首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Electron microscopy is arguably the most powerful tool for spatial imaging of structures. As such, 2D and 3D microscopies provide static structures with subnanometer and increasingly with ångstrom-scale spatial resolution. Here we report the development of 4D ultrafast electron microscopy, whose capability imparts another dimension to imaging in general and to dynamics in particular. We demonstrate its versatility by recording images and diffraction patterns of crystalline and amorphous materials and images of biological cells. The electron packets, which were generated with femtosecond laser pulses, have a de Broglie wavelength of 0.0335 Å at 120 keV and have as low as one electron per pulse. With such few particles, doses of few electrons per square ångstrom, and ultrafast temporal duration, the long sought after but hitherto unrealized quest for ultrafast electron microscopy has been realized. Ultrafast electron microscopy should have an impact on all areas of microscopy, including biological imaging.  相似文献   

2.
Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions.  相似文献   

3.
Soft X-ray emissions during the processing of industrial materials with ultrafast lasers are of major interest, especially against the background of legal regulations. Potentially hazardous soft X-rays, with photon energies of >5 keV, originate from the fraction of hot electrons in plasma, the temperature of which depends on laser irradiance. The interaction of a laser with the plasma intensifies with growing plasma expansion during the laser pulse, and the fraction of hot electrons is therefore enhanced with increasing pulse duration. Hence, pulse duration is one of the dominant laser parameters that determines the soft X-ray emission. An existing analytical model, in which the fraction of hot electrons was treated as a constant, was therefore extended to include the influence of the duration of laser pulses on the fraction of hot electrons in the generated plasma. This extended model was validated with measurements of H (0.07) dose rates as a function of the pulse duration for a constant irradiance of about 3.5 × 1014 W/cm2, a laser wavelength of 800 nm, and a pulse repetition rate of 1 kHz, as well as for varying irradiance at the laser wavelength of 1030 nm and pulse repetition rates of 50 kHz and 200 kHz. The experimental data clearly verified the predictions of the model and confirmed that significantly decreased dose rates are generated with a decreasing pulse duration when the irradiance is kept constant.  相似文献   

4.
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.  相似文献   

5.
Here, we describe the “temporal lens” concept that can be used for the focus and magnification of ultrashort electron packets in the time domain. The temporal lenses are created by appropriately synthesizing optical pulses that interact with electrons through the ponderomotive force. With such an arrangement, a temporal lens equation with a form identical to that of conventional light optics is derived. The analog of ray diagrams, but for electrons, are constructed to help the visualization of the process of compressing electron packets. It is shown that such temporal lenses not only compensate for electron pulse broadening due to velocity dispersion but also allow compression of the packets to durations much shorter than their initial widths. With these capabilities, ultrafast electron diffraction and microscopy can be extended to new domains,and, just as importantly, electron pulses can be delivered directly on an ultrafast techniques target specimen.  相似文献   

6.
Advances in the imaging of biological structures with transmission electron microscopy continue to reveal information at the nanometer length scale and below. The images obtained are static, i.e., time-averaged over seconds, and the weak contrast is usually enhanced through sophisticated specimen preparation techniques and/or improvements in electron optics and methodologies. Here we report the application of the technique of photon-induced near-field electron microscopy (PINEM) to imaging of biological specimens with femtosecond (fs) temporal resolution. In PINEM, the biological structure is exposed to single-electron packets and simultaneously irradiated with fs laser pulses that are coincident with the electron pulses in space and time. By electron energy-filtering those electrons that gained photon energies, the contrast is enhanced only at the surface of the structures involved. This method is demonstrated here in imaging of protein vesicles and whole cells of Escherichia coli, both are not absorbing the photon energy, and both are of low-Z contrast. It is also shown that the spatial location of contrast enhancement can be controlled via laser polarization, time resolution, and tomographic tilting. The high-magnification PINEM imaging provides the nanometer scale and the fs temporal resolution. The potential of applications is discussed and includes the study of antibodies and immunolabeling within the cell.  相似文献   

7.
Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space-charge effects. Here, we demonstrate the ability to obtain sequences of snapshots ("movies") with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal-insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves.  相似文献   

