首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined whether two classes of Drosophila larval motor terminals with known differences in structure and transmitter release also showed differences in Ca2+ regulation. Larval motor neurons can be separated into those producing large synaptic boutons (Ib) and those with small boutons (Is). Ib terminals release less transmitter during single action potentials (APs) than Is terminals, but show greater facilitation during high-frequency stimulation. We measured Ca2+ transients produced by single APs and AP trains after loading the terminals with the dextran-conjugated Ca2+ indicator Oregon Green 488 BAPTA-1 (OGB-1). The two pairs of Is and Ib terminals innervating muscle fiber 4 and fibers 6 and 7 were examined. The OGB-1 concentrations were measured in order to compare measurements from terminals with similar OGB-1 loading. For single APs, the change in OGB-1 fluorescence (ΔF/F) in Is boutons was significantly larger than in Ib boutons due to greater Ca2+ influx per bouton volume. The Is boutons had greater surface area and active zone number per bouton volume than Ib boutons; this could account for the differences in Ca2+ influx and argues for similar Ca2+ influx at Is and Ib active zones. As previously reported for the Ib boutons, the distal Is boutons had larger single-AP Ca2+ transients than proximal ones on muscle fibers 6 and 7, but not on fiber 4. This difference was not due to proximal–distal differences in surface area or active zones per bouton volume and may be due to greater Ca2+ influx at distal active zones. During AP trains, the Is Ca2+ transients were larger in amplitude and had longer decay time constants than Ib ones. This can be explained by a slower rate of Ca2+ extrusion from the Is boutons apparently due to lower plasma membrane Ca2+ ATPase activity at Is boutons compared to Ib boutons.  相似文献   

2.
We investigated the Ca(2+) channel-synaptic vesicle topography at the inhibitor of the crayfish (Procambarus Clarkii) neuromuscular junction (NMJ) by analyzing the effect of different modes of Ca(2+) channel block on transmitter release. Initial identification of Ca(2+) channels revealed the presence of two classes, P and non-P-type with P-type channels governing approximately 70% of the total Ca(2+) influx. The remaining Ca(2+) influx was completely blocked by Cd(2+) but not by saturating concentrations of omega-conotoxins MVIIC and GVIA, or nifedipine and SNX-482. To examine the relative spatial distribution of Ca(2+) channels with respect to synaptic vesicles, we compared changes in inhibitory postsynaptic current amplitude and synaptic delay resulting from different spatial profiles of [Ca(2+)](i) around release sites. Specifically, addition of either [Mg(2+)](o), which decreases single-channel current, or omega-Aga IVA, which completely blocks P-type channels, prolonged synaptic delay by a similar amount when Ca(2+) influx block was <40%. Because non-P-type channels are able to compensate for blocked P-type channels, it suggests that these channels overlap considerably in their distribution. However, when Ca(2+) influx was blocked by approximately 50%, omega-Aga IVA increased delay significantly more than Mg(2+), suggesting that P-type channels are located closer than non-P-type channels to synaptic vesicles. This distribution of Ca(2+) channels was further supported by the observations that non-P-type channels are unable to trigger release in physiological saline and EGTA preferentially prolongs synaptic delay dominated by non-P-type channels when transmitter release is evoked with broad action potentials. We therefore conclude that although non-P-type channels do not directly trigger release under physiological conditions, their distribution partially overlaps with P-type channels.  相似文献   

3.
The differential action of neuromodulators on synapses of various efficacy provides additional fine tuning of synaptic regulation beyond frequency induced plasticity. We used the well-characterized high- and low-output motor nerve terminals, of the tonic and phasic neuromuscular junctions (NMJs) in the walking leg extensor muscle of the crayfish, to investigate differential actions of serotonin (5-HT) since both terminals innervate the same target. The excitatory postsynaptic potentials of the tonic NMJ are enhanced to a greater extent than for the phasic NMJs during exposure to 5-HT (100 nM). Macropatch current recordings at identified sites along the motor nerve terminals and quantal analysis indicate that mean quantal content is substantially increased by 5-HT. The overall probability of vesicular release increases to a greater extent at tonic terminals than at phasic terminals when exposed to 100 nM 5-HT. Measures in the area (i.e. charge) of spontaneous quantal currents indicate no difference in postsynaptic receptivity to the glutamatergic synaptic transmission upon exposure to 5-HT. The results provide new details concerning differential modulation of low- and high-output synapses present on the same target tissue.  相似文献   

