首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the early postnatal period the brain is extremely sensitive to external agents. Here, we examined the effect of subcutaneous injections of methylmercury (MeHg; 2 mg/kg) during the suckling period (postnatal days [PND] 3-10, 3-17, or 3-24) on glutamate release from brain synaptosomal preparations and on glutamate uptake by brain cortical slices of rat pups. The possible antagonist effect of ebselen against MeHg effect was also examined at PND 24. MeHg increased the basal (but not K+-stimulated) glutamate release and glutamate uptake at PND 24. A strong tendency of increase in the basal glutamate release from synaptosomes (p= 0.088) was observed at PND 17. Ebselen, which did not affect glutamate release and uptake per se, prevented both effects of MeHg. This study indicates that (1) the effect of MeHg on glutamate release could be involved in its toxicity; (2) the increase in the glutamate uptake could represent a pathophysiological response to MeHg-induced glutamate release; (3) the inhibitory effect of ebselen on MeHg-induced glutamate release could be related to its reported neuroprotective effects.  相似文献   

2.
Alterations of the neurotransmitter release systems in CNS have been reported in a variety of neuropathological processes associated with heavy metal toxicity. Neurotoxic effects of mercurials were investigated in vitro in cerebral cortex slices from young rats. The present study indicates that: (i) the environmental contaminants methylmercury (MeHg) and mercuric chloride (Hg2+) (50 microM) inhibited the glutamate net uptake from the cerebral cortex of 17-day-old rats; (ii) ebselen (10 microM) reverted the MeHg-induced inhibition of glutamate net uptake but did not protect the inhibition caused by Hg2+. At same time, we investigated another diorganochalcogenide, diphenyl diselenide (PhSe)2 and it was observed that this compound did not revert the action of MeHg or Hg2+; (iii) in addition, we observed that exposure of slices to 50 microM MeHg and Hg2+ for 30 min followed by Trypan blue exclusion assay resulted in 58.5 and 67.5% of staining cells, respectively, indicating a decrease in cell viability. Ebselen protected slices from the deleterious effects of MeHg, but not of Hg2+ on cell viability. Conversely, ebselen did not modify the reduction of MTT caused by MeHg and Hg2+; (iv) the protective effect of ebselen on MeHg-induced inhibition of glutamate net uptake seems to be related to its ability in maintaining cell viability.  相似文献   

3.
Oxidative stress has been pointed as an important molecular mechanism for liver injury in methylmercury (MeHg) poisoning. Ebselen, a seleno-organic compound that possesses anti-oxidant properties, is a useful therapeutic agent used in clinical situations involving oxidative stress. Here, we examined the possible in vivo protective effect of ebselen against the pro-oxidative effects of MeHg in liver from suckling rat pups. The effects of MeHg exposure (subcutaneous injections of methylmercury chloride: 2 mg/kg) on the hepatic levels of thiobarbituric acid reactive substances (TBARS) and non-ptotein thiols (NPSH), and on liver glutathione peroxidase (GSHPx) activity, as well as the possible antagonist effect of ebselen (10 mg/kg; subcutaneously) against MeHg effects, were evaluated during the post-natal period. In addition, the possible in vitro interaction between ebselen, glutathione (GSH) and MeHg was investigated by light/UV spectroscopy, with particular attention to the formation of complexes involving ebselen selenol intermediate and MeHg. After in vivo exposure, MeHg and ebselen alone increased hepatic TBARS levels. Moreover, simultaneous treatment with both compounds caused a higher increase in hepatic TBARS levels when compared to the treatments with individual compounds. Liver NPSH decreased after treatments with MeHg and ebselen alone. A significant negative correlation between hepatic TBARS and NPSH was observed. MeHg alone decreased liver GSHPx activity and ebselen, which did not affect this variable per se, reverted this inhibitory effect of MeHg. Light/UV spectroscopy showed that ebselen and GSH form a chemical intermediate that regenerates ebselen after MeHg addition. The presented results show that ebselen abolished the MeHg-induced inhibition on liver GSHPx activity, but did not prevent the oxidative effects of MeHg on liver lipids and NPSH. MeHg affects the in vitro interaction between ebselen and GSH and this phenomenon seems to be responsible for its inhibitory effect toward thiol-peroxidase activity. Additionally, ebselen presents pro-oxidative effects on rat liver, pointing to thiol depletion as a molecular mechanism related to ebselen-induced hepatotoxicity.  相似文献   

