC and MCI groups did not differ in terms of vascular risk factors or hippocampal Ktrans, except for hippocampal volume. Hippocampal Ktrans was significantly higher in APOE4 carriers than in non-carriers (p = 0.007). Factors which predicted cognitive functioning included hippocampal volume (beta=−0.445, standard error [SE]=0.137, p = 0.003) and hippocampal BBB permeability (beta = 0.142, SE = 0.050, p = 0.008) after correcting for age, education, and APOE4 status. This suggests that hippocampal BBB permeability is associated with APOE4 mutation, and may predict cognitive functioning. BBB permeability imaging represents a distinct imaging biomarker for APOE4 mutations in NC and MCI subjects and for determining the degree of APOE4-related pathology.  相似文献   

7.
Gray matter has been shown to be greater in early bilingual adults relative to monolingual adults in regions associated with language (Mechelli et al., 2004), and executive control (EC; Olulade et al., 2016). It is not known, however, if language experience‐dependent differences in gray matter volume (GMV) exist in children. Further, any such differences are likely not to be the same as those observed in early bilingual adults, as children have had relatively shorter duration of dual‐language exposure and/or less development of brain regions serving EC. We tested these predictions by comparing GMV in Spanish–English early bilingual and English monolingual children, and Spanish–English early bilingual and English monolingual adults (n = 122). Comparing only children revealed relatively more GMV in the bilinguals in bilateral frontal, right inferior frontal, and right superior parietal cortices (regions associated with EC). Bilinguals, however, had less GMV in left inferior parietal cortex (region associated with language). An ANOVA including these children with bilingual and monolingual adults revealed interactions of Language Background by Age Group. There were no regions of more GMV in bilinguals relative to monolinguals that were less pronounced in children than adults, despite the children''s shorter dual‐language experience. There were relative differences between bilingual and monolingual children that were more pronounced than those in adults in left precentral gyrus and right superior parietal lobule (close to, but not directly in areas associated with EC). Together, early bilingual children manifest relative differences in GMV, and, surprisingly, these do not diverge much from those observed in studies of bilingual adults.  相似文献   

8.
In Alzheimer's disease (AD), loss of cortical and hippocampal choline acetyltransferase (ChAT) activity has been correlated with dementia severity and disease duration, and it forms the basis for current therapies. However, the extent to which reductions in ChAT activity are associated with early cognitive decline has not been well established. We quantified ChAT activity in the hippocampus and four cortical regions (superior frontal, inferior parietal, superior temporal, and anterior cingulate) of 58 individuals diagnosed with no cognitive impairment (NCI; n = 26; mean age 81.4 +/- 7.3 years), mild cognitive impairment (MCI; n = 18; mean age 84.5 +/- 5.7), or mild AD (n =14; mean age 86.3 +/- 6.6). Inferior parietal cortex ChAT activity was also assessed in 12 subjects with end-stage AD (mean age 81.4 +/- 4.3 years) and compared to inferior parietal cortex ChAT levels of the other three groups. Only the end-stage AD group had ChAT levels reduced below normal. In individuals with MCI and mild AD, ChAT activity was unchanged in the inferior parietal, superior temporal, and anterior cingulate cortices compared to NCI. In contrast, ChAT activity in the superior frontal cortex was significantly elevated above normal controls in MCI subjects, whereas the mild AD group was not different from NCI or MCI. Hippocampal ChAT activity was significantly higher in MCI subjects than in either NCI or AD. Our results suggest that cognitive deficits in MCI and early AD are not associated with the loss of ChAT and occur despite regionally specific upregulation. Thus, the earliest cognitive deficits in AD involve brain changes other than simply cholinergic system loss. Of importance, the cholinergic system is capable of compensatory responses during the early stage of dementia. The upregulation in frontal cortex and hippocampal ChAT activity could be an important factor in preventing the transition of MCI subjects to AD.  相似文献   

9.
Using whole-brain pulsed arterial spin labeling magnetic resonance imaging, resting cerebral blood flow (CBF) was measured in 20 mild cognitive impairment (MCI; 11 ɛ3 and 9 ɛ4) and 40 demographically matched cognitively normal (CN; 27 ɛ3 and 13 ɛ4) participants. An interaction of apolipoprotein (APOE) genotype (ɛ3 and ɛ4) and cognitive status (CN and MCI) on quantified gray-matter CBF corrected for partial volume effects was found in the left parahippocampal and fusiform gyri (PHG/FG), right middle frontal gyrus, and left medial frontal gyrus. In the PHG/FG, CBF was elevated for CN ɛ4 carriers but decreased for MCI ɛ4 carriers. The opposite pattern was seen in frontal regions: CBF was decreased for CN ɛ4 carriers but increased for MCI ɛ4 carriers. Cerebral blood flow in the PHG/FG was positively correlated with verbal memory for CN ɛ4 adults (r=0.67, P=0.01). Cerebral blood flow in the left medial frontal gyrus was positively correlated with verbal memory for MCI ɛ4 adults (r=0.70, P=0.05). Findings support dynamic pathophysiologic processes in the brain associated with Alzheimer''s disease risk and indicate that cognitive status and APOE genotype have interactive effects on CBF. Correlations between CBF and verbal memory suggest a differential neurovascular compensatory response in posterior and anterior cortices with cognitive decline in ɛ4 adults.  相似文献   

