首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell vaccines engineered to express immunomodulators have shown feasibility in eliminating leukemia in murine models. Vectors for efficient gene delivery to primary human leukemia cells are required to translate this approach to clinical trials. In this study, second-generation lentiviral vectors derived from human immunodeficiency virus 1 were evaluated, with the cytomegalovirus (CMV) promoter driving expression of granulocyte-macrophage-colony-stimulating factor (GM-CSF) and CD80 in separate vectors or in a bicistronic vector. The vectors were pseudotyped with vesicular stomatitis virus G glycoprotein and concentrated to high titers (10(8)-10(9) infective particles/mL). Human acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and chronic myeloid leukemia cell lines transduced with the monocistronic pHR-CD80 vector or the bicistronic pHR-GM/CD vector became 75% to 95% CD80 positive (CD80(+)). More important, transduction of primary human ALL and AML blasts with high-titer lentiviral vectors was consistently successful (40%-95% CD80(+)). The average amount of GM-CSF secretion by the leukemia cell lines transduced with the pHR-GM-CSF monocistronic vector was 2182.9 pg/10(6) cells per 24 hours. Secretion was markedly lower with the bicistronic pHR-GM/CD vector (average, 225.7 pg/10(6) cells per 24 hours). Lower amounts of CMV-driven messenger RNA were detected with the bicistronic vector, which may account for its poor expression of GM-CSF. Primary ALL cells transduced to express CD80 stimulated T-cell proliferation in an autologous mixed lymphocyte reaction. This stimulation was specifically blocked with monoclonal antibodies reactive against CD80 or by recombinant cytotoxic T-lymphocyte antigen 4-immunoglobulin fusion protein. These results show the feasibility of efficiently transducing primary leukemia cells with lentiviral vectors to express immunomodulators to elicit antileukemic immune responses. (Blood. 2000;96:1317-1326)  相似文献   

2.
Gene therapy for hematopoietic diseases has been hampered by the low frequency of transduction of human hematopoietic stem cells (HSCs) with retroviral vectors pseudotyped with amphotropic envelopes. We hypothesized that transduction could be increased by the use of retroviral vectors pseudotyped with envelopes that recognize more abundant cellular receptors. The levels of mRNA encoding the receptors of the feline retroviruses, RD114 and feline leukemia virus type C (FeLV-C), were significantly higher than the level of gibbon ape leukemia virus (GaLV) receptor mRNA in cells enriched for human HSCs (Lin- CD34+ CD38-). We cotransduced human peripheral blood CD34+ cells with equivalent numbers of FeLV-C and GALV or RD114 and GALV-pseudotyped retroviruses for injection into fetal sheep. Analysis of DNA from peripheral blood and bone marrow from recipient sheep demonstrated that FeLV-C- or RD114-pseudotyped vectors were present at significantly higher levels than GALV-pseudotyped vectors. Analysis of individual myeloid colonies demonstrated that retrovirus vectors with FeLV-C and RD114 pseudotypes were present at 1.5 to 1.6 copies per cell and were preferentially integrated near known genes We conclude that the more efficient transduction of human HSCs with either FeLV-C- or RD114-pseudotyped retroviral particles may improve gene transfer in human clinical trials.  相似文献   

3.
Vectors based on lentiviruses such as human immunodeficiency virus (HIV) type-1 have many advantages for gene therapy, including the ability to infect non-dividing cells, long-term transgene expression and the absence of induction of an inflammatory/immune response. This study was initiated to determine whether lentiviruses would efficiently transfer genes to both neonatal and adult cardiac cells in culture and, by direct injection, to the heart in vivo. A three-plasmid expression system, including a packaging defective helper construct, a plasmid coding for a heterologous (VSV-G) envelope protein and a vector construct harboring reporter genes –E-GFP (enhanced green fluorescent protein) and puro (puromycin-resistance protein) was used to generate pseudotyped HIV-1 particles by transient transfection of human embryonic kidney 293T cells. We demonstrated efficient gene transfer into neonatal and adult cardiac myocytes in vitro and identified conditions in which virtually 100 % of cultured neonatal and 70 % of adult cardiac myocytes express the reporter gene. Transduction of adult cardiac myocytes with high titre lentiviral vectors did not affect the cell number, morphology or viability compared to untransduced cells. We delivered HIV-1-based vectors to the intact heart by direct injection. Hearts transduced with pseudotyped HIV-1 vectors showed levels of transgene expression comparable to that achieved by adenovirus vectors. This study demonstrates for the first time that lentivirus-based vectors can successfully transduce adult cardiomyocytes both in vitro and in vivo, and opens up the prospect of lentivirus-based vectors becoming an important gene delivery system in the cardiovascular field. Received: 1 October 2001, Returned for 1. revision: 18 October 2001, 1. Revision received: 19 November 2001, Returned for 2. revision: 6 December 2001, 2. Revision received: 13 February 2002, Accepted: 6 March 2002  相似文献   

