首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Initial cell attachment and spreading of anchorage-dependent cells onto the material surface are crucial concerns for the development of more effective implants. In this study, MG63 cells were employed to investigate the initial cell response to sol-gel derived fluoridated hydroxyapatite (FHA) coatings. Along with that, surface roughness, wettability, and protein adsorption were also characterized for those FHA coatings, respectively. It was observed that both the surface roughness and contact angle have a slight increase in response to the incorporation of more fluorine ions. All FHA coatings showed similar amount of adsorbed proteins (approximately 1.6 microg/cm(2)) upon testing in culture medium. Cell counting showed that no significant difference was observed for the amount of initially attached cells between HA and fluoridated HA coatings during the first 4 h culture. On the other hand, the well-spread cell on all prepared coating surface indicates that the incorporated fluorine ions have no adverse effect on cell spreading process. Therefore, it was suggested from this study that the prepared fluoridated hydroxyapatite coatings have comparable bioactivity to that of pure hydroxyapatite coating, and these results are meaningful for further investigation for application of FHA coatings.  相似文献   

2.
The physical, chemical, and biological properties of pulsed laser deposited (PLD) and plasma sputtered (PS) hydroxyapatite (HA) coatings were compared. Human osteoblast-like cell responses to these coatings in vitro were assayed for proliferation and phenotypic expression. PS coatings formed smooth and continuous thin films that followed the contours of the substrate surface. PLD coatings consisted of numerous spheroidal micro- and macroparticles. The crystallinity of all coatings was quantified by comparison with the HA target used for both the PS and PLD processes. The XRD and FTIR results indicated that unannealed PLD coatings deposited at room temperature had X-ray spectra consistent with an amorphous structure and were found to dissolve after only a few hours in saline solution. Annealing at 400 degrees C increased the crystallinity (87-98%), which resulted in improved stability and cell activity. The PS coatings showed greater chemical stability than the unannealed PLD coatings and contained an approximate 15% crystalline phase, increasing to 65% postannealing. Cell proliferation and alkaline phosphatase production were significantly higher on unannealed PS specimens than the other coating treatments. There may be benefits in engineering the presence of a minor percentage of a microcrystalline phase in an amorphous or nanometer scale polycrystalline HA structure.  相似文献   

3.
To obtain stable plasma sprayed calcium phosphate coatings, coatings with a high crystallinity and low solubility were developed. However, stability of ceramic coatings is also influenced by their fatigue resistance. Recently, fatigue failure was proposed to explain coating detachment from implants under loaded conditions. Therefore, plasma-sprayed calcium phosphate coatings with different crystallinity were investigated in vitro for fatigue failure. An amorphous and a crystalline hydroxylapatite coating (AHA and CHA) and a highly crystalline fluorapatite coating (FA) were subjected to cyclic load tests, both in dry conditions and in simulated body fluid (SBF). The results in SBF revealed that the crystalline CHA and FA coating detached completely at the highest stressed middle section of the bar. The FA coating delaminated earlier than the CHA coating. The amorphous AHA coating showed only partial coating loss at the completion of the test. Tests in dry conditions did not reveal any change in the coatings tested. These results suggest a relation between crystallinity of apatite coatings and their failure due to fatigue: high crystallinity coatings demonstrate earlier and more complete fatigue failure than the amorphous apatite coatings. It can be concluded that coating stability is not determined solely by static dissolution, but by fatigue failure as well.  相似文献   

