首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Non-human primate models of AIDS and neuroAIDS are critical to study HIV infection of the CNS, neuropathology, and immune activation and macrophage accumulation that occurs in HAND. SIV, similar to HIV, infects CD4+ T lymphocytes and monocytes/macrophages. Virus enters the CNS early, and macrophage activation correlates with CNS disease, as well as inflammation outside of the CNS. Antiretroviral in HIV+ humans and SIV+ Rhesus macaques results in non-detectable plasma virus, decreased or non-detectable viral RNA or protein in the CNS. But, viral DNA rebounds following therapy interruption, demonstrating the presence of replication competent virus in the CNS within myeloid cells. In this brief review, we discuss our findings using a Rhesus macaque model of SIV-associated CNS infection and pathology, focusing on monocyte/macrophage activation and the link between CNS and cardiac disease. We conclude with recent studies using adjunctive therapy targeting monocytes/macrophages with ART to prevent or diminish CNS pathology that may be associated with HAND.  相似文献   

2.
Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4+ T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.  相似文献   

3.
HIV-1-associated neurocognitive disorder (HAND) remains a persistent problem despite antiretroviral therapy (ART), largely a result of continued inflammation in the periphery and the brain and neurotoxin release from activated myeloid cells in the CNS. CD14+CD16+ inflammatory monocytes, expanded in HIV infection, play a central role in the pathogenesis of HAND and have parallels with monocyte-dependent inflammatory mechanisms in atherosclerosis. Statins, through their HMG-CoA reductase inhibitor activity, have pleiotropic immunomodulatory properties that contribute to their benefit in atherosclerosis beyond lipid lowering. Here, we investigated whether statins would modulate the monocyte phenotype and function associated with HIV-1 neuropathogenesis. Treatment ex vivo with simvastatin and atorvastatin reduced the proportion of CD16+ monocytes in peripheral blood mononuclear cells, as well as in purified monocytes, especially CD14++CD16+ “intermediate” monocytes most closely associated with neurocognitive disease. Statin treatment also markedly reduced expression of CD163, which is also linked to HAND pathogenesis. Finally, simvastatin inhibited production of monocyte chemoattractant protein-1 (MCP-1) and other inflammatory cytokines following LPS stimulation and reduced monocyte chemotaxis in response to MCP-1, a major driver of myeloid cell accumulation in the CNS in HAND. Together, these findings suggest that statin drugs may be useful to prevent or reduce HAND in HIV-1-infected subjects on ART with persistent monocyte activation and inflammation.  相似文献   

4.
In the current era of highly active antiretroviral therapy (HAART), the incidence of HIV dementia has declined, but the prevalence of HIV-associated neurocognitive disorder (HAND) remains high. HIV-induced systemic and localized inflammation is considered to be one of the mechanisms of HAND. Changes in cytokine levels in the cerebrospinal fluid (CSF) during HIV infection might help to identify HAND. To investigate whether the cytokine profile of the CSF during HIV infection could be used as a biomarker of HAND, we compared cytokine levels in the CSF of HIV-infected cases with and without neurocognitive impairment. Cytokine concentrations in the CSF were measured by quantification bioassays (Luminex xMAP). HIV-infected cases with neurocognitive impairment demonstrated higher levels of interleukin (IL)-8, monocyte chemotactic protein (MCP)-1, induced protein (IP)-10, and granulocyte colony-stimulating factor (G-CSF) in the CSF than those without neurocognitive impairment (G-CSF (p?=?0.0003), IL-8 (p?=?0.0046), IP-10 (p?<?0.0001), and MCP-1 (p?<?0.0001)). There was no significant impact of HAART on cytokine levels in the CSF, except for IP-10, which was higher in HAART-treated patients with impaired cognition (p?=?0.0182). Findings from this preliminary study suggest that elevated levels of the cytokines IL-8, MCP-1, G-CSF, and IP-10 in the CSF are associated with neurocognitive impairment in HIV infection, and these cytokines likely represent a biomarker profile for HAND.  相似文献   