4.
This study presents two murine monoclonal antibodies which react with the Common Acute Lymphoblastic Leukemia Antigen (CALLA). Both antibodies can be used for the diagnosis of common ALL (cALL). Indirect immunofluorescence studies (FACS-analysis) showed that the antibodies react with granulocytes and different human cell lines (Nalm-6, Reh, Raji, CCRF-CEM). The monoclonal antibodies BL-CALLA/1 and BL-CALLA/2 identify a single polypeptide chain of 95 kD. Both antibodies recognize the same or closely related epitope of the CALLA-molecule and are able to modulate in vitro the antigen on the CALLA-positive cell line Reh.  相似文献   

5.
Peripheral blood lymphocytes (PBLs) are an important target for gene transfer studies aimed at human gene therapy. However, no reproducibly efficient methods are currently available to transfer foreign, potentially therapeutic genes into these cells. While vectors derived from murine retroviruses have been the most widely used system, their low infection efficiency in lymphocytes has required prolonged in vitro culturing and selection after infection to obtain useful numbers of genetically modified cells. We previously reported that retroviral vectors pseudotyped with vesicular stomatitis G glycoprotein (VSV-G) envelope can infect a wide variety of cell types and can be concentrated to titers of greater than 10(9) infectious units/ml. In this present study, we examined the ability of amphotropic and pseudotyped vectors expressing a murine cell surface protein, B7-1, to infect the human T-cell line Jurkat or human blood lymphocytes. Limiting dilution analysis of transduced Jurkat cells demonstrated that the pseudotyped vector is significantly more efficient in infecting T cells than an amphotropic vector used at the same multiplicity of infection (moi). To identify the transduction efficiency on PBLs, we examined the levels of cell surface expression of the B7-1 surface marker 48 to 72 hr after infection. The transduction efficiency of PBLs with the pseudotyped vector increased linearly with increasing moi to a maximum of approximately 16-32% at an moi of 40. This relatively high efficiency of infection of a T-cell line and of blood lymphocytes with VSV-G pseudotyped virus demonstrates that such modified pseudotyped retrovirus vectors may be useful reagents for studies of gene therapy for a variety of genetic or neoplastic disorders.  相似文献   

6.
BACKGROUND AND OBJECTIVES: Gene manipulation and cell vaccines represent innovative strategies to enhance the immunogenicity of cancer cells. We adopted a defective lentivirus derived from the human immunodeficiency virus (HIV)-1 backbone and carrying the enhanced green fluorescent protein (EGFP) gene to transduce primary human acute myelogenous leukemia (AML) and B-precursor acute lymphoblastic leukemia (ALL) cells. DESIGN AND METHODS: AML blasts were maintained with or without cytokines (stem cell factor, FLT3 ligand and interleukin 3) for 48 hours, and successively infected with two spin infection cycles. ALL blasts were cultured on a murine S17 stromal cell line. RESULTS: As regards AML cells, the efficiency of infection at 7 days varied from 8.4 to 37%. As confirmed by cell cycle analysis, cells were, in most of the cases, blocked in different phases of the cycle and did not proliferate during culture: the infection was therefore obtained in the absence of cell proliferation. In contrast, the maintenance of optimal cell viability was of fundamental importance for obtaining good infection levels. As regards ALL blasts, the percentages of infection after 3 days varied from 4.4 to 21%. INTERPRETATION AND CONCLUSIONS: These preliminary data suggest that gene delivery into primary human AML and B-precursor ALL cells by an HIV-1 derived lentiviral vector could represent a strategy for engineering leukemic cells for use as cancer vaccines.  相似文献   