8.
In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm ( approximately 50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials.  相似文献   

9.
10.
The development of four-dimensional ultrafast electron microscopy (4D UEM) has enabled not only observations of the ultrafast dynamics of photon–matter interactions at the atomic scale with ultrafast resolution in image, diffraction, and energy space, but photon–electron interactions in the field of nanoplasmonics and nanophotonics also have been captured by the related technique of photon-induced near-field electron microscopy (PINEM) in image and energy space. Here we report a further extension in the ongoing development of PINEM using a focused, nanometer-scale, electron beam in diffraction space for measurements of infrared-light-induced PINEM. The energy resolution in diffraction mode is unprecedented, reaching 0.63 eV under the 200-keV electron beam illumination, and separated peaks of the PINEM electron-energy spectrum induced by infrared light of wavelength 1,038 nm (photon energy 1.2 eV) have been well resolved for the first time, to our knowledge. In a comparison with excitation by green (519-nm) pulses, similar first-order PINEM peak amplitudes were obtained for optical fluence differing by a factor of more than 60 at the interface of copper metal and vacuum. Under high fluence, the nonlinear regime of IR PINEM was observed, and its spatial dependence was studied. In combination with PINEM temporal gating and low-fluence infrared excitation, the PINEM diffraction method paves the way for studies of structural dynamics in reciprocal space and energy space with high temporal resolution.Since its invention in the 1930s by Knoll and Ruska (1), the electron microscope has become a powerful tool in the fields of physics, chemistry, materials, and biology. A great variety of techniques related to the electron microscope has been developed in image, diffraction, and energy space (2, 3), with the spatial and energy resolutions of the transmission electron microscope now reaching 0.5 Å with Cs corrector (4) and sub-100 meV with electron monochromators (5, 6), respectively.To these capabilities of spatial and energy resolution has been added the high resolution in the fourth dimension (time) by the development of four-dimensional ultrafast electron microscopy (4D UEM) (79), currently enabling nanoscale dynamic studies with temporal resolution that is 10 orders of magnitude better than the millisecond range of video-camera-rate recording in conventional microscopes. In 4D UEM, ultrafast time resolution is reached by using two separate but synchronized ultrashort laser pulses, one to generate a probing electron pulse by photoemission at the microscope cathode and the other to excite the specimen into a nonequilibrium state. The state of the specimen within the window of time of the probe pulse can be observed by recording the probe electron packet scattered from the specimen in any of the different working modes of the microscope, such as image and diffraction (10), energy spectrum (11), convergent beam (12), or scanning transmission electron microscopy (TEM) (13). Scanning the time delay between arrival of the pump and probe pulses at the specimen, which is controlled by a precise optical delay line, allows the evolution of the specimen to be traced.One of the important techniques developed in, and unique to, UEM is photon-induced near-field electron microscopy (PINEM) (14). PINEM has extended the capability of UEM to observation of light–electron interactions near nanostructures or at an interface, which offers exciting prospects for the study of dynamics of photonics and plasmonics at the nanometer scale (15). The three-body interaction of photon, electron, and nanostructure relaxes momentum conservation and leads to efficient coupling between photons and electrons (16). In PINEM, an ultrashort optical pulse is used to excite evanescent electromagnetic fields near a nanostructure or at an interface. When the probe electron packet is in spatiotemporal overlap with these evanescent or scatter fields, some of its electrons can absorb/emit one or more scattered photons and then be detected by their contributions to displaced energy peaks in the electron energy spectrum. These displaced peaks appear as discrete sidebands to the zero-loss peak at separations given by the photon energy () of the pump optical pulse. When using energy filtering to select for imaging only those electrons gaining energy, the resulting PINEM image reflects the strength and topology of the excited near field around the nanostructure or interface.The PINEM technique has been used to detect the evanescent near field surrounding a variety of structures with different materials properties and different geometries, such as carbon nanotubes (14), silver nanowires (14, 17), nanoparticles (16, 18), cells and protein vesicles (19), and several-atoms-thick graphene-layered steps (20). In addition, focused-beam PINEM has been used in scanning TEM mode to obtain induced near-field distributions for a copper grid bar (21), a nanometer gold tip (22), and a silver nanoparticle at the subparticle level (21). In a recent publication, three pulses, two optical and one electron, were introduced into the arsenal of techniques to gate the electron pulse and make its width only limited by the optical-pulse durations (23). Numerous general theoretical treatments (2428) have successfully described the phenomenon, with detailed treatments quantitatively reproducing many unique features of these multifaceted experimental observations (17, 2022).Despite the growing body of PINEM studies, almost all previously published PINEM results were obtained in the image mode of the electron microscope using optical pulses with wavelengths of 500–800 nm. An exception is a single unresolved PINEM spectrum for 1,038-nm excitation published from this laboratory (25). Because the PINEM response of a material is governed by its optical properties and dimensions relative to the wavelength of light, excitation wavelength is an important parameter largely remaining to be explored experimentally.Here we report the development of IR PINEM using excitation at the wavelength of 1,038 nm (photon energy 1.2 eV). The spatial- and fluence-dependent behavior of well-resolved IR PINEM induced at the edge of a copper grid bar is examined by combining nanometer-scale convergent-beam electron diffraction and diffraction-mode detection for electron-energy spectroscopy with an unprecedented energy resolution down to 0.63 eV at 200 keV. Different e-beam size effects were compared for PINEM generated by green and IR pump pulses. The spatial dependence of IR PINEM at the interface was studied at low-pulse fluence (linear regime) and high-pulse fluence (nonlinear regime). Diffraction of a gold crystal film was observed using the energy-resolved PINEM electrons produced by interaction with the scatter field of the adjacent copper grid edge. Notably, substantial PINEM peak amplitudes were achievable at dramatically lower fluence for IR pulses than for green pulses, opening up a possible path for studies of photosensitive materials. This general accessibility of strong PINEM signals is of particular importance for our primary interest of ultrafast dynamics, for which PINEM photon gating has the potential to vastly improve temporal resolution.All PINEM experiments reported here were performed on the California Institute of Technology UEM-2 apparatus. The operation voltage on UEM-2 is 200 keV. The laser system used emits a train of ∼220-fs pulses with wavelength of 1,038 nm, set to operate at a repetition rate of 1 MHz. The laser output was frequency-doubled two successive times to provide the 259-nm pulses used to generate the electron packet (probe beam) at the 200-keV microscope photocathode source. The residual 1,038-nm and 519-nm optical pulses were each available for use as the PINEM pump beam to excite the near-field plasmons at the interface. All of the experiments were carried out with polarization set to be perpendicular to the interface and in the single-electron regime (8) to eliminate space-charge effects. In diffraction mode, a camera length of 920 mm and a spectrometer entrance aperture of 1 mm were used to obtain a small collection angle for better energy resolution.  相似文献   