4.
We tested the hypothesis that heterogeneity in the frequency of miniature synaptic activity reflects differences in the number of vesicles present in presynaptic terminals. Using imaging techniques, we measured dendritic miniature synaptic calcium transients attributed to the spontaneous release of single transmitter quanta. Following imaging, the identified neurons were processed for serial transmission electron microscopy. At sites of quantal Ca(2+) transients mediated by N-methyl-D-aspartate receptors, we confirmed the presence of excitatory synapses and measured the total number of vesicles and the number of docked vesicles.We observed no correlation between the frequency of spontaneous miniature activity and either the total vesicle number or the number of docked vesicles. We conclude that the presynaptic vesicle complement as measured by ultrastructural analysis does not necessarily determine the frequency of spontaneous activity at synapses mediated by N-methyl-D-aspartate receptors.  相似文献   

5.
Botulinum neurotoxin (BoTx) serotype E blocks spontaneous and evoked quantal release of acetylcholine at the rat neuromuscular junction. Increasing extracellular Ca2+ to 8 mmol l-1 or substituting Ca2+ with La3+ (0.1 and 1.0 mmol l-1) or depolarizing the nerve terminals by 20 mmol l-1 K+ markedly increases miniature end-plate potential frequency in normal muscle, but in BoTx-E poisoned preparations none of these ions, with the exception of 1 mmol l-1 La3+, was able to restore spontaneous quantal transmitter release to levels recorded at unpoisoned junctions. In absolute values the enhancement with La3+ was much less than that reported at normal junctions. Nerve stimulation in the presence of 3,4-diaminopyridine (10-20 mumol l-1) and high calcium (8 mmol l-1) evoked multiquantal end-plate potentials and muscle twitches. We conclude that the neuromuscular block produced by BoTx serotype E is similar to that previously described for BoTx serotype A but differs from that produced by BoTx serotypes B, D and F in not causing desynchronization of nerve impulse-evoked transmitter release. 3,4-Diaminopyridine might be useful in the treatment of poisoning by BoTx serotype E since it markedly enhanced synchronous transmitter release from poisoned motor nerve terminals.  相似文献   

6.
Simultaneous fluorescence imaging and electrophysiologic recordings were used to investigate the Ca(2+) influx initiated by action potentials (APs) into dorsal cochlear nucleus (DCN) pyramidal cell (PC) and cartwheel cell (CWC) dendrites. Local application of Cd(2+) blocked Ca(2+) transients in PC and CWC dendrites, demonstrating that the Ca(2+) influx was initiated by dendritic Ca(2+) channels. In PCs, TTX eliminated the dendritic Ca(2+) transients when APs were completely blocked. However, the Ca(2+) influx could be partially recovered during an incomplete block of APs or when a large depolarization was substituted for the blocked APs. In CWCs, dendritic Ca(2+) transients evoked by individual APs, or simple spikes, were blocked by TTX and could be recovered during an incomplete block of APs or by a large depolarization. In contrast, dendritic Ca(2+) transients evoked by complex spikes, a burst of APs superimposed on a slow depolarization, were not blocked by TTX, despite eliminating the APs superimposed on the slow depolarization. These results suggest two different mechanisms for the retrograde activation of dendritic Ca(2+) channels: the first requires fast Na(+) channel-mediated APs or a large somatic depolarization, whereas the second is independent of Na(+) channel activation, requiring only the slow depolarization underlying complex spikes.  相似文献   

