首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since normal human subjects can perform smooth-pursuit eye movements only in the presence of a moving target, the occurrence of these eye movements represents an ideal behavioural probe to monitor the successful processing of visual motion. It has been shown previously that subjects can execute smooth-pursuit eye movements to targets defined by luminance and colour, the first-order stimulus attributes, as well as to targets defined by derived, second-order stimulus attributes such as contrast, flicker or motion. In contrast to these earlier experiments focusing on steady-state pursuit, the present study addressed the course of pre-saccadic pursuit initiation (less than 100 ms), as this early time period is thought to represent open-loop pursuit, i.e. the eye movements are exclusively driven by visual inputs proceeding the onset of the eye movement itself. Eye movements of five human subjects tracking first- and second-order motion stimuli had been measured. The analysis of the obtained eye traces revealed that smooth-pursuit eye movements could be initiated to first-order as well as second-order motion stimuli, even before the execution of the first initial saccade. In contrast to steady-state pursuit, the initiation of pursuit was not exclusively determined by the movement of the target, but rather due to an interaction between dominant first-order and less-weighted second-order motion components. Based on our results, two conclusions may be drawn: first and specific for initiation of smooth-pursuit eye movements, we present evidence supporting the notion that initiation of pursuit reflects integration of all available visual motion information. Second and more general, our results further support the hypothesis that the visual system consists of more than one mechanism for the extraction of first-order and second-order motion.  相似文献   

2.
Smooth pursuit eye movements to isoluminant targets   总被引:1,自引:0,他引:1  
At slow speeds, chromatic isoluminant stimuli are perceived to move much slower than comparable luminance stimuli. We investigated whether smooth pursuit eye movements to isoluminant stimuli show an analogous slowing. Beside pursuit speed and latency, we studied speed judgments to the same stimuli during fixation and pursuit. Stimuli were either large sine wave gratings or small Gaussians blobs moving horizontally at speeds between 1 and 11 degrees /s. Targets were defined by luminance contrast or color. Confirming prior studies, we found that speed judgments of isoluminant stimuli during fixation showed a substantial slowing when compared with luminance stimuli. A similarly strong and significant effect of isoluminance was found for pursuit initiation: compared with luminance targets of matched contrasts, latencies of pursuit initiation were delayed by 50 ms at all speeds and eye accelerations were reduced for isoluminant targets. A small difference was found between steady-state eye velocities of luminance and isoluminant targets. For comparison, we measured latencies of saccades to luminance and isoluminant stimuli under similar conditions, but the effect of isoluminance was only found for pursuit. Parallel psychophysical experiments revealed that different from speed judgments of moving isoluminant stimuli made during fixation, judgments during pursuit are veridical for the same stimuli at all speeds. Therefore information about target speed seems to be available for pursuit eye movements and speed judgments during pursuit but is degraded for perceptual speed judgments during fixation and for pursuit initiation.  相似文献   

3.
4.
We have used the initiation of pursuit eye movements as a tool to reveal properties of motion processing in the neural pathways that provide inputs to the human pursuit system. Horizontal and vertical eye position were recorded with a magnetic search coil in six normal adults. Stimuli were provided by individual trials of ramp target motion. Analysis was restricted to the first 100 ms of eye movement, which precedes the onset of corrective feedback. By recording the transient response to target motion at speeds the pursuit motor system can achieve, we investigated the visual properties of images that initiate pursuit. We have found effects of varying the retinal location, the direction, the velocity, the intensity, and the size of the stimulus. Eye acceleration in the first 100 ms of pursuit depended on both the direction of target motion and the initial position of the moving target. For horizontal target motion, eye acceleration was highest if the stimulus was close to the center of the visual field and moved toward the vertical meridian. For vertical target motion, eye acceleration was highest when the stimulus moved upward or downward within the lower visual field. The shape of the relationship between eye acceleration and initial target position was similar for target velocities ranging from 1.0 to 45 degrees/s. The initiation of pursuit showed two components that had different visual properties and were expressed early and late in the first 100 ms of pursuit. In the first 20 ms, instantaneous eye acceleration was in the direction of target motion but did not depend on other visual properties of the stimulus. At later times (e.g., 80-100 ms after pursuit initiation), instantaneous eye acceleration was strongly dependent on each property we tested. Targets that started close to and moved toward the position of fixation evoked the highest eye accelerations. For high-intensity targets, eye acceleration increased steadily as target velocity increased. For low-intensity targets, eye acceleration was selective for target velocities of 30-45 degrees/s. The properties of pursuit initiation in humans, including the differences between the early and late components, are remarkably similar to those reported by Lisberger and Westbrook (12) in monkeys. Our data provide evidence that the cell populations responsible for motion processing are similar in humans and monkeys and imply that the functional organization of the visual cortex is similar in the two species.  相似文献   