10.
The [18F]-JNJ-64326067-AAA ([18F]-JNJ-067) tau tracer was evaluated in healthy older controls (HCs), mild cognitive impairment (MCI), Alzheimer’s disease (AD), and progressive supranuclear palsy (PSP) participants. Seventeen subjects (4 HCs, 5 MCIs, 5 ADs, and 3 PSPs) received a [11C]-PIB amyloid PET scan, and a tau [18F]-JNJ-067 PET scan 0-90 minutes post-injection. Only MCIs and ADs were amyloid positive. The simplified reference tissue model, Logan graphical analysis distribution volume ratio, and SUVR were evaluated for quantification. The [18F]-JNJ-067 tau signal relative to the reference region continued to increase to 90 min, indicating the tracer had not reached steady state. There was no significant difference in any bilateral ROIs for MCIs or PSPs relative to HCs; AD participants showed elevated tracer relative to controls in most cortical ROIs (P < 0.05). Only AD participants showed elevated retention in the entorhinal cortex. There was off-target signal in the putamen, pallidum, thalamus, midbrain, superior cerebellar gray, and white matter. [18F]-JNJ-067 significantly correlated (p < 0.05) with Mini-Mental State Exam in entorhinal cortex and temporal meta regions. There is clear binding of [18F]-JNJ-067 in AD participants. Lack of binding in HCs, MCIs and PSPs suggests [18F]-JNJ-067 may not bind to low levels of AD-related tau or 4 R tau.  相似文献   

11.
ObjectiveWe aimed to present the study design and baseline cross-sectional participant characteristics of biobank innovations for chronic cerebrovascular disease with Alzheimer’s disease study (BICWALZS) participants. MethodsA total of 1,013 participants were enrolled in BICWALZS from October 2016 to December 2020. All participants underwent clinical assessments, basic blood tests, and standardized neuropsychological tests (n=1,013). We performed brain magnetic resonance imaging (MRI, n=817), brain amyloid positron emission tomography (PET, n=713), single nucleotide polymorphism microarray chip (K-Chip, n=949), locomotor activity assessment (actigraphy, n=200), and patient-derived dermal fibroblast sampling (n=175) on a subset of participants. ResultsThe mean age was 72.8 years, and 658 (65.0%) were females. Based on clinical assessments, total of 168, 534, 211, 80, and 20 had subjective cognitive decline, mild cognitive impairment (MCI), Alzheimer’s dementia, vascular dementia, and other types of dementia or not otherwise specified, respectively. Based on neuroimaging biomarkers and cognition, 199, 159, 78, and 204 were cognitively normal (CN), Alzheimer’s disease (AD)-related cognitive impairment, vascular cognitive impairment, and not otherwise specified due to mixed pathology (NOS). Each group exhibited many differences in various clinical, neuropsychological, and neuroimaging results at baseline. Baseline characteristics of BICWALZS participants in the MCI, AD, and vascular dementia groups were generally acceptable and consistent with 26 worldwide dementia cohorts and another independent AD cohort in Korea. ConclusionThe BICWALZS is a prospective and longitudinal study assessing various clinical and biomarker characteristics in older adults with cognitive complaints. Details of the recruitment process, methodology, and baseline assessment results are described in this paper.  相似文献   