4.
In this study, we report fabrication of strontium (Sr) and magnesium (Mg) doped hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) substrates using inductively coupled radio frequency (RF) plasma spray. HA powder was doped with 1 wt % Sr (Sr-HA) and 1 wt % Mg (Mg-HA), heat treated at 800°C for 6 h and then used for plasma spray coating. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis indicated that the coatings were primarily composed of phase pure crystalline HA. When compared to undoped HA coating, physical properties such as microstructure, grain size, and adhesive bond strength of the doped HA coatings did not change significantly. Microstructure of the coatings showed coherency in the structure with an average grain size of 200-280 μm HA particles, where each of the HA grains consisted of 20-30 nm sized particles. An average adhesive bond strength of 17 MPa ensured sufficient mechanical strength of the coatings. A chemistry dependent improvement in bone cell-coating interaction was noticed for doped coatings although it had minimal effect on physical properties of the coatings. In vitro cell-materials interactions using human fetal osteoblasts (hFOB) showed better cell attachment and proliferation on Sr-HA coatings compared to HA or Mg-HA coatings. Presence of Sr in the coating also stimulated hFOB cell differentiation and alkaline phosphatase (ALP) expression. Improvement in bioactivity of Sr doped HA coatings on Ti without compromising its mechanical properties makes it an excellent material of choice for coated implant.  相似文献   

5.
Sol-gel thin films of hydroxyapatite (HA) and titania (TiO(2)) have received a great deal of attention in the area of bioactive surface modification of titanium (Ti) implants. Sol-gel coatings were developed on Ti substrates of pure HA and TiO(2) and two composite forms, HA+10% TiO(2) and HA+20% TiO(2), and the biological properties of the coatings were evaluated. All the coating layers exhibited thin and homogeneous structures and phase-pure compositions (either HA or TiO(2)). Primary human osteoblast cells showed good attachment, spreading and proliferation on all the sol-gel coated surfaces, with enhanced cell numbers on all the coated surfaces relative to uncoated Ti control at day 1, as observed by MTT assay and scanning electron microscopy. Cell attachment rates were also enhanced on the pure HA coating relative to control Ti. The pure HA and HA+10% TiO(2) composite coating furthermore enhanced proliferation of osteoblasts at 4 days. Moreover, the gene expression level of several osteogenic markers including bone sialoprotein and osteopontin, as measured by RT-PCR at 24h, was shown to vary according to coating composition. These findings suggest that human primary bone cells show marked and rapid early functional changes in response to HA and TiO(2) sol-gel coatings on Ti.  相似文献   

6.
Xue W  Tao S  Liu X  Zheng X  Ding C 《Biomaterials》2004,25(3):415-421
In this paper, hydroxyapatite (HA) coatings having the crystallinities of 56% and 98% were deposited by the plasma spraying and vapor-flame treatment process. The phase composition and crystallinity of the coatings were investigated by X-ray diffraction and infrared spectra. The dissolution behavior of the coatings in tris-buffer solutions was examined. The results obtained indicated that the coating having the high crystallinity showed the lower dissolution as compared to the low crystallinity coating. The bone bonding ability of HA coatings were observed in vivo by implanted in dog's femur. After 3 months implantation, the high crystallinity coating showed the higher shear strengths and remained integrated, whereas the separation of the coating fragments was clearly observed in the coating having low crystallinity.  相似文献   

7.
One of the most important concerns with the clinical use of plasma-sprayed hydroxyapatite (HA) coatings is the resorption of the coating, and dissolution at neutral pH is one of the two major resorption mechanisms. In this study, highly crystalline pure HA powders were atmospherically plasma sprayed using various parameters. Dissolution of both HA powders and coatings was measured using a calcium ion meter. Surface characteristics, including phase, morphology, and roughness, were compared for the coatings before and after dissolution. Pulverized HA coatings exhibited significantly higher dissolution compared with the same quantity of feedstock HA powders because of the decreased crystallinity and fine crystal size of the coating. Furthermore, the dissolution decreased with the crystallinity of the coating. Dissolution of HA coatings did not show much difference with respect to the coatings in the initial stage of immersion (4 h). However, dissolution of all coatings reached saturation in a fresh physiological solution. The saturation values were much lower compared with their counterparts in the form of powders, which may imply the stability of HA coatings in long-term use. In addition to crystallinity, the particle melting status in the coatings, i.e., the volume of nanocrystals, and porosity, was found to be another important factor for the dissolution of the HA coating. X-ray diffraction patterns of HA coatings indicated the complete dissolution of impurity phases and amorphous phase after the coatings were immersed in the solution for 4 days. Coatings sprayed at lower power (27.5 kW) exhibited a pattern of crystalline HA whereas coatings sprayed at higher power (42 kW) exhibited a pattern of bone apatite. Surface morphologies showed preferential dissolution of amorphous phase in all coatings accompanied with precipitation of bone apatite observable for coatings sprayed at higher power. Surface roughness measured after the dissolution studies increased for the two coatings sprayed at lower power level but decreased for coatings sprayed at higher power level. This decrease is attributed to the better match in solubility characteristics between the fine crystals and the amorphous calcium phosphate within the coating.  相似文献   