5.
When two visual patterns moving in different directions are superimposed on the same depth plane (transparent motion stimulus), observers perceive transparent surfaces sliding over each other on different depth planes. Simultaneously, an optokinetic response (OKR) occurs so that one of the visual patterns is stabilized on the retina. In this study, we investigated the early behavior of the OKR elicited by transparent motion stimuli while subjects focused their attention on either the near or far surface. Two random dot patterns were superimposed and moved in orthogonal or opposite directions. Subjects were instructed to report the motion direction of the surface on which their attention was focused. The mean latency of initiation of OKR in the case of motion in opposite directions (150 ms) was significantly longer than that in the case of motion in orthogonal directions (100 ms). In the case of motion in orthogonal directions, the distribution of directions of OKR during the initial period, from 100 to 150 ms, was biased toward the mean direction of the two stimulus motions. After 160 ms, the eyes started to pursue a particular motion pattern of which the direction agreed with the far-perceived motion regardless of depth-based attention. Depth-based attention changed the direction of eye movements after 200 ms and eventually made the eyes follow a pattern on which the attention was focused. These results suggest that pursuit eye movement immediately after 160 ms may determine perceptual depth order through change of retinal image motion, because the slow-moving retinal image may be perceived in the far depth plane. Following this process of determination of perceptual depth order, depth-based attention starts to affect OKR.  相似文献   

6.
We examined whether there are any adaptive effects on the pursuit initiation after a prolonged exposure to moving visual stimuli. The eye movements of six human subjects were recorded with the scleral search-coil technique or a Dual Purkinje Image Eye-tracker system. A random-dot image appeared on a CRT monitor and moved coherently in one direction (rightward or leftward) at 10 deg/s for 4 s, while the subject fixated on a stationary target (conditioning stimulus). The screen was blanked for 0.2 s, and then the target stepped to the right or left of the center and moved 10 deg/s leftward or rightward. We measured change in the eye position over the open-loop period of the pursuit initiation. When the pursuit target moved in the same direction as the preceding visual stimulus, a significant reduction in the initial tracking responses (55.9% decrease on average) was found. We then studied in detail the properties of the motion adaptation in pursuit initiation by varying the visual conditions systematically and obtained the following findings. When the subjects tracked the target that moved at 10 deg/s, the pursuit initiation was affected not only by the conditioning stimulus of the same speed as the target, but also by those of different speeds. Further, the conditioning stimulus moving at 10 deg/s affected the pursuit initiation not only when the target moved with the same speed but also when it moved at different speeds (more remarkable for slower speeds). The effect of conditioning stimuli on the pursuit initiation was larger when the duration of the conditioning period was longer. The effect of conditioning stimuli decayed as the duration of the blank period became longer. The findings from the present study are consistent with the properties of neurons in the middle temporal area of monkeys.  相似文献   