12.
We previously reported that pathologic measures of arteriosclerosis (AS), cerebral infarction, and Alzheimer’s disease (AD) are independently correlated with cortical gray matter (CGM) atrophy measured by in vivo magnetic resonance imaging (MRI). Here, we use path analyses to model the associations between these three pathology measures and cognitive impairment, as mediated by CGM atrophy, after controlling for age and education. In this sample of 116 elderly persons followed longitudinally to autopsy (ischemic vascular disease (IVD) program project), differential patterns were observed between AS and atrophy/cognition versus AD and atrophy/cognition. The total effect of AD pathology on global cognition (β = −0.61, s.e. = 0.06) was four times stronger than that of AS (β = −0.15, s.e. = 0.08). The effect of AS on cognition appears to occur through cerebral infarction and CGM atrophy (β = −0.13, s.e. = 0.04). In contrast, the effects of AD pathology on global cognition (β = −0.50, s.e. = 0.07) occur through a direct pathway that is five times stronger than the indirect pathway acting through CGM atrophy (β = −0.09, s.e. = 0.03). The strength of this direct AD pathway was not significantly mitigated by adding hippocampal volume to the model. AD pathology affects cognition not only through brain atrophy, but also via an unmeasured pathway that could be related to synaptic dysfunction before the development of cortical atrophy.  相似文献   

13.
Noninvasive MRI biomarkers for Alzheimer's disease (AD) may enable earlier clinical diagnosis and the monitoring of therapeutic effectiveness. To assess potential neuroimaging biomarkers, the Alzheimer's Disease Neuroimaging Initiative is following normal controls (NC) and individuals with mild cognitive impairment (MCI) or AD. We applied high‐throughput image analyses procedures to these data to demonstrate the feasibility of detecting subtle structural changes in prodromal AD. Raw DICOM scans (139 NC, 175 MCI, and 84 AD) were downloaded for analysis. Volumetric segmentation and cortical surface reconstruction produced continuous cortical surface maps and region‐of‐interest (ROI) measures. The MCI cohort was subdivided into single‐ (SMCI) and multiple‐domain MCI (MMCI) based on neuropsychological performance. Repeated measures analyses of covariance were used to examine group and hemispheric effects while controlling for age, sex, and, for volumetric measures, intracranial vault. ROI analyses showed group differences for ventricular, temporal, posterior and rostral anterior cingulate, posterior parietal, and frontal regions. SMCI and NC differed within temporal, rostral posterior cingulate, inferior parietal, precuneus, and caudal midfrontal regions. With MMCI and AD, greater differences were evident in these regions and additional frontal and retrosplenial cortices; evidence for non‐AD pathology in MMCI also was suggested. Mesial temporal right‐dominant asymmetries were evident and did not interact with diagnosis. Our findings demonstrate that high‐throughput methods provide numerous measures to detect subtle effects of prodromal AD, suggesting early and later stages of the preclinical state in this cross‐sectional sample. These methods will enable a more complete longitudinal characterization and allow us to identify changes that are predictive of conversion to AD. Hum Brain Mapp 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A prominent finding of postmortem and molecular imaging studies on Alzheimer''s disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting‐state functional MRI and FDG‐PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F 4,25 = 5.63, p = 0.002, r 2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD.  相似文献   

15.
Reductions of baseline cerebral blood flow (CBF) of ∼10–20% are a common symptom of Alzheimer’s disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.  相似文献   

16.
High blood pressure accelerates normal aging stiffness process. Arterial stiffness (AS) has been previously associated with impaired cognitive function and dementia. Our aims are to study how cognitive function and status (mild cognitive impairment, MCI and normal cognitive aging, NCA) relate to AS in a community-based population of hypertensive participants assessed with office and 24-hour ambulatory blood pressure measurements. Six hundred ninety-nine participants were studied, 71 had MCI and the rest had NCA. Office pulse pressure (PP), carotid–femoral pulse wave velocity, and 24-hour ambulatory PP monitoring were collected. Also, participants underwent a brain magnetic resonance to study cerebral small–vessel disease (cSVD) lesions. Multivariate analysis–related cognitive function and cognitive status to AS measurements after adjusting for demographic, vascular risk factors, and cSVD. Carotid–femoral pulse wave velocity and PP at different periods were inversely correlated with several cognitive domains, but only awake PP measurements were associated with attention after correcting for confounders (beta = −0.22, 95% confidence interval (CI) −0.41, −0.03). All ambulatory PP measurements were related to MCI, which was independently associated with nocturnal PP (odds ratio (OR) = 2.552, 95% CI 1.137, 5.728) and also related to the presence of deep white matter hyperintensities (OR = 1.903, 1.096, 3.306). Therefore, higher day and night ambulatory PP measurements are associated with poor cognitive outcomes.  相似文献   