4.
Methylmercury (MeHg) is a highly neurotoxic compound and several studies have reported intoxication signs in children whose mothers were exposed to this environmental toxicant. Although it is well established that the in utero exposure to MeHg causes neurological deficits in animals and humans, there is no evidence of the exclusive contribution of lactational exposure to MeHg as a possible cause of neurotoxicity in the offspring. In this study, we investigated the exclusive contribution of MeHg exposure through maternal milk on biochemical parameters related to the glutamatergic homeostasis (glutamate uptake by slices) and to the oxidative stress (total and nonprotein sulfhydryl groups, nonprotein hydroperoxides, glutathione peroxidase and catalase activities) in the cerebellum of suckling mice (Swiss albino). The same parameters were also evaluated in the cerebellum of mothers. Our results showed, for the first time, that lactational exposure to MeHg caused a high percent of inhibition (50%) on glutamate uptake by cerebellar slices in pups. Contrarily, this effect was not observed in mothers, which were submitted to a direct oral exposure to MeHg (15 mg/l in drinking water). In addition, behavioral/functional changes were observed in the weaning mice exposed to MeHg. It was observed an increase in the levels of nonprotein hydroperoxides in cerebellum, and this increase was negatively correlated to the glutamate uptake by cerebellar slices. This study indicates that (1) the exposure of lactating mice to MeHg causes inhibition of the glutamate uptake by cerebellar slices in the offspring; (2) this inhibitory effect seems to be related to increased levels of hydroperoxide.  相似文献   

5.
Excessive formation of reactive oxygen species (ROS) and disruption of glutamate uptake have been pointed as two key mechanisms in methylmercury-toxicity. Thus, here we investigate the involvement of glutamatergic system in methylmercury (MeHg) neurotoxicity and whether diphenyl diselenide, ebselen and guanosine could protect cortical rat brain slices from MeHg-induced ROS generation. MeHg (100 and 200 μM) increased 2′,7′-dichlorodihydrofluorescin (DCFH) oxidation after 2 h of exposure. At 50 μM, MeHg increased DCFH oxidation only after 5 h of exposure. Guanosine (1 and 5 μM) did not caused any effect per se; however, it blocked the increase in DCFH caused by 200 or 50 μM MeHg. Ebselen (5 and 10 μM) decreased significantly the DCFH oxidation after 2 and 5 h of exposure to MeHg. Diphenyl diselenide (5 μM) did not change the basal DCFH oxidation, but abolished the pro-oxidant effect of MeHg. MK-801 also abolished the pro-oxidant effect of MeHg. These results demonstrate for the first time the potential antioxidant properties of organoseleniun compounds and guanosine against MeHg-induced ROS generation after short-term exposure in a simple in vitro model. In conclusion, endogenous purine (guanosine) and two synthetic organoselenium compounds can modulate the pro-oxidant effect of MeHg in cortical brain slices.  相似文献   

6.
During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F(2)-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F(2)-isoprostanes levels at all time points. Significant negative correlations were found between F(2)-isoprostanes and GSH, as well as between F(2)-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.  相似文献   

7.
In the present study, we investigated the potential protective effects of three flavonoids (myricetin, myricitrin and rutin) derived from medicinal plants against methyl mercury (MeHg)-induced mitochondrial dysfunction in vitro. Incubation of mouse brain mitochondria with MeHg induced a significant decrease in mitochondrial function, which was correlated with decreased glutathione (GSH) levels and increased generation of reactive oxygen species (ROS) and lipid peroxidation. The co-incubation of mouse brain mitochondria with myricetin or myricitrin caused a concentration-dependent decrease of MeHg-induced mitochondrial dysfunction and oxidative stress. The flavonoid rutin was ineffective in counteracting MeHg toxicity. Among the three tested flavonoids, myricetin was the most efficient in protecting against MeHg-induced mitochondrial dysfunction. Moreover, myricetin completely blocked MeHg-induced ROS formation and lipid peroxidation and partially prevented MeHg-induced GSH depletion. The ability of myricetin to attenuate MeHg-induced mitochondrial dysfunction and oxidative stress appears to be related to its higher scavenging capability when compared to myricitrin and rutin. Overall, the results suggest that MeHg-induced mitotoxicity is associated with oxidative stress. The ability of myricetin to prevent MeHg-induced oxidative damage in brain mitochondria renders this flavonoid a promising molecule for further in vivo studies in the search for potential antidotes to counteract MeHg-induced neurotoxicity.  相似文献   