7.
M Goerner  B Bruno  P A McSweeney  G Buron  R Storb  H P Kiem 《Blood》1999,94(7):2287-2292
A competitive repopulation assay in the dog was used to develop improved gene transfer protocols for hematopoietic stem cell gene therapy. Using this assay, we previously showed improved gene transfer into canine hematopoietic repopulating cells when CD34-enriched marrow cells were cocultivated on gibbon ape leukemia virus (GALV)-based retrovirus vector-producing cells. In the present study, we have investigated the use of fibronectin fragment CH-296 and 2 growth factor combinations to further improve gene transfer efficiency. CD34-enriched marrow cells from each dog were prestimulated for 24 hours and then divided into 3 equal fractions. Two fractions were placed into flasks coated with either CH-296 or bovine serum albumin (BSA) and virus-containing medium supplemented with growth factors, and protamine sulfate was replaced 4 times over a 48-hour period. One fraction was cocultivated on irradiated PG13 (GALV-pseudotype) packaging cells for 48 hours. In 2 animals, cells of the different fractions were transduced in the presence of human FLT-3 ligand (FLT3L), canine stem cell factor (cSCF), and human megakaryocyte growth and development factor (MGDF), and in 2 other dogs, transduction was performed in the presence of FLT3L, cSCF, and canine granulocyte-colony stimulating factor (cG-CSF). The vectors used contained small sequence differences, allowing differentiation of cells genetically marked by the different vectors. After transduction, nonadherent and adherent cells from all 3 fractions were pooled and infused into lethally irradiated dogs. Polymerase chain reaction and Southern blot analysis were used to determine the persistence of the transferred vectors in the peripheral blood and marrow cells after transplantation. The highest levels of gene transfer were obtained when cells were transduced in the presence of FLT3L, cSCF, and cG-CSF (gene transfer levels of more than 10% for more than 8 months so far). Compared with the 2 animals that received cells transduced with FLT3L, cSCF, and MGDF, gene transfer levels were significantly higher when dogs received cells that were transduced in the presence of cG-CSF. Transduction on CH-296 resulted in gene transfer levels that were at least as high as transduction by cocultivation. In summary, the overall levels of gene transfer obtained with these conditions should be sufficiently high to allow stem cell gene therapy studies aimed at correcting genetic diseases in dogs as a model for human gene therapy.  相似文献   

8.
Abstract: The effects of interleukin 4 (IL-4) on human leukemic precursor B-cell lines were investigated. Recombinant IL-4 (rIL-4) was added to three acute lymphoblastic leukemia-derived pre B-cell lines: Reh, Km3 and Nalm-6. Our results show that rIL-4 significantly decreases continuous proliferation of Reh and Km3 cells while Nalm-6 cells have a limited response in this respect. This rIL-4 effect is dose-dependent and can be neutralized by anti-IL-4 monoclonal antibody (mAb). Furthermore, rIL-4 down-regulated IL-3-induced proliferation of Reh cells. Phenotypic analysis of rIL-4-treated cells points to significant induction of surface marker maturation of leukemic cells by this cytokine. Together, these in vitro data suggest that IL-4: 1) inhibits the proliferation and 2) promotes the differentiation of certain human leukemic B-cell precursors.  相似文献   

9.
Barrette S  Douglas JL  Seidel NE  Bodine DM 《Blood》2000,96(10):3385-3391
The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34(+) cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin(-) bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.  相似文献   

10.
Horn PA  Topp MS  Morris JC  Riddell SR  Kiem HP 《Blood》2002,100(12):3960-3967
Vector-containing medium harvested from murine packaging cell lines has been shown to contain factors that can negatively influence the transduction and maintenance of hematopoietic stem cells. Thus, we generated a human packaging cell line with a gibbon ape leukemia virus pseudotype (Phoenix-GALV), and we evaluated vectors produced by Phoenix-GALV for their ability to transduce hematopoietic progenitor/stem cells. In 3 baboons, we used a competitive repopulation assay to directly compare GALV-pseudotype retrovirus vectors produced by either Phoenix-GALV or by the NIH 3T3-derived packaging cell line, PG13. In 3 additional baboons we compared Phoenix-GALV-derived vectors to more recently developed lentiviral vectors. Gene transfer efficiency into hematopoietic repopulating cells was assessed by evaluating the number of genetically modified peripheral blood and marrow cells using flow cytometry and real-time polymerase chain reaction. Transduction efficiency of hematopoietic repopulating cells was significantly higher using the Phoenix-GALV-derived vector as compared with the PG13-derived vectors or lentiviral vectors, with stable transduction levels up to 25%. We followed 2 animals for more than one year. Flow cytometric analysis of hematopoietic subpopulations in these animals revealed transgene expression in CD13(+) granulocytes, CD20(+) B lymphocytes, CD3(+) T lymphocytes, CD61(+) platelets, as well as red blood cells, indicating multilineage engraftment of cells transduced by Phoenix-GALV-pseudotype vectors. In addition, transduction of human CD34(+) cells was significantly more efficient than transduction of baboon CD34(+) cells, suggesting that Phoenix-GALV-derived oncoretroviral vectors may be even more efficient in human stem cell gene therapy applications.  相似文献   