11.
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.In 4D ultrafast electron microscopy (UEM), ultrafast light pulses generate electron packets by photoemission at the cathode of an electron microscope, and these are used to probe a dynamic process initiated by heating or exciting the microscopic specimen with a second, synchronized ultrafast light pulse (1, 2). In conventional implementations, each pump pulse on the specimen is accompanied by one suitably delayed laser pulse on the cathode to generate one packet of electrons probing a single time point in the evolution of the specimen. A record of the full course of temporal evolution of the specimen is then constructed by repeating the experiment multiple times with variation of the delay time between the two light pulses, reading out a separate CCD image for each delay time. Thus, information about different time points in the dynamic response of the specimen is obtained from different excitation events. This implementation is ideally suited for a specimen that undergoes irreversible but sufficiently well-defined dynamics to allow a new specimen area to be used for each time point (Fig. 1A), or for a specimen that recovers fully to allow repeated identical excitations of the same area (Fig. 1B); see also Methodology. The applications of these two approaches are numerous, as highlighted in a recent review account of the work (3).Open in a separate windowFig. 1.Variant implementations of UEM. (A) Single-pulse UEM, which enables single-shot imaging of homogeneous specimens. (B) Stroboscopic UEM. (D) Multiple-cathode UEM. For comparison, we include, in C, the single-cathode, deflection method. See text for details.For the study of completely nonrepetitive dynamics, for example, a stochastic process in a heterogeneous sample that does not return to its initial configuration, a series of snapshots following a single excitation event can provide the only direct and detailed view of the evolution. Observing the effects of a single excitation pulse with video-mode imaging can currently reach millisecond-scale time resolution, far short of the time scale for many phenomena of interest in nanoscale materials science, chemistry, and physics. Nanosecond resolution has been reached (4) by combining one excitation pulse with a train of light pulses on a single cathode, with deflection of the imaging electrons after passing the specimen plane to direct each successive pulse to a new region of the detector (Fig. 1C). This nanosecond method has been successfully used with a high-speed electrostatic deflector array to obtain time sequences of irreversible and stochastic processes (5, 6).Here we demonstrate a technique that removes any limit on time resolution imposed by image deflection and in a single frame enables the capture of ultrafast phenomena. With this approach, it is possible to probe and distinctly record multiple time points in a dynamic process following a single initiation pulse. The probing electron packets are all generated by a single light pulse that impinges on multiple, spatially distinct, cathode surfaces (Fig. 1D). Time separations between packets in the electron-pulse train are adjusted by the cathode spatial and electrostatic configuration. In the present application, two electron packets, generated from two source locations at the same potential and separated in time by 19 picoseconds (ps), are recorded on each CCD frame after undergoing diffraction in a gold film following femtosecond heating. The packets originate from different cathode locations, pass through the same area of the specimen, and are recorded at distinct locations on the detector, thereby encoding two different time points in the evolution of the specimen. The results obtained provide the basis for exploration of expanded application of the multiple-cathode concept.  相似文献   