5.
The pathology associated with late-stage dementia in human immunodeficiency virus (HIV) infection has been studied extensively. Neuropathological examination has demonstrated abundant activation and infection of macrophages/microglia termed HIV encephalitis. For obvious reasons, less is known regarding the neuropathology of minor cognitive impairment seen in earlier stages of HIV infection. The authors examined the utility of the peripheral benzodiazepine receptor ligand PK11195 in positron emission tomography (PET) imaging to assess microglial/macrophage activation in the brains of HIV-infected subjects with minor neurocognitive impairment in a cross-sectional study of 12 HIV infected individuals and 5 age-matched noninfected controls. Subjects were given a battery of neuropsychological tests in addition to assessing CD4 T-cell count and peripheral viremia followed by contrast enhanced magnetic resonance imaging (MRI) and PET with [15O]H2O followed by [11C](R)-PK11195. Two of the six neurocognitively impaired HIV-infected subjects demonstrated plasma viral breakthrough, whereas only one of six nonimpaired individuals demonstrated plasma viral load near the limits of detection. MRI demonstrated no abnormal enhancement and although atrophy was more prominent in impaired subjects, it was also present though to a lesser extent in nonimpaired subjects. None of the 12 HIV-infected subjects demonstrated increased retention of [11C](R)-PK11195 in the brain parenchyma compared to the 5 controls. These results suggest that either [11C](R)-PK11195 PET assessment is insensitive to the degree of macrophage activation in HIV-associated minor neurocognitive impairment or macrophage activation is not the pathological substrate of this neurological condition.  相似文献   

6.
The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) remains puzzling. We interrogated several levels of data (host genetic, histopathology, brain viral load, and neurocognitive) to identify histopathological changes most relevant to HAND. The design of the study is a clinicopathological study employing genetic association analyses. Data and brain tissue from 80 HIV-infected adults were used. Markers in monocyte chemoattractant protein-1 (MCP-1), interleukin 1-alpha (IL1-α), macrophage inflammatory protein 1-alpha (MIP1-α), DRD3, DRD2, and apolipoprotein E (ApoE) were genotyped. Microtubule associated protein 2 (MAP2), synaptophysin (SYP), human leukocyte antigen-DR (HLA-DR), glial fibrillary acidic protein (GFAP), amyloid beta (A-Beta), and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactivity were quantified in the frontal cortex, putamen, and hippocampus. A composite score for each marker (mean of the three brain regions) was used. Neurocognitive functioning and other clinical variables were determined within 1 year of death. Brain HIV RNA viral load was available for a subset of cases. MAP2 and SYP proved most relevant to neurocognitive functioning. Immunoreactivity of these markers, as well as A-Beta and Iba-1, was correlated with brain HIV RNA viral load. Several genetic markers in combination with other factors predicted histopathology: HIV blood viral load, MIP1-α genotype, and DRD3 genotype predicted Iba-1 immunoreactivity; the duration of infection and IL1-α genotype predicted GFAP immunoreactivity; ApoE genotype and age at death predicted A-Beta immunoreactivity. These data indicate that HIV replication in the brain is the primary driving force leading to neuroinflammation and dysfunctional protein clearance, as reflected by A-Beta and Iba-1. Downstream to these changes are synaptodendritic degeneration, which is the immediate histopathological substrate of the neurocognitive impairment characteristic of HAND. These intermediate histopathological phenotypes are influenced by host genetic polymorphisms in genes encoding cytokines/chemokines, neuronal protein clearance pathways, and dopaminergic factors.  相似文献   

7.
Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.  相似文献   

8.
There is need for a valid and reliable biomarker for HIV Associated Neurocognitive Disorder (HAND). The purpose of the present study was to provide preliminary evidence of the potential utility of neuronal functional connectivity measures obtained using magnetoencephalography (MEG) to identify HIV-associated changes in brain function. Resting state, eyes closed, MEG data from 10 HIV-infected individuals and 8 seronegative controls were analyzed using mutual information (MI) between all pairs of MEG sensors to determine whether there were functional brain networks that distinguished between subject groups based on cognition (global and learning) or on serostatus. Three networks were identified across all subjects, but after permutation testing (at α < .005) only the one related to HIV serostatus was significant. The network included MEG sensors (planar gradiometers) above the right anterior region connecting to sensors above the left posterior region. A mean MI value was calculated across all connections from the anterior to the posterior groupings; that score distinguished between the serostatus groups with only one error (sensitivity = 1.00, specificity = .88 (X 2  = 15.4, df = 1, p < .01, Relative Risk = .11). There were no significant associations between the MI value and the neuropsychological Global Impairment Rating, substance abuse, mood disorder, age, education, CD4+ cell counts or HIV viral load. We conclude that using a measure of functional connectivity, it may be possible to distinguish between HIV-infected and uninfected individuals, suggesting that MEG may have the potential to serve as a sensitive, non-invasive biomarker for HAND.  相似文献   