11.
OBJECTIVE: Epstein-Barr virus (EBV)-based vectors have favorable features for gene transfer, including a high transduction efficiency especially for B cells, large packaging capacity up to 150 kb pairs, and ability to infect postmitotic cells. Recombinant EBV was explored for transduction of primary human B-cell chronic lymphocytic leukemia (CLL) cells. MATERIAL AND METHODS: EBV vectors deleted for all oncogenic sequences and encoding terminal repeats (TR) essential for encapsidation, the lytic origin of replication (oriLyt) for DNA amplification, and the enhanced green fluorescent protein (EGFP) were packaged using an optimized, helper-virus-free method. Infectious EBV virions encoding EGFP (EBV/EGFP) with an infectious titer up to 2 x 10(6) per milliliter were generated. Primary leukemic cells from 14 patients with CLL were successfully transduced with EBV/EGFP at a very low multiplicity of infection (< 1). RESULTS: Transgene expression was detected in up to 85% of cells 48 hours after infection. Transduction was specifically mediated by EBV vectors because gene transfer was inhibited by an antibody (72A1) directed against the viral envelope glycoprotein gp350/220. Furthermore, transduction of CLL cells with packaged EBV vectors coding for EGFP but deleted for TR sequences (TR-) did not result in EGFP expression compared to TR+ vector constructs (p = 0.009). CONCLUSION: Helper-virus-free EBV-based gene transfer vectors hold promise for development of genetic therapies for CLL patients.  相似文献   

12.
OBJECTIVE: Currently standard recombinant adeno-associated virus serotype 2(rAAV2)-based vectors lack the efficiency for gene transfer into primary human CD34(+) peripheral blood progenitor cells (PBPC). MATERIALS AND METHODS: An advancement in vector development now allows the generation of rAAV capsid mutants that offer higher target cell efficiency and specificity. To increase the gene transfer into hematopoietic progenitor cells, we applied this method for the first time on primary human CD34(+) PBPC cells. RESULTS: On a panel of leukemia cell lines (CML/AML), significantly higher gene transfer efficiency of the rAAV capsid mutants (up to 100% gene transfer) was observed compared to standard rAAV2 vectors. A higher transduction efficiency in the imatinib-resistant cell line LAMA84-R than in their sensitive counterpart LAMA84-S and a pronounced difference in susceptibility for the capsid mutants vs rAAV2 in LAMA84-S were particularly striking. On solid tumor cell lines, on the other hand, rAAV2 was more efficient than the capsid mutants, suggesting an increased specificity of our capsid mutants for hematopoietic progenitor cells. On primary human CD34(+) PBPC significantly higher (up to eightfold; 16% green fluorescent protein-positive) gene transfer could be obtained with the newly generated vectors compared to standard rAAV2 vectors. CONCLUSION: These novel vectors may enable efficient gene transfer using rAAV-based vectors into primary human blood progenitor cells for a future clinical application.  相似文献   

13.
14.
Development of HIV vectors for anti-HIV gene therapy.   总被引:6,自引:0,他引:6       下载免费PDF全文
Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection.  相似文献   