12.
In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding.  相似文献   

13.
The ultrafast third-order optical nonlinearity of c-plane GaN crystal, excited by ultrashort (fs) high-repetition-rate laser pulses at 1550 nm, wavelength important for optical communications, is investigated for the first time by optical third-harmonic generation in non-phase-matching conditions. As the thermo-optic effect that can arise in the sample by cumulative thermal effects induced by high-repetition-rate laser pulses cannot be responsible for the third-harmonic generation, the ultrafast nonlinear optical effect of solely electronic origin is the only one involved in this process. The third-order nonlinear optical susceptibility of GaN crystal responsible for the third-harmonic generation process, an important indicative parameter for the potential use of this material in ultrafast photonic functionalities, is determined.  相似文献   

14.
We report a previously undescribed spectroscopic probe that makes use of electrons rescattered during the process of high-order harmonic generation. We excite coherent vibrations in SF(6) using impulsive stimulated Raman scattering with a short laser pulse. A second, more intense laser pulse generates high-order harmonics of the fundamental laser, at wavelengths of approximately 20-50 nm. The high-order harmonic yield is observed to oscillate, at frequencies corresponding to all of the Raman-active modes of SF(6), with an asymmetric mode most visible. The data also show evidence of relaxation dynamics after impulsive excitation of the molecule. Theoretical modeling indicates that the high harmonic yield should be modulated by both Raman and infrared-active vibrational modes. Our results indicate that high harmonic generation is a very sensitive probe of vibrational dynamics and may yield more information simultaneously than conventional ultrafast spectroscopic techniques. Because the de Broglie wavelength of the recolliding electron is on the order of interatomic distances, i.e., approximately 1.5 A, small changes in the shape of the molecule lead to large changes in the high harmonic yield. This work therefore demonstrates a previously undescribed spectroscopic technique for probing ultrafast internal dynamics in molecules and, in particular, on the chemically important ground-state potential surface.  相似文献   

15.
We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-A resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.  相似文献   

16.
This paper presents the theoretical background for a synthesis of femtosecond spectroscopy and x-ray diffraction. When a diffraction quality crystal with 0.1–0.3 mm overall dimensions is photoactivated by a femtosecond laser pulse (physical length = 0.3 μm), the evolution of molecules at separated points in the crystal will not be simultaneous because a finite time is required for the laser pulse to propagate through the body of the crystal. Utilizing this lack of global crystal synchronization, topographic x-ray diffraction may enable femtosecond temporal resolution to be achieved from reflection profiles in the diffraction pattern with x-ray exposures of picosecond or longer duration. Such x-ray pulses are currently available, and could be used to study femtosecond reaction dynamics at atomic resolution on crystals of both small- and macromolecules. A general treatment of excitation and diffraction geometries in relation to spatial and temporal resolution is presented.  相似文献   