7.
Most central neurons contact their dendritic targets at several sites. However, it is not known whether all synapses formed by a single parent axon make the same contribution to the postsynaptic response. In order to answer this question it is necessary to isolate the synaptic currents generated by individual axon terminals. This paper describes a method that was designed to activate transmitter release from solitary synaptic boutons in culture. Neurons from the embryonic rat superior colliculus were grown at low density and double-loaded with a fluorescent marker of synaptic vesicles (FM1-43 or RH414) and a fluorescent Ca2+ indicator (Fura-2, Mag-fura-2, Oregon Green BAPTA-1 or Oregon Green BAPTA-5N). Action potential generation was blocked by tetrodotoxin. Appropriate synaptic boutons were selected under phase-contrast and fluorescence illumination at a magnification of 1000. They were activated by short electrical pulses via a fine-tipped glass pipette filled with bath solution. Presynaptic Ca2+ transients were measured in a region delineated by the FM1-43/RH414 fluorescence. By simultaneous presynaptic Ca2+ imaging and whole-cell recording of postsynaptic responses to single depolarizing pulses, the quantitative relationships between pre- and postsynaptic parameters of synaptic strength in a small synapse of central origin could, for the first time, be analysed. The experiments showed that the average postsynaptic currents depend strongly on the size of the presynaptic Ca2+ transients. However, at any level of presynaptic Ca2+ concentration postsynaptic responses fluctuated in amplitude.  相似文献   

8.
The cellular and synaptic mechanisms by which general anesthetics affect cell-cell communications in the nervous system remain poorly defined. In this study, we sought to determine how clinically relevant concentrations of sevoflurane affected inhibitory synaptic transmission between identified Lymnaea neurons in vitro. Inhibitory synapses were reconstructed in cell culture, between the somata of two functionally well-characterized neurons, right pedal dorsal 1 (RPeD1, the giant dopaminergic neuron) and visceral dorsal 4 (VD4). Clinically relevant concentrations of sevoflurane (1-4%) were tested for their effects on synaptic transmission and the intrinsic membrane properties of soma-soma paired cells. RPeD1- induced inhibitory postsynaptic potentials (IPSPs) in VD4 were completely and reversibly blocked by sevoflurane (4%). Sevoflurane also suppressed action potentials in both RPeD1 and VD4 cells. To determine whether the anesthetic-induced synaptic depression involved postsynaptic transmitter receptors, dopamine was pressure applied to VD4, either in the presence or absence of sevoflurane. Dopamine (10(-]5) M) activated a voltage-insensitive K(+) current in VD4. The same K(+) current was also altered by sevoflurane; however, the effects of two compounds were nonadditive. Because transmitter release from RPeD1 requires Ca(2+) influx through voltage-gated Ca(2+) channels, we next tested whether the anesthetic-induced synaptic depression involved these channels. Individually isolated RPeD1 somata were whole cell voltage clamped, and Ca(2+) currents were analyzed in control and various anesthetic conditions. Clinically relevant concentrations of sevoflurane did not significantly affect voltage-activated Ca(2+) channels in RPeD1. Taken together, this study provides the first direct evidence that sevoflurane-induced synaptic depression involves both pre- and postsynaptic ion channels.  相似文献   

9.
Zn(2+) is found in glutamatergic nerve terminals throughout the mammalian forebrain and has diverse extracellular and intracellular actions. The anatomical location and possible synaptic signaling role for this cation have led to the hypothesis that Zn(2+) is released from presynaptic boutons, traverses the synaptic cleft, and enters postsynaptic neurons. However, these events have not been directly observed or characterized. Here we show, using microfluorescence imaging in rat hippocampal slices, that brief trains of electrical stimulation of mossy fibers caused immediate release of Zn(2+) from synaptic terminals into the extracellular microenvironment. Release was induced across a broad range of stimulus intensities and frequencies, including those likely to induce long-term potentiation. The amount of Zn(2+) release was dependent on stimulation frequency (1-200 Hz) and intensity. Release of Zn(2+) required sodium-dependent action potentials and was dependent on extracellular Ca(2+). Once released, Zn(2+) crosses the synaptic cleft and enters postsynaptic neurons, producing increases in intracellular Zn(2+) concentration. These results indicate that, like a neurotransmitter, Zn(2+) is stored in synaptic vesicles and is released into the synaptic cleft. However, unlike conventional transmitters, it also enters postsynaptic neurons, where it may have manifold physiological functions as an intracellular second messenger.  相似文献   