9.
The objective of this study was to assess lithium safety and tolerability and to explore its impact on cognition, function, and neuroimaging biomarkers in human immunodeficiency virus (HIV)-infected subjects with cognitive impairment. Fifteen cognitively impaired HIV-infected subjects were enrolled in this 10-week open-label study of lithium 300 mg twice daily. Neuroimaging was performed at baseline and following 10 weeks of treatment and included magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), and functional MRI (fMRI). Thirteen of the 14 subjects (93%) that complied with the study visits were able to complete the study on lithium and 11 out of 13 (79%) completed the study at the originally assigned dose of 300 mg twice daily. There were no significant changes in CD4+ lymphocyte cell count and plasma HIV RNA. Cognitive performance and depressive mood did not improve significantly after the 10-week lithium treatment; however, neuroimaging revealed a decrease in the glutamate+glutamine (Glx) peak in the frontal gray matter, increased fractional anisotropy, and decreased mean diffusivity in several brain areas, and changes in brain activation patterns, suggestive of improvement. These results suggest that lithium can be used safely in HIV-infected individuals with cognitive impairment. Furthermore, the neuroimaging results suggest that lithium may improve HIV-associated central nervous system (CNS) injury; thus, further investigations of lithium as an adjunctive treatment for HIV-associated cognitive impairment are warranted.  相似文献   

10.
HIV-associated neurocognitive disorders (HAND) persist despite plasma HIV RNA suppression with antiretrovirals (ARV). Sequestered reservoirs in the central nervous system and circulating monocytes are theorized to contribute to persistent brain injury. We previously demonstrated that elevated intracellular HIV DNA from circulating cells was associated with HAND in ARV-treated and ARV-naive subjects. We now report that failure to suppress intra-monocyte HIV DNA 3.5 years after initiating ARV is linked to persistent HAND and subjects with dementia are least likely to suppress intra-monocyte HIV DNA at 3.5 years. These findings suggest that antiviral strategies may need to target intra-monocyte HIV DNA.  相似文献   

11.
Human immunodeficiency virus-1 (HIV) infection of the central nervous system may cause a neurological syndrome termed HIV-associated neurocognitive disorder (HAND) which includes minor neurocognitive disorders or a more severe form of motor and cognitive impairments. Although treatment with highly active antiretroviral agents decreases the load of HIV in the brain, the prevalence of mild forms of HAND is actually increased due to longer life. Therefore, adjunctive and combined therapies must be developed to prevent and perhaps reverse the neurologic deficits observed in individuals with HAND. Key to developing effective therapies is a better understanding of the molecular and cellular mechanisms by which the virus causes this disorder. A number of HIV proteins has been shown to be released from HIV-infected cells. Moreover, these proteins have been shown to possess neurotoxic properties. This review describes new evidence of a direct interaction of the HIV protein gp120 with neurons, which might play a role in the etiopathology of HAND.  相似文献   

12.
FK506 binding protein (FKBP)-51 and FKBP52 act as molecular chaperones to control glucocorticoid receptor (GR) sensitivity. Dysregulation of proteins involved in GR-mediated signaling can lead to maladaptive stress response and aging-related cognitive decline. As HIV infection is related to chronic stress, we hypothesized that altered cortical expression of these proteins was associated with HIV-associated neurocognitive disorders (HAND). We used quantitative immunohistochemistry to assess expression levels of these proteins in the mid-frontal gyrus of 55 HIV-infected subjects free of cerebral opportunistic diseases compared to 20 age-matched non-HIV controls. The immunoreactivity normalized to the neuroanatomic area measured (IRn) for FKBP51 was increased in HIV subjects both in the cortex and subcortical white matter (p?相似文献   

13.
The role of brain HIV load in the pathogenesis of HIV-associated neurocognitive disorders (HAND) is unclear. To try and determine if the amount of HIV drives the severity of pathology, a severe combined immunodeficient (SCID) mouse model of HIV encephalitis (HIVE) was utilized to determine the effectiveness of a systemically administered combined antiretroviral (cART) regimen. SCID mice were inoculated intracerebrally with HIV-infected or uninfected (control) human macrophages and treated subcutaneously with cART or saline for 10 days. Immunohistochemistry was then used to examine gliosis and neuronal damage. Drug levels were measured in brain and plasma using high-performance liquid chromatography. Peak plasma and brain levels of atazanavir, tenofovir, and emtricitabine were determined to be 1 h post-injection of cART therapy. cART significantly reduced neuropathological features of HIVE, including astrogliosis and the presence of mononuclear phagocytes, and ameliorated reduced MAP2 (neuronal integrity) staining. However, cART did not eradicate HIV from the brain. Using this animal model of HIVE, these data indicate effective penetration of cART reduces brain viral loads and HIV pathology, possibly by eliminating the production of HIV proteins, virus infected cells, or both. Importantly, these data suggest that viral load directly affects the extent of pathology seen in the brain, particularly neuronal damage, which implies that more effective suppression of HIV in the CNS could reduce currently highly prevalent forms of HAND. However, these data also strongly suggest that cART will not eliminate HIV from the brain and that adjunctive therapies must be developed.  相似文献   