7.
The activity of neurons in extrastriate middle temporal (MT) and medial superior temporal (MST) areas were studied during the initiation of pursuit eye movements in macaque monkeys. The intersecting motion of two stimuli was used to test hypotheses about how these direction- and speed-sensitive neurons contribute to the generation of pursuit. The amplitude and direction of the initial saccade to the target and the initial speed and direction of pursuit were best predicted by a vector-average model of the underlying neuronal activity with relatively short time and spatial separation before a visual pursuit target and a distracter stimulus crossed in the visual field. The resulting eye movements were best described by a winner-take-all model when the time and spatial separation between the two stimuli was increased before the stimuli crossed. Neurons in MT and MST also shifted their activity from that best described by a vector average to a winner-take-all model under the same stimulus conditions. The changes in activity of neurons in both areas were generally similar to each other during these changes in pursuit initiation. Thus a slight alteration in the target motion produced a concurrent shift in both the neuronal processing and the movement execution. We propose that the differences in the oculomotor behavior can be accounted for by shifts in the overlap of active neuronal populations within MT and MST.  相似文献   

8.
 The perception of the displacement of luminance-defined contours (i.e., first-order motion) is an important and well-examined function of the visual system. It can be explained, for example, by the operation of elementary motion detectors (EMDs), which cross-correlate the spatiotemporal luminance distribution. More recent studies using second-order motion stimuli, i.e., shifts of the distribution of features such as contrast, texture, flicker, or motion, extended classic concepts of motion perception by including nonlinear or hierarchical processing in the EMD. Smooth-pursuit eye movements can be used as a direct behavioral probe for motion processing. The ability of the visual system to extract motion signals from the spatiotemporal changes of the retinal image can be addressed by analyzing the elicited eye movements. We measured the eye movement response to moving objects defined by two different types of first-order motion and two different types of second-order motion. Our results clearly showed that the direction of smooth-pursuit eye movements was always determined by the direction of object motion. In particular, in the case of second-order motion stimuli, smooth-pursuit did not follow the retinal image motion. The latency of the initial saccades during pursuit of second-order stimuli was slightly but significantly increased, compared with the latency of saccades elicited by first-order motion. The processing of second-order motion in the peripheral visual field was less exact than the processing of first-order motion in the peripheral field. Steady state smooth-pursuit eye speed did not reflect the velocity of second-order motion as precisely as that of first-order motion, and the resulting retinal error was compensated by saccades. Interestingly, for slow second-order stimuli we observed that the eye could move faster than the target, leading to small, corrective saccades in the opposite direction to the ongoing smooth-pursuit eye movement. We conclude from our results that both visual perception and the control of smooth-pursuit eye movements have access to processing mechanisms extracting first- and second-order motion. Received: 26 August 1996 / Accepted: 8 November 1996  相似文献   

9.
Smooth pursuit eye movements approaching the qualitative and quantitative characteristics of those elicited by a moving visual target were obtained in complete darkness with a moving tactile stimulus. Pursuit eye movements in response to tactile stimulation have longer latencies to onset and to offset of pursuit, are more often interrupted by saccades, and provide less accurate stimulus localization than those in response to moving visual stimuli. The evocation of pursuit eye movements by a somatosensory input suggests that within the appropriate velocity domain a spatially changing sensory input from any modality may be sufficient to elicit ocular pursuit.  相似文献   

10.
Apparent velocities of moving visual stimuli are known to be different depending on whether the subject pursues the stimulus (efferently controlled motion perception) or whether the eye is stationary and the image moves across the retina (afferent motion perception). Afferent motion perception of a periodic pattern or a moving single object causes overestimation of velocity (magnitude estimations) as compared to smooth pursuit. This socalled Aubert-Fleischl phenomenon is shown to depend on local temporal frequency stimulation on the retina caused by the repetitive passage of contrast borders of the moving periodic pattern. This is evidenced by the fact that for a given stimulus speed the amount of overestimation is a function of the spatial frequency of the pattern (or the angular subtend of a single moving object) and that the Aubert-Fleischl phenomenon is not observed if a single edge moves. Background characteristics seem not to influence the apparent velocity during smooth pursuit.  相似文献   