8.
In the present study, we investigated the potential protective effects of three flavonoids (myricetin, myricitrin and rutin) derived from medicinal plants against methyl mercury (MeHg)-induced mitochondrial dysfunction in vitro. Incubation of mouse brain mitochondria with MeHg induced a significant decrease in mitochondrial function, which was correlated with decreased glutathione (GSH) levels and increased generation of reactive oxygen species (ROS) and lipid peroxidation. The co-incubation of mouse brain mitochondria with myricetin or myricitrin caused a concentration-dependent decrease of MeHg-induced mitochondrial dysfunction and oxidative stress. The flavonoid rutin was ineffective in counteracting MeHg toxicity. Among the three tested flavonoids, myricetin was the most efficient in protecting against MeHg-induced mitochondrial dysfunction. Moreover, myricetin completely blocked MeHg-induced ROS formation and lipid peroxidation and partially prevented MeHg-induced GSH depletion. The ability of myricetin to attenuate MeHg-induced mitochondrial dysfunction and oxidative stress appears to be related to its higher scavenging capability when compared to myricitrin and rutin. Overall, the results suggest that MeHg-induced mitotoxicity is associated with oxidative stress. The ability of myricetin to prevent MeHg-induced oxidative damage in brain mitochondria renders this flavonoid a promising molecule for further in vivo studies in the search for potential antidotes to counteract MeHg-induced neurotoxicity.  相似文献   

9.
The purpose of this study was to investigate the possible involvement of the glutamatergic system in the neurotoxicity of diorganylchalcogenides or organochalcogenides from slices of cerebral cortex in different ages of development: 12- and 60-day-old rats. Glutamate uptake was evaluated in cortical slices of 12 and 60 days old rats. Cortex slices were incubated with three different organochalcogenides with or without reduced glutathione or dithiothreitol. At 100 microM, ebselen, diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2 in vitro inhibited the [3H]glutamate uptake in both age. Both 60-day-old rats and for 12-day-old rats, GSH and DTT prevented the (PhTe)2-induced inhibition of glutamate uptake but did not protect the inhibition caused by ebselen and (PhSe)2. These findings suggest that the neurotoxicity of organochalcogenides could be related to their effects on brain glutamate uptake, conceivably involving a redox modulation of reactive amino acids from the glutamate transporter proteins.  相似文献   

10.
Chelating therapy has been reported as a useful approach for counteracting mercurial toxicity. Moreover, 2,3-dimercapto-1-propanesulfonic acid (DMPS), a tissue-permeable metal chelator, was found to increase urinary mercury excretion and decrease mercury content in rat brain after methylmercury (MeHg) exposure. We evaluated the capability of DMPS to reduce MeHg-induced motor impairment and cerebellar toxicity in adult mice. Animals were exposed to MeHg (40 mg/L in drinking water, ad libitum) during 17 days. In the last 3 days of exposure (days 15-17), animals received DMPS injections (150 mg/kg, i.p.; once a day) in order to reverse MeHg-induced neurotoxicity. Twenty-four hours after the last injection (day 18), behavioral tests related to the motor function (open field and rotarod tasks) and biochemical analyses on oxidative stress-related parameters (cerebellar glutathione, protein thiol and malondyaldehyde levels, glutathione peroxidase and glutathione reductase activities) were carried out. Histological analyses for quantifying cellular damage and mercury deposition in the cerebellum were also performed. MeHg exposure induced a significant motor deficit, observed as decreased locomotor activity in the open field and decreased falling latency in the rotarod apparatus. DMPS treatment displayed an ameliorative effect toward such behavioral parameters. Cerebellar glutathione and protein thiol levels were not changed by MeHg or DMPS treatment. Conversely, the levels of cerebellar thiobarbituric acid reactive substances (TBARS), a marker for lipid peroxidation, were increased in MeHg-exposed mice and DMPS administration minimized such phenomenon. Cerebellar glutathione peroxidase activity was decreased in the MeHg-exposed animals, but DMPS treatment did not prevent such event. Histological analyses showed a reduced number of cerebellar Purkinje cells in MeHg-treated mice and this phenomenon was completely reversed by DMPS treatment. A marked mercury deposition in the cerebellar cortex was observed in MeHg-exposed animals (granular layer>Purkinje cells>molecular layer) and DMPS treatment displayed a significant ameliorative effect toward these phenomena. These findings indicate that DMPS displays beneficial effects on reversing MeHg-induced motor deficits and cerebellar damage in mice. Histological analyses indicate that these phenomena are related to its capability of removing mercury from cerebellar cortex.  相似文献   