17.
This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs), the hollow core kagome fibers have larger core diameter (~50 µm), which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25). We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.  相似文献   

18.
The ongoing trend in the development of powerful ultrashort pulse lasers has attracted increasing attention for this technology to be applied in large-scale surface engineering and modern microfabrication. However, the emission of undesired X-ray photon radiation was recently reported even for industrially relevant laser irradiation regimes, causing serious health risks for laser operators. In the meantime, more than twenty influencing factors have been identified with substantial effects on X-ray photon emission released by ultrashort pulse laser processes. The presented study on enhanced X-ray emission arising from high pulse repetition frequency ultrashort pulse laser processing provides new insights into the interrelation of the highest-contributing parameters. It is verified by the example of AISI 304 substrates that X-ray photon emission can considerably exceed the legal dose rate limit when ultrashort laser pulses with peak intensities below 1 × 1013 W/cm² irradiate at a 0.5 MHz pulse repetition frequency. The peak intensity threshold value for X-ray emissions decreases with larger laser spot sizes and longer pulse durations. Another key finding of this study is that the suction flow conditions in the laser processing area can affect the released X-ray emission dose rate. The presented results support the development of effective X-ray protection strategies for safe and risk-free ultrashort pulse laser operation in industrial and academic research applications.  相似文献   

19.
Holmium-YAG laser for gall stone fragmentation: an endoscopic tool.   总被引:1,自引:0,他引:1       下载免费PDF全文
M J Blomley  D A Nicholson  G Bartal  C Foster  A Bradley  M Myers  W Man  S Li    L M Banks 《Gut》1995,36(3):442-445
A systematic review of the 2.1 mu holmium-YAG laser for gall stone lithotripsy was undertaken. This infrared laser, which can be used endoscopically and percutaneously, has safety advantages over other lasers and has potential as a general purpose vascular and surgical tool. Twenty nine gall stones (mean mass 1.3 g) were fragmented in vitro using pulse energies of 114 to 159 mJ/pulse at 5 Hz with a 0.6 mm fibre, while being held in an endoscopy basket. All stones were successfully fragmented, requiring an average of 566 pulses with a 5 Hz pulse repetition frequency. The number of pulses required increased with gall stone size and mass (p < 0.01), and decreased with both pulse energy (p < 0.01) and operator experience (p < 0.05). The biochemical content of the stone did not significantly affect the number of pulses needed. The potential hazard of the laser to the biliary endothelium was investigated. At the pulse energies used, five pulses at close contact penetrated into the serosa of fresh gall bladder wall. No damage was seen when two pulses were fired. This laser shows considerable promise in gall stone lithotripsy. Until further safety data are available, however, its use with endoscopic vision is advised.  相似文献   