11.
To date, smooth pursuit eye movement in schizophrenia has only been investigated using a target stimulus in continuous motion. However, smooth pursuit can also be evoked by an oscillating jumping dot that appears to be in apparent motion and although there is no continuous motion on the retinal surface this apparently moving stimulus can effortlessly elicit smooth-pursuit eye movement. In the first of two experiments smooth pursuit eye movement was evoked by target stimuli in continuous (real) motion at seven target velocities from 5.0 to 35.0 deg/s, and in a second experiment it was measured in response to an oscillating jumping dot in apparent motion at eight target velocities from 5.0 to 25.0 deg/s in a group with mixed-symptoms in schizophrenia and in a control group. The results of Experiment 1 provided no evidence for a dysfunction in continuous motion evoked smooth pursuit eye movement in the group with schizophrenia. However, following the removal of saccadic eye movements in smooth pursuit, the group with schizophrenia showed significantly lower smooth pursuit eye velocity at target velocities from 20.0 to 35.0 deg/s. The results of Experiment 2 revealed that apparent motion evoked smooth pursuit eye velocity in the group with schizophrenia was significantly lower in comparison with normal observers at all target velocities up to 25.0 deg/s with the inclusion or exclusion of saccadic eye movements. The findings demonstrate that overall smooth pursuit eye movement evoked in response to a continuous (real) motion target in the group with schizophrenia may nevertheless contain a hidden temporal resolution and integration dysfunction that is revealed when smooth pursuit eye movement is evoked in response to an oscillating jumping dot in apparent motion. The findings also demonstrate that normal smooth pursuit eye movement in normal observers can be made to resemble the dysfunctional smooth pursuit eye movement that is naturally found in some people with schizophrenia by using a target stimulus in apparent motion.  相似文献   

12.
Information about the future trajectory of a visual target is contained not only in the history of target motion but also in static visual cues, e.g., the street provides information about the car’s future trajectory. For most natural moving targets, this information imposes strong constraints on the relation between velocity and acceleration which can be exploited by predictive smooth pursuit mechanisms. We questioned how cue-induced predictive changes in pursuit direction depend on target speed and how cue- and target-induced pursuit interact. Subjects pursued a target entering a ±90° curve and moving on either a homogeneous background or on a low contrast static band indicating the future trajectory. The cue induced a predictive change of pursuit direction, which occurred before curve onset of the target. The predictive velocity component orthogonal to the initial pursuit direction started later and became faster with increasing target velocity. The predictive eye acceleration increased quadratically with target velocity and was independent of the initial target direction. After curve onset, cue- and target-induced pursuit velocity components were not linearly superimposed. The quadratic increase of eye acceleration with target velocity is consistent with the natural velocity scaling implied by the two-thirds power law, which is a characteristic of biological controlled movements. Comparison with linear pursuit models reveals that the ratio between eye acceleration and actual or expected retinal slip cannot be considered a constant gain factor. To obey a natural velocity scaling, this acceleration gain must linearly increase with target or pursuit velocity. We suggest that gain control mechanisms, which affect target-induced changes of pursuit velocity, act similarly on predictive changes of pursuit induced by static visual cues.  相似文献   