11.
A current hypothesis about methylmercury (MeHg) neurotoxicity proposes that neuronal damage is due to excitotoxicity following glutamate uptake alterations in the astrocyte. By sampling from a microdialysis probe implanted in the frontal cortex of adult Wistar rats, we measured the effects of acute exposure to either 10 or 100 μM MeHg through the microdialysis probe, on glutamate extracellular levels in 15 awake animals. After baseline measurements, the perfusion of MeHg during 90 min induced immediate and significant elevations in extracellular glutamate at 10 μM (9.8-fold, P<.001) and at 100 μM (2.4-fold, P=.001). This in vivo demonstration of increments of extracellular glutamate supports the hypothesis that dysfunction of glutamate neurotransmission plays a key role in MeHg-induced neural damage.  相似文献   

12.
Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe)2] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH‐SY5Y). Our results established that (PhSe)2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm ). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe)2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm ). Among the selenocompounds only (PhSe)2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe)2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe)2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
There is increasing evidence that health effects of toxic metals, including methylmercury (MeHg), differ in prevalence or are manifested differently in men and women. The present study was aimed at investigating the potential differential susceptibility of male and female Swiss mice against MeHg-induced neurotoxicity, which was evaluated by biochemical (cerebellar oxidative stress-related parameters) and behavioral (locomotor activity and motor performance) variables. We also aimed to evaluate the potential protective effects of 17β-estradiol against such toxicity in MeHg-exposed male animals. MeHg exposure (40mg/L, diluted in tap water, during 2 weeks) decreased locomotor activity and motor performance in both male and female animals, but such phenomena were higher in males. 17β-estradiol co-treatment (10μg/animal, in alternate days) prevented MeHg-induced locomotor deficits in males. MeHg exposure caused a significant increase (60%) in cerebellar lipid peroxidation in male mice, but did not in females. In close agreement, MeHg exposure decreased (43%) cerebellar glutathione peroxidase activity in males, but did not in females. These events were prevented by 17β-estradiol administration. Cerebellar GR activity was increased (25%) in MeHg-exposed males and such event was partially prevented by 17β-estradiol administration. These results indicate that the low susceptibility of female mice to the neurotoxicity elicited by MeHg is linked to neuroprotective effects of sex steroids, which appear to modulate the activities of glutathione-related enzymes. Our experimental observation corroborates previous epidemiological studies showing the greater developmental effects in male than in female humans exposed to MeHg.  相似文献   

14.
Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia and is associated with ischemic injury and neurological diseases. We investigated whether the in vitro and in vivo exposure to methylmercury (MeHg) produce changes in GS activity in the brain of different species. The brain in rats and mice was dissected into different regions for GS assay. MeHg levels in the brain tissues and blood of mice treated 2, 4 or 10 mg/kg MeHg were determined by a gas-chromatography/mass selective detector. In vitro exposure of MeHg (0.1-100 μM) produced dose-dependent decreases of GS activity in rat brains with 50% inhibition occurred at 10-20 μM. MeHg was a more potent GS inhibitor in vitro in the rat brain than other GS inhibitors (e.g., methionine sulfoximine, kainic acid). These effects were further confirmed using purified GS of sheep brains. In vivo GS activity was also inhibited in the hippocampus of mice given 4 or 10 mg/kg of MeHg. In mice concentration ratios of brain tissues to blood were 0.05-0.14 at 24 h post-dose. These data showed that MeHg produced significant changes in GS activity, indicating that GS is an effective biomarker for MeHg exposure.  相似文献   