10.
Small-conductance Ca(2+)-activated K(+) channels (SK channels) influence the induction of synaptic plasticity at hippocampal CA3-CA1 synapses. We find that in mice, SK channels are localized to dendritic spines, and their activity reduces the amplitude of evoked synaptic potentials in an NMDA receptor (NMDAR)-dependent manner. Using combined two-photon laser scanning microscopy and two-photon laser uncaging of glutamate, we show that SK channels regulate NMDAR-dependent Ca(2+) influx within individual spines. SK channels are tightly coupled to synaptically activated Ca(2+) sources, and their activity reduces the amplitude of NMDAR-dependent Ca(2+) transients. These effects are mediated by a feedback loop within the spine head; during an excitatory postsynaptic potential (EPSP), Ca(2+) influx opens SK channels that provide a local shunting current to reduce the EPSP and promote rapid Mg(2+) block of the NMDAR. Thus, blocking SK channels facilitates the induction of long-term potentiation by enhancing NMDAR-dependent Ca(2+) signals within dendritic spines.  相似文献   

11.
1. Synapsin I was injected into a vertebrate presynaptic axon to analyze its action on quantal synaptic transmission. Two microelectrodes were used for simultaneous intracellular recording from pairs of identified neurons in the goldfish brain. The postsynaptic electrode was placed in a cranial relay neuron (CRN) within 100 microns of its synapse with the Mauthner neuron. The presynaptic electrode impaled the Mauthner axon (M-axon) 50-200 microns from the first electrode. 2. Spontaneous miniature excitatory postsynaptic potentials (mEPSPs) and evoked postsynaptic potentials (EPSPs) were recorded at steady states before and after synapsin I was microinjected into the presynaptic M-axon. Responses were digitized and subsequently analyzed by computer for quantal parameters. 3. In 12 experiments, injection of synapsin I resulted in a reduction in transmission. The decrease in EPSP amplitude began approximately 30 s after the injection, reached a plateau within 10 min, and appeared to be reversible and dose dependent. 4. Injection of synapsin I decreased quantal content (m), with no effect on postsynaptic receptor sensitivity or on amount of transmitter per quantum. Further analysis based on the simplest binomial model for quantal release revealed that synapsin I consistently reduced the number of quantal units available for release (n) although the probability of release (p) was either unchanged or slightly increased. Injected synapsin I may thus bind to presynaptic vesicles and prevent transmitter quanta from entering a pool subject to evoked release.  相似文献   

12.
Dextran-conjugated Ca(2+) indicators were injected into the accessory olfactory bulb of frogs in vivo to selectively fill presynaptic terminals of mitral cells at their termination in the ipsilateral amygdala. After one to three days of uptake and transport, the forebrain hemisphere anterior to the tectum was removed and maintained in vitro for simultaneous electrophysiological and optical measurements. Ca(2+) influx into these terminals was compared to synaptic transmission between mitral cells and amygdala neurons under conditions of reduced Ca(2+) influx resulting from reduced extracellular [Ca(2+)], blockade of N- and P/Q-type channels, and application of the cholinergic agonist carbachol. Reducing extracellular [Ca(2+)] had a non-linear effect on release; release was proportional to Ca(2+) influx raised to the power of approximately 3.6, as observed at numerous other synapses. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1 microM), blocked 77% of Ca(2+) influx and 88% of the postsynaptic field potential. The P/Q-type Ca(2+) channel blocker, omega-agatoxin-IVA (200 nM), blocked 19% of Ca(2+) influx and 25% of the postsynaptic field, while the two toxins combined to block 92% of Ca(2+) influx and 97% of the postsynaptic field. The relationship between toxin blockade of Ca(2+) influx and synaptic transmission was therefore only slightly non-linear; release was proportional to Ca(2+) influx raised to the power approximately 1.4. Carbachol (100 microM) acting via muscarinic receptors had no effect on the afferent volley, but rapidly and reversibly reduced Ca(2+) influx through both N- and P/Q-type channels by 51% and postsynaptic responses by 78%, i.e. release was proportional to Ca(2+) raised to the power approximately 2.5.The weak dependence of release on changes in Ca(2+) when channel toxins block channels suggests little overlap between Ca(2+) microdomains from channels supporting release or substantial segregation of channel subtypes between terminals. The proportionately greater reduction of transmission by muscarinic receptors compared to Ca(2+) channel toxins suggests that they directly affect the release machinery in addition to reducing Ca(2+) influx.  相似文献   