13.
1. To determine the potential role of the primate accessory optic system (AOS) in optokinetic and smooth-pursuit eye movements, we recorded the activity of 110 single units in a subdivision of the AOS, the lateral terminal nucleus (LTN), in five alert rhesus macaques. All monkeys were trained to fixate a stationary target spot during visual testing and to track a small spot moving in a variety of visual environments. 2. LTN units formed a continuum of types ranging from purely visual to purely oculomotor. Visual units (50%) responded best for large-field (70 x 50 degrees), moving visual stimuli and had no response associated with smooth-pursuit eye movement; some responded during smooth pursuit in the dark, but the response disappeared if the target was briefly extinguished, indicating that their smooth-pursuit-related response reflected activation of a parafoveal receptive field. Eye movement and visual units (36%) responded both for large, moving visual stimuli and during smooth-pursuit eye movements made in the dark. Eye movement units (14%) discharged during smooth-pursuit or other eye movements but showed no evidence of visual sensitivity. 3. Essentially all (98%) LTN units were direction selective, responding preferentially during vertical background and/or smooth-pursuit movement. The vast majority (88%) preferred upward background and/or eye movement. During periodic movement of the large-field visual background while the animal fixated, their firing rates were modulated above and below rather high resting rates. Although LTN units typically responded best to movement of large-field stimuli, some also responded well to small moving stimuli (0.25 degrees diam). 4. LTN units could be separated into two populations according to their dependence on visual stimulus velocity. For periodic triangle wave stimuli, both types had velocity thresholds less than 3 degrees/s. As stimulus velocity increased above threshold, the activity of one type reached peak firing rates over a very narrow velocity range and remained nearly at peak firing for velocities from approximately 4-80 degrees/s. The firing rates of the other type exhibited velocity tuning in which the firing rate peaked at an average preferred velocity of 13 degrees/s and decreased for higher velocities. 5. A close examination of firing rates to sinusoidal background stimuli revealed that both unit types exhibited unusual behaviors at the extremes of stimulus velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. Single units in the 3. and 6. nerve nuclei were recorded, together with the stimulus and eye movements in trained macaques during pursuit eye movements. 2. The relationship between the impulse rate of an oculomotor motoneuron and the corresponding eye movements can be described by a first order differential equation only, if distinctions are made between the modes of the oculomotor system (e.g., fixation or pursuit) and between the agonist phase and the antagonist phase of the corresponding eye muscle. 3. The trained monkeys showed a frequency response during pursuit eye movements, which was comparable to that of humans and which clearly indicates the existence of a predictor mechanism. 4. After sudden stimulus disappearance in the pursuit mode, both the neural impulse rate and the eye movement performed smooth changes for more than 1s. These slow post-pursuit eye movements were related to the time course before stimulus disappearance. 5. Our findings lead to the hypothesis, that pursuit eye movements in primates, if elicited by small moving visual stimuli, are generated by means of a feedback system consisting of a predictor mechanism, the parameters of which are continuously corrected by an updating process in the afferent visual system.  相似文献   

15.
The ability to perceive a stable visual environment despite eye movements and the resulting displacement of the retinal image is a striking feature of visual perception. In order to study the brain mechanism related to this phenomenon, an EEG was recorded from 30 electrodes spaced over the occipital, temporal and parietal brain areas while stationary or moving visual stimuli with velocities between 178 degrees/s and 533 degrees/s were presented. The visual stimuli were presented both during saccadic eye movements and with stationary eyes. Stimulus-related potentials were measured, and the effects of absolute and relative stimulus velocity were analyzed. Healthy adults participated in the experiments. In all 36 subjects and experimental conditions, four potential components were found with mean latencies of about 70, 140, 220 and 380 ms. The latency of the two largest components between 100 and 240 ms decreased while field strength increased with higher absolute stimulus velocity for both stationary and moving eyes, whereas relative stimulus velocity had no effect on amplitude, latency and topography of the visual evoked potential (VEP) components. If the visual system uses retinal motion information only, we would expect a dependence upon relative velocity. Since field strength and latency of the components were independent of eye movements but dependent upon absolute stimulus velocity, the visual cortex must use extraretinal information to extract stimulus velocity. This was confirmed by the fact that significant topographic changes were observed when brain activity evoked during saccades and with stationary eyes was compared. In agreement with the reafference principle, the findings indicate that the same absolute visual stimulus activates different neuronal elements during saccades than during fixation.  相似文献   