8.
Hydroxyapatite-TiO2 hybrid coating on Ti implants   总被引:3,自引:0,他引:3  
A hydroxyapatite (HA)-titania (TiO(2)) hybrid coating is developed to improve the biocompatibility of titanium (Ti) implants. The HA predeposited layer on Ti via electron beam (e-beam) evaporation is subsequently treated by micro-arc oxidation (MAO) to produce an HA-TiO(2) hybrid layer on Ti. The e-beam-deposited HA layer has a thickness of approximately 1 microm and was highly dense prior to MAO. By means of MAO treatment, a rough and porous TiO(2) layer is formed beneath the HA layer with a simultaneous local dissolution of the HA layer. Due to the HA precoating, high concentrations of Ca and P are preserved on the coating surface. The osteoblast-like cells on the hybrid coating layer grow and spread favorably. The cell proliferation rate on the hybrid coatings is not much different from that on pure Ti or simple MAO-treated Ti. However, the alkaline phosphatase (ALP) activity of the cells is significantly higher (p < 0.05) on the HA-TiO(2) hybrid coatings than on either the pure Ti or the simple MAO-treated specimen, suggesting that the cellular activity on the hybrid coatings is improved.  相似文献   

9.
Wang Y  Zhang S  Zeng X  Ma LL  Weng W  Yan W  Qian M 《Acta biomaterialia》2007,3(2):191-197
Fluoridated hydroxyapatite (FHA) coatings were deposited onto Ti6Al4V substrates by sol-gel dip-coating method. X-ray photoelectron spectroscopy results showed that fluoride ions were successfully incorporated into the hydroxyapatite (HA) lattice structure. The dissolution behavior in Tris-buffered physiological saline indicated that all fluoridated HA coatings had lower solubility than that of the pure HA coating. The lowest solubility was obtained at fluoride ion concentrations of 0.8-1.1M. In vitro cell responses were evaluated with human osteosarcoma MG63 cells in terms of cell morphology, proliferation and differentiation (alkaline phosphatase activity and osteocalcin level). For all coatings tested, similar cell morphologies and good cell viability were observed. Coatings fluoridated to 0.8-1.1 had a stronger stimulating effect on cell proliferation and differentiation activities. The influences on cell phenotypes were attributed mainly to a combined ion effect of Ca, P and F released from the coating during dissolution. For the best dissolution resistance and cell activities, it is recommended that the molar level of fluoride ion be from 0.8 to 1.1, such that the coating takes the form of Ca(10)(PO(4))(6)(OH)(1.2-0.9)F(0.8-1.1).  相似文献   

10.
Sato M  Slamovich EB  Webster TJ 《Biomaterials》2005,26(12):1349-1357
Sol-gel processing was used to coat titanium substrates with hydroxyapatite (HA), TiO2, and poly(DL-lactic-glycolic acid). Coating surface characteristics were analyzed with XRD, EDS, AFM, SEM, and water contact angle measurements which indicated that the coatings had a high degree of crystallinity and good resistance to cracking. Coatings were also evaluated by cytocompatibility testing with osteoblast-like cells (or bone-forming cells). The cytocompatibility of the HA composite coatings prepared in the present in vitro study was compared to that of a traditional plasma-sprayed HA coating. Results showed that osteoblast-like cell adhesion was promoted on the novel HA sol-gel coating compared to the traditional plasma-sprayed HA coating. In addition, hydrothermal treatment of the sol-gel coating improved osteoblast-like cell adhesion. Since osteoblast adhesion is a necessary prerequisite for subsequent formation of bone, these results provided evidence that hydrothermally sol-gel processed HA may improve bonding of titanium implants to juxtaposed bone and, thus, warrants further investigation.  相似文献   