15.
Methylmercury (MeHg) is an important environmental neurotoxicant that is present in seafood and affects the developing and mature nervous system. The neurotoxicity induced by MeHg is a concern, particularly for fish-eating populations and pregnant or nursing women. During MeHg-induced neurotoxicity, degeneration of the granule cell layer in the cerebellum occurs, which leads to deficits in motor function. I suggest that the action of MeHg on specific neurotransmitter receptors contributes to the selective vulnerability of granule cells. MeHg appears to stimulate M(3) muscarinic acetylcholine receptors and to inhibit GABA(A) receptor subtypes preferentially on cerebellar granule cells. This could lead to the loss of tonic inhibition of granule cells as a result of antagonism of GABA(A) receptors, and a M(3)-receptor-mediated increase in the intracellular concentration of Ca(2+) and block of a K(+)-dependent leak current. The net result would be increased spontaneous release of glutamate, which, coupled with a MeHg-induced impairment of glutamate uptake by astrocytes, could cause Ca(2+)-mediated cytotoxicity.  相似文献   

16.
Methylmercury (MeHg) is recognized as a significant environmental hazard, particularly to the development of the nervous system. To study the molecular mechanisms underlying cell cycle inhibition by MeHg, we assessed the involvement of p21 (Waf1, Cip1), a cell cycle regulatory gene implicated in the G1 and G2 phases of cell cycle arrest, in primary embryonic cells and adult mice following MeHg exposure. Previous literature has supported the association of increased p21 expression with chondrocyte differentiation. In support of this finding, we observed an increasing p21 expression during limb bud (LB), but not midbrain central nervous system (CNS) cell differentiation. Both embryonic LB and CNS cells responded to MeHg exposure with a concentration-dependent increase in p21 mRNA. In the parallel adult study, C57BL/6 female mice were chronically exposed to 10 ppm MeHg via drinking water for 4 weeks. While there was limited or absent induction of Gadd45, Gadd153, and the gamma-glutamylcysteine synthetase catalytic subunit, p21 was markedly induced in the brain, kidney, and liver tissues in most of the animals that showed MeHg-induced behavioral toxicity such as hyperactivity and tremor. Furthermore, the induction of p21 mRNA was accompanied by an increase in p21 protein level. The results indicate that the activation of cell cycle regulatory genes may be one mechanism by which MeHg interferes with the cell cycle in adult and developing organisms. Continued examination of the molecular mechanisms underlying cell cycle inhibition may potentially lead to utilization of this mechanistic information to characterize the effects of MeHg exposure in vivo.  相似文献   

17.
We have examined the possible protective effects of Polygala paniculata extract against methylmercury (MeHg)-induced neurotoxicity in adult mice. MeHg was diluted in drinking water (40 mg L(-1), freely available) and the hydroalcoholic Polygala extract was diluted in a 150 mM NaCl solution and administered by gavage (100 mg kg(-1) b.w., twice a day). After a two-week treatment, MeHg exposure significantly inhibited glutathione peroxidase and increased glutathione reductase activity, while the levels of thiobarbituric acid reactive substances were increased in the cerebral cortex and cerebellum. These alterations were prevented by administration of Polygala extract, except for glutathione reductase activity, which remained elevated in the cerebral cortex. Behavioural interference in the MeHg-exposed animals was evident through a marked deficit in the motor performance in the rotarod task, which was completely recovered to control levels by Polygala extract co-administration. This study has shown, for the first time, the in-vivo protective effects of Polygala extract against MeHg-induced neurotoxicity. In addition, our findings encourage studies concerning the beneficial effects of P. paniculata on neurological conditions related to excitotoxicity and oxidative stress.  相似文献   