13.
Presynaptic calcium channels and the depletion of synaptic cleft calcium ions   总被引:11,自引:0,他引:11  
The entry of calcium ions (Ca(2+)) through voltage-gated calcium channels is an essential step in the release of neurotransmitter at the presynaptic nerve terminal. Because the calcium channels are clustered at the release sites, the flux of Ca(2+) into the terminal inevitably removes the ion from the adjacent extracellular space, the synaptic cleft. We have used the large calyx-type synapse of the chick ciliary ganglion to test for synaptic cleft Ca(2+) depletion. The terminal was voltage clamped at a holding potential (V(H)) of -80 mV and a depolarizing pulse was applied to a range of potentials (-60 to +60 mV). The voltage pulse activated a sustained inward calcium current and was followed, on return of the membrane potential to V(H), by an inward calcium tail current. The amplitude of the tail current reflects both the number of open calcium channels at the end of the voltage pulse and the Ca(2+) electrochemical gradient. External barium was substituted for calcium as the charge-carrying ion because initial experiments demonstrated calcium-dependent inactivation of the presynaptic calcium channels. Tail current recruitment was compared in calyx nerve terminals that remained attached to the postsynaptic neuron and therefore retained a synaptic cleft, with terminals that had been fully isolated. In isolated terminals, the tail currents exhibited recruitment curves that could be fit by a Boltzmann distribution with a mean V(1/2) of 0.4 mV and a slope factor of 5.4. However, in attached calyces tail current recruitment was skewed to depolarized potentials with a mean V(1/2) of 11.9 mV and a slope factor of 12.0. The degree of skew of the recruitment curve in the attached calyces correlated with the amplitude of the inward current evoked by the step depolarization. The simplest interpretation of these findings is that during the depolarizing pulse Ba(2+) is removed from the synaptic cleft faster than it is replenished, thus reducing the tail current by reducing the driving force for ion entry. Ca(2+) depletion during presynaptic calcium channel activation is likely to be a general property of chemical transmission at fast synapses that sets a functional limit to the duration of sustained secretion. The synapse may have evolved to minimized cleft depletion by developing a calcium-efficient mechanism to gate transmitter release that requires the concurrent opening of only a few low conductance calcium channels.  相似文献   

14.
The release of chemical transmitter from nerve terminals is critically dependent on a transient increase in intracellular Ca2+. The increase in Ca2+ may be due to influx of Ca2+ from the extracellular fluid or release of Ca2+ from intracellular stores such as mitochondria. Whether Ca2+ utilized in transmitter release is liberated from organelles other than mitochondria is uncertain. Smooth endoplasmic reticulum is known to release Ca2+, e.g., on activation by inositol trisphosphate or cyclic adenosine diphosphate-ribose, so the possibility exists that Ca2+ from this source may be involved in the events leading to exocytosis. We examined this hypothesis by testing whether inositol trisphosphate and cyclic adenosine diphosphate-ribose modified transmitter release. We used liposomes to deliver these agents into the cytoplasmic compartment and binomial analysis to determine their effects on the quantal components of transmitter release. Administration of inositol trisphosphate (10(-4)M) caused a rapid, 25% increase in the number of quanta released. This was due to an increase in the number of functional release sites, as the other quantal parameters were unaffected. The effect was reversed with 40 min of wash. Virtually identical results were obtained with cyclic adenosine diphosphate-ribose (10(-4)M). Inositol trisphosphate caused a 10% increase in quantal size, whereas cyclic adenosine diphosphate-ribose had no effect. The results suggest that quantal transmitter release can be increased by Ca2+ released from smooth endoplasmic reticulum upon stimulation by inositol trisphosphate or cyclic adenosine diphosphate-ribose. This may involve priming of synaptic vesicles at the release sites or mobilization of vesicles to the active zone. Inositol trisphosphate may have an additional action to increase the content of transmitter within the vesicles. These findings raise the possibility of a role of endogenous inositol phosphate and smooth endoplasmic reticulum in the regulation of cytoplasmic Ca2+ and transmitter release.  相似文献   