17.
Adolescence is a period of rapid development of the brain’s inherent functional and structural networks; however, little is known about the region-to-region organization of adolescent cerebral blood flow (CBF) or its relationship to neuroanatomy. Here, we investigate both the regional covariation of CBF MRI and the covariation of structural MRI, in adolescents with and without bipolar disorder. Bipolar disorder is a disease with increased onset during adolescence, putative vascular underpinnings, and evidence of anomalous CBF and brain structure. In both groups, through hierarchical clustering, we found CBF covariance was principally described by clusters of regions circumscribed to the left hemisphere, right hemisphere, and the inferior brain; these clusters were spatially reminiscent of cerebral vascular territories. CBF covariance was associated with structural covariance in both the healthy group (n = 56; r = 0.20, p < 0.0001) and in the bipolar disorder group (n = 68; r = 0.36, p < 0.0001), and this CBF-structure correspondence was higher in bipolar disorder (p = 0.0028). There was lower CBF covariance in bipolar disorder compared to controls between the left angular gyrus and pre- and post-central gyri. Altogether, CBF covariance revealed distinct brain organization, had modest correspondence to structural covariance, and revealed evidence of differences in bipolar disorder.  相似文献   

18.
Wang Z  Yan C  Zhao C  Qi Z  Zhou W  Lu J  He Y  Li K 《Human brain mapping》2011,32(10):1720-1740
We used resting-state functional MRI to investigate spatial patterns of spontaneous brain activity in 22 healthy elderly subjects, as well as 16 mild cognitive impairment (MCI) and 16 Alzheimer's disease (AD) patients. The pattern of intrinsic brain activity was measured by examining the amplitude of low-frequency fluctuations (ALFF) of blood oxygen level dependent signal during rest. There were widespread ALFF differences among the three groups throughout the frontal, temporal, and parietal cortices. Both AD and MCI patients showed decreased activity mainly in the medial parietal lobe region and lentiform nucleus, while there was increased activity in the lateral temporal regions and superior frontal and parietal regions as compared with controls. Compared with MCI, the AD patients showed decreased activity in the medial prefrontal cortex and increased activity in the superior frontal gyrus and inferior and superior temporal gyri. Specifically, the most significant ALFF differences among the groups appeared in the posterior cingulate cortex, with a reduced pattern of activity when comparing healthy controls, MCI, and AD patients. Additionally, we also showed that the regions with ALFF changes had significant correlations with the cognitive performance of patients as measured by mini-mental state examination scores. Finally, while taking gray matter volume as covariates, the ALFF results were approximately consistent with those without gray matter correction, implying that the functional analysis could not be explained by regional atrophy. Together, our results demonstrate that there is a specific pattern of ALFF in AD and MCI, thus providing insights into biological mechanisms of the diseases.  相似文献   

19.
Research on segmentation of the hippocampus in magnetic resonance images through deep learning convolutional neural networks (CNNs) shows promising results, suggesting that these methods can identify small structural abnormalities of the hippocampus, which are among the earliest and most frequent brain changes associated with Alzheimer disease (AD). However, CNNs typically achieve the highest accuracy on datasets acquired from the same domain as the training dataset. Transfer learning allows domain adaptation through further training on a limited dataset. In this study, we applied transfer learning on a network called spatial warping network segmentation (SWANS), developed and trained in a previous study. We used MR images of patients with clinical diagnoses of mild cognitive impairment (MCI) and AD, segmented by two different raters. By using transfer learning techniques, we developed four new models, using different training methods. Testing was performed using 26% of the original dataset, which was excluded from training as a hold‐out test set. In addition, 10% of the overall training dataset was used as a hold‐out validation set. Results showed that all the new models achieved better hippocampal segmentation quality than the baseline SWANS model (p s < .001), with high similarity to the manual segmentations (mean dice [best model] = 0.878 ± 0.003). The best model was chosen based on visual assessment and volume percentage error (VPE). The increased precision in estimating hippocampal volumes allows the detection of small hippocampal abnormalities already present in the MCI phase (SD = [3.9 ± 0.6]%), which may be crucial for early diagnosis.  相似文献   

20.
Objective Many patients suffer from dementia in its most common form, Alzheimer’s disease (AD). In this study, the levels of IL-1β, TGF-β and CRP, which are involved in the inflammatory response in Alzheimer’s disease and its mild cognitive impairment (MCI), were measured and analyzed. Methods Seventy nine subjects participated in this study (mean age: 75.56 years, female: 54.3%, AD: 26, MCI: 28, normal: 25). The overall cognitive function of the subjects and the severity of the disease stage were assessed using the Mini-Mental State Examination (MMSE-K), the Clinical Dementia Rating (CDR), the Global Deterioration Scale (GDS) and the Geriatric Depression Scale-Korean (GDS-K). Results It was observed that patients with AD had significantly higher levels of IL-1β and TGF-β than the patients with MCI and normal controls. In addition, the MCI group showed a statistically significantly higher TGF-β concentration than the normal group. Conclusion These results suggest that IL-1β and TGF-β may be useful biological markers for patients with Alzheimer’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号