20.
Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material’s electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier–carrier scatterings which are mirrored in the energy of material’s secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces.Recent advances in four-dimensional (4D) ultrafast electron microscopy (UEM) have made it possible to investigate nonequilibrium electronic and structural dynamics with atomic-scale spatial resolution and femtosecond temporal resolution (1). Unlike UEM, which operates in the transmission mode, scanning UEM techniques exploit the time evolution of secondary electrons (SEs) produced in the specimen, and provide additional marked advantages over the transmission mode. These include a relatively facile sample preparation requirement, an efficient heat dissipation, a lower radiation damage, and an accessibility to low-voltage environmental study (2, 3). Since its development this technique has been used to study carrier excitation dynamics in several prototypical semiconducting materials surfaces. In these studies, image contrast was monitored as a function of time, and it was found that Si exhibits a bright contrast in the image at positive times without appreciable dynamics at negative times, whereas CdSe displays bright contrast at positive times and dark contrast at negative times (2). However, the correlation between the measured time-dependent SE intensity and electronic structure of the material of interest remains elusive. Chemical doping is a widely used method to control the electronic properties of semiconducting materials by incorporating charge donating or accepting dopant atoms. It is a key element in developments involving modern semiconductor-based solid-state electronics.Here, we present a systematic study for the doping- and carrier-concentration-dependent carrier dynamics in the in situ cleaved GaAs(110) surface observed in the images obtained using scanning UEM. We show that the enhancement of the SE signal at time 0 is associated with the energy gained by the optical excitation, which increases SE production from the probing pulse, and this process mirrors the electronic doping characteristics of the semiconducting material. In contrast, the persistent dark contrast at both positive and negative times for carrier dynamics in GaAs(110) suggests an energy loss mechanism that involves strong suppression of SEs through carrier–carrier scatterings. Our simulations of the transient behavior further support this conclusion.A schematic representation of the experimental setup is given in Fig. 1. Electron pulses generated from a field-emission gun using femtosecond laser pulse irradiation are scanned across the specimen surface, which is illuminated with the optical pulse. The electrons emitted from the material surface are used to construct time-resolved images at various time delays between the optical pulse and the electron pulse. The detailed account of the experimental setup was described in previous publications from this laboratory (24), and thus here we briefly describe the imaging setup: the laser used in our experiments is an ytterbium-doped fiber laser system that generates ultrashort pulses at a central wavelength of 1,030 nm (measured pulse width of ∼400 fs). The second harmonic (photon energy of 2.4 eV) of the laser beam was directed to the sample at room temperature, whereas the quadrupled harmonic (photon energy of 4.8 eV) was used for the pulsed electron generation from the field-emission gun in SEM. For the series of experiments presented here, the pump laser fluence, repetition rate, and the data acquisition methodology were kept the same for comparison of samples with different doping characteristics. The pump laser fluence was deduced to be 69 μJ/cm2, which is more than three orders of magnitude lower than that reported for the laser-induced damage threshold of a crystalline GaAs (∼0.1 J/cm2 at a photon energy of 1.9 eV) (5). The emitted electrons from the material were measured using a positively biased Everhart-Thornley detector.Open in a separate windowFig. 1.Schematic representation of the scanning UEM at California Institute of Technology. Pulsed electrons are scanned over a specimen that is illuminated with an optical pulse, and SEs emitted from the material surface are detected to construct time-resolved images at various time delays between the optical and the electron pulse. In the case of a semiconducting material, at time 0, the optical pulse promotes electrons from the valence band to the conduction band, and immediately after that the electron pulse excites transiently populated conduction electrons above the vacuum level, resulting in an enhanced (bright contrast) SE emission. If SEs experience a material-dependent energy loss through the various channels of scattering processes involved while migrating toward the surface, then a decreased emission will result (dark contrast). Here, Ec, Ev, and Evac are the energies of the bottom of the conduction band, the top of the valence band, and the vacuum level, respectively. Scale bars in the time-resolved images correspond to 50 μm.All scanning UEM images were acquired at a dwell time of 1 μs and were integrated 64 times to improve the signal-to-noise ratio. All experiments were conducted at a repetition rate of 4.2 MHz to ensure a full recovery of the material’s dynamical response before the arrival of a next pump pulse. Single crystals of GaAs (a direct band gap of 1.43 eV at room temperature) were all grown via Vertical Gradient Freeze method (purchased from MTI); the method is known to produce fewer defects during the growth, compared with those grown via the liquid encapsulated Czochralski method (6). The crystals were in situ cleaved in high vacuum (<1.5 × 10−6 Torr) to reduce the effects of contamination and formation of surface defects or adsorbates for the systematic study presented here. A clean (110) crystallographic orientation of GaAs does not possess any surface states within the band gap and thus a bulk-like band structure is expected at the surface without band-bending effects (7, 8). Cleavage along a direction perpendicular to the (001) orientation of GaAs exposes a fresh (110) plane. The cleaved surface was positioned at a working distance of 10 mm and perpendicular to the propagation direction of the pulsed primary electron beam with its energy of 30 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号