15.
We studied the transduction of primary human B lymphocytes and myeloma cells with lentiviral vectors. In peripheral blood B cells that had been activated with helper T cells (murine thymoma EL-4 B5) and cytokines, multiply attenuated HIV-1-derived vectors pseudotyped with vesicular stomatitis virus (VSV) G-envelope protein achieved the expression of green fluorescence protein (GFP) in 27% +/- 12% (mean +/- 1 SD; median, 27%) of B cells in different experiments. When compared in parallel cultures, the transducibility of B cells from different donors exhibited little variation. The human cytomegalovirus (CMV) promoter gave 4- to 6-fold higher GFP expression than did the human elongation factor-1alpha promoter. A murine retroviral vector pseudotyped with VSV G protein proved inefficient even in mitotically active primary B cells. B cells freshly stimulated with Epstein-Barr virus were also transducible by HIV vectors (24% +/- 9%), but B cells activated with CD40 ligand and cytokines resisted transduction. Thus, different culture systems gave different results. Freshly isolated, nondividing myeloma cells were efficiently transduced by HIV vectors; for 6 myelomas the range was 14% to 77% (median, 28%) GFP(+) cells. HIV vectors with a mutant integrase led to no significant GFP signal in primary B or myeloma cells, suggesting that vector integration was required for high transduction. In conclusion, HIV vectors are promising tools for studies of gene functions in primary human B cells and myeloma cells for the purposes of research and the development of gene therapies.  相似文献   

16.
High-titer, HIV-1-based lentiviral vector particles were found to transduce cytokine-mobilized rhesus macaque CD34(+) cells and clonogenic progenitors very poorly (< 1%), reflecting the postentry restriction in rhesus cells to HIV infection. To overcome this barrier, we developed a simian immunodeficiency virus (SIV)-based vector system. A single exposure to a low concentration of amphotropic pseudotyped SIV vector particles encoding the green fluorescent protein (GFP) resulted in gene transfer into 68% +/- 1% of rhesus bulk CD34(+) cells and 75% +/- 1% of clonogenic progenitors. Polymerase chain reaction (PCR) analysis of DNA from individual hematopoietic colonies confirmed these relative transduction efficiencies. To evaluate SIV vector-mediated stem cell gene transfer in vivo, 3 rhesus macaques underwent transplantation with transduced, autologous cytokine-mobilized peripheral blood CD34(+) cells following myeloablative conditioning. Hematopoietic reconstitution was rapid, and an average of 18% +/- 8% and 15% +/- 7% GFP-positive granulocytes and monocytes, respectively, were observed 4 to 6 months after transplantation, consistent with the average vector copy number of 0.19 +/- 0.05 in peripheral blood leukocytes as determined by real-time PCR. Vector insertion site analysis demonstrated polyclonal reconstitution with vector-containing cells. SIV vectors appear promising for evaluating gene therapy approaches in nonhuman primate models.  相似文献   

17.
ABSTRACT: The low level of amphotropic retrovirus mediated gene transfer into human hematopoietic stem cells (HSC) has been an impediment to gene therapy for hematopoietic diseases (1). We have previously shown that mouse and human HSC have low levels of the mRNA encoding PiT-2, the amphotropic retrovirus receptor. We hypothesized that the low level of PiT-2 mRNA was responsible for the low frequency of transduction of HSC by amphotropic retroviral vectors (2). In this study we compared the level of PiT-2 and PiT-1, the Gibbon Ape Leukemia Virus receptor (GaLV), in 5 human tissue culture cell lines. PiT-2 and PiT-1 mRNA levels were highest in K562 cells and lowest in HL60 cells. In hematopoietic cell lines, the level of PiT-2 or PiT-1 mRNA correlated directly with retrovirus binding and transduction with the appropriate (amphotropic or GaLV) retrovirus vector. The level of expression of PiT-2 and PiT-1 mRNA could be increased by treatment of HL60 cells with either PMA or Interleukin-1α. The increase in the level of PiT-2 and PiT-1 mRNA correlated with increased transduction with both amphotropic and GaLV retroviral vectors. We conclude that the improved transduction was a direct effect of the increased levels of receptor mRNA and unrelated to changes in the cell cycle status.  相似文献   

18.
The use of Moloney murine leukemia virus (Mo-MLV)-based vectors to deliver therapeutic genes into target cells is limited by their inability to transduce nondividing cells. To test the capacity of HIV-based vectors to deliver genes into nondividing cells, we have generated replication-defective HIV type 1 (HIV-1) reporter vectors carrying neomycin phosphotransferase or mouse heat stable antigen, replacing the HIV-1 sequences encoding gp160. These vectors also harbor inactive vpr, vpu, and nef coding regions. Pseudotyped HIV-1 particles carrying either the ecotropic or the amphotropic Mo-MLV envelope proteins or the vesicular stomatitis virus G protein were released after single or double transfections of either human 293T or monkey COS-7 cells with titers of up to 107 colony-forming units per milliliter. A simple ultrafiltration procedure resulted in an additional 10- to 20-fold concentration of the pseudotyped particles. These vectors along with Mo-MLV-based vectors were used to transduce primary human skin fibroblasts and human peripheral blood CD34+ cells. The HIV-1 vector system was significantly more efficient than its Mo-MLV-based counterpart in transducing human skin fibroblasts arrested at the G0/G1 stage of the cell cycle by density-dependent inhibition of growth. Human CD34+ cells were transduced efficiently using HIV-1 pseudotype particles without prior stimulation with cytokines.  相似文献   