14.
Effective combination antiretroviral therapies (ART) have markedly lengthened survival among HIV infected individuals. In this long-surviving cohort, both psychiatric comorbidities and HIV-associated neurocognitive disorders (HAND) remain common. Even mild neurocognitive impairment can significantly disrupt of activities of daily living and reduce quality of life. Persistence of HAND might reflect incomplete containment of HIV within the central nervous system (CNS) due to the limited penetration of most antiretrovirals (ARVs) across the blood-brain barrier. Recent data support that certain medications used to treat psychiatric comorbidities in HIV-infected individuals may also protect the brain from toxic byproducts of HIV replication and neuroinflammation. Two drug classes in particular, glycogen synthase kinase-3 beta (GSK-3b) inhibitors and serotonin reuptake inhibitors (SRIs), may benefit individuals with HAND. Valproic acid (VPA) and lithium are potentially beneficial GSK-3b inhibitors. While the mechanism of benefit of SRIs in HAND remains unknown, evidence supports some benefit of citalopram and paroxetine. The present brief review focuses on these drugs and assesses their possible adjunct roles in the treatment of HIV-infected individuals.  相似文献   

15.
Effective combination antiretroviral therapies (ART) have markedly lengthened survival among HIV infected individuals. In this long-surviving cohort, both psychiatric comorbidities and HIV-associated neurocognitive disorders (HAND) remain common. Even mild neurocognitive impairment can significantly disrupt of activities of daily living and reduce quality of life. Persistence of HAND might reflect incomplete containment of HIV within the central nervous system (CNS) due to the limited penetration of most antiretrovirals (ARVs) across the blood-brain barrier. Recent data support that certain medications used to treat psychiatric comorbidities in HIV-infected individuals may also protect the brain from toxic byproducts of HIV replication and neuroinflammation. Two drug classes in particular, glycogen synthase kinase-3 beta (GSK-3b) inhibitors and serotonin reuptake inhibitors (SRIs), may benefit individuals with HAND. Valproic acid (VPA) and lithium are potentially beneficial GSK-3b inhibitors. While the mechanism of benefit of SRIs in HAND remains unknown, evidence supports some benefit of citalopram and paroxetine. The present brief review focuses on these drugs and assesses their possible adjunct roles in the treatment of HIV-infected individuals.  相似文献   

16.
Individuals infected with HIV are living longer due to effective treatment with combination antiretroviral therapy (cART). Despite these advances, HIV-associated neurocognitive disorders (HAND) remain prevalent. In this study, we analyzed resting state functional connectivity (rs-fc) data from HIV-infected and matched HIV-uninfected adults aged 60 years and older to determine associations between HIV status, neuropsychological performance, and clinical variables. HIV-infected participants with detectable plasma HIV RNA exhibited decreased rs-fc within the salience (SAL) network compared to HIV-infected participants with suppressed plasma HIV RNA. We did not identify differences in rs-fc within HIV-infected individuals by HAND status. Our analysis identifies focal deficits in the SAL network that may be mitigated with suppression of plasma virus. However, these findings suggest that rs-fc may not be sensitive as a marker of HAND among individuals with suppressed plasma viral loads.  相似文献   

17.
The inflammatory response following traumatic brain injury (TBI) is regulated by phagocytic cells. These cells comprising resident microglia and infiltrating macrophages play a pivotal role in the interface between early detrimental and delayed beneficial effects of inflammation. The aim of the present study was to monitor the early effect of monocyte/phagocytic accumulation and further to explore its kinetics in TBI mice. Localized macrophage population was monitored using ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle enhanced in vivo serial magnetic resonance imaging (MRI). Flow cytometry based gating study was performed to discriminate between resident microglia (Ly6G CD11b+ CD45low) and infiltrating macrophages (Ly6G CD11b+ CD45high) at the injury site. The T2* relaxation analysis revealed that maximum macrophage infiltration occurs between 66 and 72 h post injury (42–48 h post administration of USPIO) at the site of inflammation. This imaging data was well supported by iron oxide specific Prussian blue staining and macrophage specific F4/80 immunohistochemistry (IHC) analysis. Quantitative real-time PCR analysis found significant expression of monocyte chemoattractant protein-1 (MCP-1) at 72 h post injury. Also, we found that flow cytometric analysis demonstrated a 7-fold increase in infiltrating macrophages around 72 h post injuries as compared to control. The MR imaging in combination with flow cytometric analysis enabled the dynamic measurement of macrophage infiltration at the injury site. This study may help in setting an optimal time window to intervene and prevent damage due to inflammation and to increase the therapeutic efficacy.  相似文献   