16.
When monkeys view two targets moving in different directions and are given no cues about which to track, the initiation of smooth pursuit is a vector average of the response evoked by each target singly. In the present experiments, double-target stimuli consisted of two identical targets moving in opposite directions along the preferred axis of pursuit for the neuron under study for 200 ms, followed by the continued motion for 800 ms of one target chosen randomly. Among the neurons that showed directional modulation during pursuit, recordings revealed three groups. The majority (32/60) showed responses that were intermediate to, and statistically different from, the responses to either target presented alone. Another large group (22/60) showed activity that was statistically indistinguishable from the response to the target moving in the preferred (n = 15) or opposite (n = 7) direction of the neuron under study. The minority (6/60) showed statistically higher firing during averaging pursuit than for either target presented singly. We conclude that many pursuit-related neurons in the frontal pursuit area (FPA) carry signals related to the motor output during averaging pursuit, while others encode the motion of one target or the other. Microstimulation with 200-ms trains of pulses at 50 microA while monkeys performed the same double-target tasks biased the averaging eye velocity in the direction of evoked eye movements during fixation. The effect of stimulation was compared with the predictions of three different models that placed the site of vector averaging upstream from, at, or downstream from the sites where the FPA regulates the gain of pursuit. The data were most consistent with a site for pursuit averaging downstream from the gain control, both for double-target stimuli that presented motion in opposite directions and in orthogonal directions. Thus the recording and stimulation data suggest that the FPA is both downstream and upstream from the sites of vector averaging. We resolve this paradox by suggesting that the site of averaging is really downstream from the site of gain control, while feedback of the eye velocity command from the brain stem and/or cerebellum is responsible for the firing of FPA neurons in relation to the averaged eye velocity. We suggest that eye velocity feedback allows FPA neurons to continue firing during accurate tracking, when image motion is small, and that the persistent output from the FPA is necessary to keep the internal gain of pursuit high and permit accurate pursuit.  相似文献   

17.
When tracking a moving target in the natural world with pursuit eye movement, our visual system must compensate for the self-induced retinal slip of the visual features in the background to enable us to perceive their actual motion. We previously reported that the speed of the background stimulus in space is represented by dorsal medial superior temporal (MSTd) neurons in the monkey cortex, which compensate for retinal image motion resulting from eye movements when the direction of the pursuit and background motion are parallel to the preferred direction of each neuron. To further characterize the compensation observed in the MSTd responses to the background motion, we recorded single unit activities in cortical areas middle temporal (MT) and MSTd, and we selected neurons responsive to a large-field visual stimulus. We studied their responses to the large-field stimulus in the background while monkeys pursued a moving target and while fixated a stationary target. We investigated whether compensation for retinal image motion of the background depended on the speed of pursuit. We also asked whether the directional selectivity of each neuron in relation to the external world remained the same even during pursuit and whether compensation for retinal image motion occurred irrespective of the direction of the pursuit. We found that the majority of the MSTd neurons responded to the visual motion in space by compensating for the image motion on the retina resulting from the pursuit regardless of pursuit speed and direction, whereas most of the MT neurons responded in relation to the genuine retinal image motion.  相似文献   

18.
Blinks are known to affect eye movements, e.g., saccades, slow and fast vergence, and saccade-vergence interaction, in two ways: by superimposition of blink-associated eye movements and changes of the central premotor activity in the brainstem. The goal of this study was to determine, for the first time, the effects of trigeminal evoked blinks on ongoing smooth pursuit eye movements which could be related to visual sensory or premotor neuronal changes. This was compared to the effect of a target disappearing for 100–300 ms duration during ongoing smooth pursuit (blank paradigm) in order to control for the visual sensory effects of a blink. Eye and blink movements were recorded in eight healthy subjects with the scleral search coil technique. Blink-associated eye movements during the first 50% of the blink duration were non-linearly superimposed on the smooth pursuit eye movements. Immediately after the blink-associated eye movements, the pursuit velocity slowly decreased by an average of 3.2±2.1°/s. This decrease was not dependent on the stimulus direction. The pursuit velocity decrease caused by blinks which occluded the pupil more than 50% could be explained mostly by blanking the visual target. However, small blinks that did not occlude the pupil (<10% of lid closure) also decreased smooth pursuit velocity. Thus, this blink effect on pursuit velocity cannot be explained by blink-associated eye movements or by the blink having blanked the visual input. We propose that part of this effect might either be caused by incomplete visual suppression during blinks and/or a change in the activity of omnipause neurons.  相似文献   