15.
16.
Cannabinoid receptors are the molecular targets for the active component Delta(9)-tetrahydrocannabinol of marijuana and hashish, and constitute a major family of G protein-coupled seven-transmembrane-domain receptors. They consist of type 1 (CB1) and type 2 (CB2) receptors of which the CB1 is rich in various regions of the CNS. Accumulated evidence suggests that endogenous cannabinoids function as diffusible and short-lived intercellular messengers that modulate synaptic transmission. Recent studies have provided strong experimental evidence that endogenous cannabinoids mediate signals retrogradely from depolarized postsynaptic neurons to presynaptic terminals to suppress subsequent neurotransmitter release, driving the synapse into an altered state. In hippocampal neurons, depolarization of postsynaptic neurons and resultant elevation of [Ca(2+)](i) lead to transient suppression of inhibitory transmitter release (depolarization-induced suppression of inhibition, DSI). In cerebellar Purkinje cells, on the other hand, depolarization-induced elevation of [Ca(2+)](i) causes transient suppression of excitatory transmitter release (depolarization-induced suppression of excitation, DSE). DSI and DSE appear to share the same properties and may be a general and important mechanism by which the postsynaptic neuronal activity can influence the amount of transmitter release.  相似文献   

17.
Augmentation and potentiation of surface recorded endplate potentials (EPPs) were examined during and after tetanic nerve stimulation in both the normal and BAPTA (a Ca2+-chelator)-loaded frog neuromuscular junction (NMJ). In the BAPTA-loaded NMJ, in contrast to a great reduction of facilitation, the amplitudes and the time constants of augmentation and potentiation were almost the same as those in the normal NMJ. The slowly increasing process of transmitter release during tetanus was a little larger in the BAPTA-loaded NMJ than in the normal NMJ. These observations strongly suggest that both augmentation and potentiation occur independently of internal Ca2+ concentration.  相似文献   

18.
1. Calcium transients related to climbing fiber (CF) and parallel fiber (PF) synaptic potentials were recorded from Purkinje cells in guinea pig cerebellar slices. Transients were measured using either absorbance changes of arsenazo III or fluorescence changes of fura-2, which were injected into individual cells in the slice. 2. All-or-none somatically recorded CF potentials elicited by white matter stimulation had all-or-none Ca transients. These signals began with a delay of > or = 2 ms from the start of the electrically recorded synaptic potential. The recovery time of CF-induced arsenazo III absorbance transients was < 50 ms in the fine dendrites in conditions that minimized the effects of dye buffering. 3. Ca2+ entry through voltage-gated Ca channels opened by Ca action potentials was the dominant source of the rise in [Ca2+]i after CF activation. There was no significant change in [Ca2+]i corresponding to the plateau potential that followed the large CF response. 4. The appearance and amplitude of distal CF-evoked Ca signals was more variable than proximal signals, suggesting that CF potentials do not reliably spread to the fine distal dendrites. The distal transient could be enhanced by intrasomatic depolarizing pulses, suggesting that it was a property of the postsynaptic membrane and not the presynaptic side of the CF synapse that was responsible for this variability. 5. Parallel fiber responses were evoked by electrical stimulation near the pial surface. Graded synaptic potentials and related Ca transients were reversibly blocked by 2 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Small synaptic potentials induced small, localized Ca transients. With increasing stimulus intensity, the PF electrical response developed a regenerative component. Larger dendritic Ca transients were detected corresponding to this component. Ca transients evoked by the regenerative responses had the same rapid rise times and fall times as those related to somatically stimulated Ca action potentials, suggesting that they also were due to Ca2+ entry through voltage-sensitive channels. 6. During trains of PF responses, we observed an increase in the spatial extent of related Ca transients. This effect could be modulated by changes in the resting potential, suggesting that the same intrinsic mechanism was affecting the spread of both CF and PF signals.  相似文献   