19.
Retroviral-mediated gene transfer is the most attractive modality for gene transfer into hematopoietic stem cells. However, transduction efficiency has been low using amphotropic Moloney murine leukemia virus (MoMLV) vectors. In this study, we investigated modifications of gene transfer using amphotropic MoMLV vectors in cell-free supernatant for their ability to increase the currently low transduction of both committed hematopoietic progenitors, granulocyte-macrophage colony- forming units (CFU-GMs), and their precursors, long-term culture- initiating cells (LTC-IC). First, based on the observation that bone marrow cells express more gibbon ape leukemia virus (GALV) receptor (Glvr-1) than amphotropic receptor (Ram-1), PG13/LN, which is a MoMLV vector pseudotyped with the GALV envelope, was compared with the analogous amphotropic envelope vector (PA317/LN). Second, progenitor cell transduction efficiency was compared between CD34 enriched and nonenriched progenitor populations. Third, the duration of transduction in vitro was extended to increase the proportion of progenitor cells that entered cell cycle and could thereby integrate vector cDNA. In 20 experiments, 1 x 10(6) marrow or peripheral blood mononuclear cells (PBMCs)/mL were exposed to identical titers of pseudotyped PG13/LN vector or PA317/LN vector in the presence of recombinant human interleukin-1 (IL-1), IL-3, IL-6, and stem cell factor (SCF; c-kit ligand) for 5 days. 50% of fresh vector supernatant was refed daily. Hematopoietic progenitor cells as measured by G418-resistant granulomonocytic colony (CFU-GM) formation were transduced more effectively with PG13/LN (19.35%) than with PA317/LN (11.5%, P = .012). In 11 further experiments, enrichment of CD34 antigen positive cells significantly improved gene transfer from 13.9% G418-resistant CFU-GM in nonenriched to 24.9% in CD34-enriched progenitor cells (P < .01). To analyze gene transfer after extended growth factor-supported long-term culture, 1 x 10(6) marrow cells/mL were cultured with IL-1, IL-3, IL-6, and SCF (50 ng/mL each) for 1, 2, and 3 weeks. Fifty percent of PG13/LN supernatant with growth factors was refed on 5 days per week. Five percent of marrow CFU-GM and 67% of LTC-IC were G418 resistant at 1 week (n = 4), 60% of CFU-GM and 100% of LTC-IC were resistant at 2 weeks (n = 2) and 74% of CFU-GM (n = 4) and 82% of LTC-IC (n = 2) were resistant at three weeks.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
One restriction of retroviral gene transfer into hematopoietic stem cells is the low level of amphotropic virus receptor. In the present study, we examined whether retroviral vectors pseudotyped with the G-protein of vesicular stomatitis virus (VSV) can overcome this restriction. Human progenitor cells purified by magnetic beads and cell sorting were transduced with an amphotropic or VSV-G-pseudotyped retroviral vector containing the truncated human nerve growth factor receptor as a marker gene. Cells were prestimulated with flt-3 ligand, stem cell factor, and interleukin-3 and transduced on fibronectin. Marker gene expression was analyzed by flow cytometry. Transduction efficiencies of amphotropic and VSV-G-pseudotyped virus for CD34+ cells did not differ significantly. Gene transfer into CD34+CD38- cells, which are enriched in more immature progenitors, was not restricted and transfer efficiencies for this subset were also similar for both pseudotypes. The addition of fibronectin improved gene transfer with the amphotropic vector considerably (5- to 19.3-fold, mean 12.6), while the effect on the VSV-G-pseudotype was far less pronounced (1- to 3.9-fold, mean 2.1, P = 0.04). In conclusion, high levels of gene transfer to human hematopoietic progenitors were achieved with an optimized transduction protocol, and transduction efficiencies could not be improved further by the use of VSV-G-pseudotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号