18.
1. The aim of the present study was to investigate the role of redox modulation during the peripheral nociceptive transmission in vivo. The nociceptive response was evaluated by the amount of time that mice spent licking the footpad injected with glutamate (20 micromol/paw). Thiol groups in footpad tissue were quantified using a colourimetric reaction with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB). 2. When coadministered with glutamate, the thiol alkylating agent iodoacetate (200 nmol/paw) caused significant antinociception in footpad tissue, in parallel with a decrease in free thiol groups. Treatment with the reducing agent dithiothreitol (200 nmol/paw) 5 min before glutamate and iodoacetate prevented the antinociception and thiol loss caused by iodoacetate. Injection of 100 nmol/paw ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), an in vitro redox modulator of the N-methyl-d-aspartate (NMDA) receptor, also prevented iodoacetate-induced antinociception. However, ebselen did not prevent thiol loss in the footpad. Dithiothreitol and ebselen had a synergic nociceptive effect with glutamate. 3. Alone, ebselen (100 nmol/paw) exhibited a pronociceptive effect. The nociception induced by ebselen was blocked by glutathione depletion induced by buthionine-sulphoximine (BSO; 2.5 micromol/paw). In addition, ebselen-induced nociception was prevented by 75 +/- 2% following injection of 5 nmol/paw MK-801 (an NMDA receptor antagonist). The nitric oxide synthase inhibitor N(G)-nitro-l-arginine (250 nmol/paw) had no effect on the nociception produced by ebselen. 4. In conclusion, the present paper reports on the effect of redox modulation on the glutamatergic system during peripheral nociceptive transmission in vivo. Antinociception was directly correlated with the availability of thiol groups, whereas the pronociceptive response of the reducing agents likely occurs via positive modulation of the NMDA receptor.  相似文献   

19.
ABSTRACT

Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.  相似文献   

20.
The interaction of methyl mercury (MeHg) with nerve-terminal mitochondria as a potential mechanism for its effects on the release of acetylcholine (ACh) was studied using rat brain synaptosomes. The primary goal was to assess the relative contribution of extracellular Ca2+ and Ca2+ released from nerve-terminal mitochondria to the previously described stimulatory effects of MeHg on spontaneous release of ACh. A secondary goal was to address possible mechanisms by which MeHg might interact with nerve-terminal mitochondria to elicit Ca2+ discharge and subsequent release of ACh. MeHg depressed the high-affinity uptake of [3H]choline into synaptosomes by approximately 25 and 45% when synaptosomes were incubated with [3H]choline in the presence of 10 and 100 microM MeHg, respectively. In Ca(2+)-containing solutions, 10 and 100 microM MeHg increased the release of [3H]ACh from [3H]choline-loaded synaptosomes by 10 and 30%, respectively; this effect was maximal at 10 sec. Excluding Ca2+ from the reaction medium diminished the effectiveness of both 10 and 100 microM MeHg for inducing [3H]ACh release by about 30 and 25%, respectively, from that of Ca(2+)-containing solutions; however, significant increases still occurred in nominally Ca(2+)-free solutions. Ruthenium red (RR), an inhibitor of mitochondrial Ca2+ transport, was tested for its ability to disrupt MeHg-induced release. RR alone increased [3H]ACh release by 8-10 and 10-13% at 20 and 60 microM, respectively. RR-induced release was attenuated only slightly in Ca(2+)-free solutions. Preincubation of [3H]choline-loaded synaptosomes with RR reduced the stimulatory effect of MeHg on release of [3H]ACh both in the presence and in the absence of Ca2+. The fluorescent potentiometric carbocyanine dye diS-C2(5) was used to assess the ability of RR to prevent MeHg-induced depolarization of intrasynaptosomal mitochondria. RR (20 microM) itself did not depolarize the mitochondrial membrane potential, nor did it prevent MeHg from depolarizing the mitochondria. The results indicate that extracellular Ca2+ contributes only partially to MeHg-induced spontaneous release of ACh. The results with RR suggest that MeHg interacts with mitochondria to induce release of bound intraterminal Ca2+ stores, resulting ultimately in stimulated release of ACh. The ability of RR to prevent release of mitochondrial Ca2+ and, subsequently, ACh is not due to prevention of access of MeHg to the mitochondria, nor to stabilization of the mitochondrial membrane. Finally, MeHg reduces choline uptake into nerve terminals. Thus, MeHg could interfere with cholinergic neurotransmission by affecting the regulatory step in ACh synthesis and by increasing the spontaneous release of transmitter.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号