18.
HIV coreceptor usage of CXCR4 (X4) is associated with decreased CD4+ T-cell counts and accelerated disease progression, but the role of X4 tropism in HIV-associated neurocognitive disorders (HAND) has not previously been described. This longitudinal study evaluated data on 197 visits from 72 recently HIV-infected persons who had undergone up to four sequential neurocognitive assessments over a median of 160 days (IQR, 138–192). Phenotypic tropism testing (Trofile ES, Monogram, Biosciences) was performed on stored blood samples. Multivariable mixed model repeated measures regression was used to determine the association between HAND and dual-mixed (DM) viral tropism, estimated duration of infection (EDI), HIV RNA, CD4 count, and problematic methamphetamine use. Six subjects (8.3 %) had DM at their first neurocognitive assessment and four converted to DM in subsequent sampling (for total of 10 DM) at a median EDI of 10.1 months (IQR, 7.2–12.2). There were 44 (61.1 %) subjects who demonstrated HAND on at least one study visit. HAND was associated with DM tropism (odds ratio, 4.4; 95 % CI, 0.9–20.5) and shorter EDI (odds ratio 1.1 per month earlier; 95 % CI, 1.0–1.2). This study found that recency of HIV-1 infection and the development of DM tropism may be associated with HAND in the relatively early stage of infection. Together, these data suggest that viral interaction with cellular receptors may play an important role in the early manifestation of HAND.  相似文献   

19.
Increases in circulating CD14+/CD16+ monocytes have been associated with HIV dementia; trafficking of these cells into the CNS has been proposed to play an important role in the pathogenesis of HIV-induced neurological disorders. This model suggests that events outside the CNS leading to monocyte activation initiate the process leading to HIV dementia. To investigate the role of this activated monocyte subset in the pathogenesis of HIV dementia, we examined brain specimens from patients with HIV encephalopathy (HIVE), HIV without encephalopathy, and seronegative controls. An accumulation of perivascular macrophages was observed in HIVE. The majority of these cells identified in microglial nodules and in the perivascular infiltrate were CD14+/CD16+. P24 antigen colocalized with both CD14 and CD16 suggesting that the CD14+/CD16+ macrophage is a major reservoir of HIV-1 infection in CNS. Using CD45/LCA staining, the perivascular macrophage was distinguished from resident microglia. In addition to perivascular and nodular localizations, CD16 also stained ramified cells throughout the white matter. These cells were more ramified and abundant than cells positive for CD14 in white matter. Double staining for p24 and CD16 suggests that these cells were often infected with HIV-1. The prominent distribution of CD14+ cells in HIVE prompted our analysis of soluble CD14 levels in cerebrospinal fluid. Higher levels of soluble CD14 (sCD14) were observed in patients with moderate-to-severe HIV dementia, suggesting the utility of sCD14 as a surrogate marker. CD14+/CD16+ monocytes may play a role in other neurological disorders and sCD14 may be useful for evaluating these conditions.  相似文献   

20.
HIV-infected patients treated with antiretroviral medicines (ART) still face neurological challenges. HIV-associated neurocognitive disturbances (HAND) can occur, and latent viral DNA persisting in the central nervous system (CNS) prevents eradication of HIV. This communication focuses on how to develop experimental models of HAND and CNS HIV latency that best imitate the CNS pathophysiology in diseased humans, which we take to be “the real thing.” Models of HIV encephalitis (HIVE) with active CNS viral replication were developed in the early years of the AIDS pandemic. The clinical relevancy of such models is in sharp decline because HIVE seldom occurs in virally suppressed patients, while HAND remains common. The search for improved models of HAND should incorporate the neurochemical, neuroimmunological and neuropathological features of virally suppressed patients. Common anomalies in these patients as established in autopsy brain specimens include brain endothelial cell activation and neurochemical imbalances of synaptic transmission; classical neurodegeneration may not be as crucial. With regard to latent HIV with viral suppression, human brain specimens show that the pool of latent proviral HIV DNA in the CNS is relatively small relative to the total body pool and does not change substantially over years. The CNS pool of latent virus probably differs from lymphoid tissues, because the mononuclear phagocyte system sustains productive infection (versus lymphocytes). These and yet-to-be discovered aspects of the human CNS of virally suppressed patients need to be better defined and addressed in experimental models. To maintain clinical relevancy, models of HAND and viral latency should faithfully emulate “the real thing.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号