19.
Effects of botulinum toxin on neuromuscular transmission in the rat.   总被引:14,自引:0,他引:14  
1. Botulinum toxin (BoTx) type A partially blocks spontaneous transmitter release from nerve terminals in the rat. Minature end-plate potentials (m.e.p.p.s) are present at all end-plates, initially with a low frequency but increasing with time after posoning. Their amplitude distribution is at first skew with a predominace of very small m.e.p.p.s but, after a few days, larger than normal m.e.p.p.s appear. 2. Tetanic nerve stimulation, Black Widow Spider Venom, the Caionophore A 23187 or mechanical damage to nerve terminals increases the frequency of m.e.p.p.s and alters the amplitude distribution of m.e.p.p.s towards a normal Gaussian one; the m.e.p.p. size approaches that seen at normal end-plates. This was seen at any time after poisoning. 3. Nerve stimulation gives rise to end-plate potentials (e.p.p.s) of low amplitude and high failure rate. Statistical analysis indicates that evoked release is quantal in nature and follows Poisson statistics, quantum size being initially very small, but after a few days approaching normal size. Short-term tetanic nerve stimulation reversibly increases the quantum content of e.p.p.s and during early stages of paralysis long-term (2 hr) stimulation causes an apparently permanent increase in quantum size. 4. Raising the extracellular Ca concentration from 2 to 16 mM increases the frequency of m.e.p.p.s in normal muscle but not in BoTx poisoned ones. K-free medium or ouabain, which are believed to raise the intracellular Ca concentration in nerve terminals, similarly increases m.e.p.p. frequency in normal but not in poisoned muscles. When the Ca-ionophore A 23187 is used together with high extracellular Ca (greater than 4 mM) massive release of transmitter occurs from poisoned terminals. 5. The extracellular Ca concentration which causes a certain level of transmitter release in reponse to nerve impulses is considerably higher at BoTx poisoned end-plates than at normal ones. The slope value for Ca dependence of transmitter release is about 1-5 compared with about 3 at normal end-plates. 6. Tetraethylammonium (TEA) greatly increases the amount of transmitter released by nerve impulses and restores neuromuscular transmission during all stages of poisoning, although it has not effect on spontaneous transmitter release. In the presence of TEA the power relation between Ca concentration and quantum content at the BoTx poisoned end-plate is similar to that seen at normal end-plates. 7. It is suggested that in BoTx poisoning the mechanism for transmitter release has a reduced sensitivity to Ca, and the level for activation by intracellular Ca is elevated. Once the intracellular concentration of Ca is raised to this level, by tetanic nerve stimulation, mechanical injury to nerve terminals, the Ca-ionophore or the prolongation of the nerve action potential with TEA, augmented transmitter release occurs, similar to that which occurs in normal nerve terminals at a lower level of Ca.  相似文献   

20.
Release of transmitter was evoked at neuromuscular junctions of the crayfish opener muscle by passage of current through an intracellular electrode impaling a branch of the motor axon close to a muscle fiber. Membrane-potential changes in the presynaptic axon branch were monitored, together with postsynaptic potentials. Depolarization of impaled secondary axonal branches by more than 10 mV led to an increase in asynchronous transmitter release. The release was facilitated by prolonged (50-500 ms) depolarizations and it decayed rapidly when depolarization was terminated. Ca2+ was essential for facilitated release; however, no indication of a Ca spike was found at the recording site. Input-output curves for the synapse were obtained by applying depolarizing pulses of varying amplitude to the axon branch. Transmitter output was strongly influenced by both amplitude and duration of the applied depolarization. During normal synaptic transmission, propagated Na+-dependent action potentials were recorded in the secondary axonal branches but there was no evidence for a calcium-dependent component for these action potentials. Evoked release was dependent on Ca2+ and was steeply dependent on the amplitude of the action potential, which could be made variable in size by application of tetrodotoxin (TTX). Prolonged depolarization of axonal branches resulted in enhancement of transmitter release evoked by an action potential. The enhancement occurred in spite of a simultaneous reduction of the amplitude of the action potential. Morphological features of the terminals were investigated after injection of lucifer yellow into the axon. An electrical model incorporating the morphological features suggests that membrane-potential changes set up in the main axon reach the nearest terminals with 30-40% attenuation, while events originating in the terminals would be severely attenuated in the main axon. Comparison of the crayfish synapse with other frequently studied synapses shows both similarities and differences, suggesting that it is not possible to apply findings made in one synapse to all others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号