19.
When humans pursue motion stimuli composed of alternating constant velocity segments of randomised duration (RD), they nevertheless initiate anticipatory eye deceleration before stimulus direction changes at a pre-programmed time based on averaging prior stimulus timing. We investigated, in both the time and frequency domains, how averaging interacts with deceleration cues by comparing responses to stimuli composed of segments that were either constant-velocity ramps or half-cycle sinusoids. RDs were randomized within 6 ranges, each comprising 8 RDs and having differing mean RD. In sine responses, deceleration cues could be used to modulate eye velocity for long-range stimuli (RD = 840–1,200 ms) but in the shortest range (RD = 240–660 ms) cues became ineffective, so that sine responses resembled ramp responses, and anticipatory timing was primarily dependent on averaging. Additionally, inclusion of short duration (240 ms) segments reduced peak eye velocity for all RDs within a range, even when longer RDs in the range (up to 1,080 ms) would normally elicit much higher velocities. These effects could be attributed to antagonistic interactions between visually driven pursuit components and pre-programmed anticipatory deceleration components. In the frequency domain, the changes in peak velocity and anticipatory timing with RD range were translated into non-linear gain and phase characteristics similar to those evoked by sum-of-sines stimuli. Notably, a reduction in pursuit gain occurred when high-frequency components associated with short duration segments were present. Results appear consistent with an adapted pursuit model, in which pre-programmed timing information derived from an internally reconstructed stimulus signal is stored in short-term memory and controls the initiation of predictive responses.  相似文献   

20.
Anatomical and physiological studies have shown that the "frontal pursuit area" (FPA) in the arcuate cortex of monkeys is involved in the control of smooth pursuit eye movements. To further analyze the signals carried by the FPA, we examined the activity of pursuit-related neurons recorded from a discrete region near the arcuate spur during a variety of oculomotor tasks. Pursuit neurons showed direction tuning with a wide range of preferred directions and a mean full width at half-maximum of 129 degrees. Analysis of latency using the "receiver operating characteristic" to compare responses to target motion in opposite directions showed that the directional response of 58% of FPA neurons led the initiation of pursuit, while 19% led by 25 ms or more. Analysis of neuronal responses during pursuit of a range of target velocities revealed that the sensitivity to eye velocity was larger during the initiation of pursuit than during the maintenance of pursuit, consistent with two components of firing related to image motion and eye motion. FPA neurons showed correlates of two behavioral features of pursuit documented in prior reports. 1) Eye acceleration at the initiation of pursuit declines as a function of the eccentricity of the moving target. FPA neurons show decreased firing at the initiation of pursuit in parallel with the decline in eye acceleration. This finding is consistent with prior suggestions that the FPA plays a role in modulating the gain of visual-motor transmission for pursuit. 2) A stationary eccentric cue evokes a smooth eye movement opposite in direction to the cue and enhances the pursuit evoked by subsequent target motions. Many pursuit neurons in the FPA showed weak, phasic visual responses for stationary targets and were tuned for the positions about 4 degrees eccentric on the side opposite to the preferred pursuit direction. However, few neurons (12%) responded during the preparation or execution of saccades. The responses to the stationary target could account for the behavioral effects of stationary, eccentric cues. Further analysis of the relationship between firing rate and retinal position error during pursuit in the preferred and opposite directions failed to provide evidence for a large contribution of image position to the firing of FPA neurons. We conclude that FPA processes information in terms of image and eye velocity and that it is functionally separate from the saccadic frontal eye fields, which processes information in terms of retinal image position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号