11.
Bone-implant interface is critical for the early fixation of orthopedic implants. In this study, porous hydroxyapatite (HA) coatings were prepared through a liquid precursor plasma spraying process and were infiltrated with the collagen, alone and with the additional incorporation of recombinant human bone morphogenetic protein-2 (rhBMP-2) and RGD peptide (RGD). The results showed significantly improved mesenchymal stem cell (MSC) adhesion, proliferation, and differentiation on collagen-modified HA coatings, partially benefited from the formation of a fibrous network due to the self-reconstitution of collagen on the HA surface. Further enhancements on MSC proliferation and differentiation were generally observed through the additional incorporation of bone morphogenetic protein (BMP) and RGD. The osteoinductive and osteoconductive properties of the collagen/BMP-modified HA coatings were studied in vivo. Clear ectopic bone formation and significantly accelerated bone growth rate (29% increase, p < 0.05) have been observed after 1-month implantation of HA-collagen/rhBMP-2-coated Ti alloy samples into the rabbit muscle and dog femora, respectively. Overall, our results suggest that collagen-modified HA coating surface is a far superior substrate for cell attachment, proliferation, and differentiation, and collagen can be used an efficient carrier for BMP in vivo. Therefore, modification of HA coating with collagen is a simple but effective biomimetic approach to enhancing the osteointegration and early fixation of bone-implant interface.  相似文献   

12.
Hydroxyapatite (HA) and fluoridated hydroxyapatite (FHA) coatings were deposited on titanium substrates using an electrochemical technique. Different concentrations of F? ions were incorporated into the apatite structure by adding NaF into the electrolyte. Typical apatite structures were obtained for all the coatings after electrodeposition and subsequent post-treatment, including alkaline immersion and vacuum calcination. The coatings were uniform and dense, with a thickness of ~5 μm. When the F-concentration was higher than 0.012 M in the electrolyte, a saturation of F in the coating occurred and the F/Ca ratio in the coatings became almost constant (F/Ca ratio = 0.125). The FHA coatings showed higher bonding strength and lower dissolution rate than HA coating, particularly for those with a fluoridation level of 0.5–0.625. Compared with pure Ti, FHA and HA coatings exhibited higher biological affinity like cell proliferation and alkaline phosphatase activity. Regarding clinical application, it is suggested that a moderate content of F, such as Ca5(PO4)3(OH)0.375?0.5F0.5?0.625, be most suitable as a compromise among cell attachment, cell proliferation, apatite deposition and dissolution resistance.  相似文献   

13.
The aim of this study was to characterize and compare various titanium (Ti) and hydroxyapatite (HA) coatings on Ti6Al4V, in view of their application on noncemented orthopedic implants. Two innovative vacuum plasma sprayed (VPS) coatings, the first of ultrahigh rough and dense Ti (PG60, Ra=74 microm) and the second of ultrahigh rough and dense Ti coated with HA (HPG60, Ra=52 microm), have been developed, and the response of osteoblast-like cells (MG-63) seeded on these new coatings was evaluated in comparison to: a low roughness and sandblasted (Ti/SA, Ra=4 microm) Ti6Al4V surface; Ti medium (TI01, Ra=18 microm), and high (TI60, Ra=40 microm) roughness VPS coatings; and the relative Ti plus HA duplex coatings (HT01, Ra=12 microm and HT60, Ra=36 microm respectively), also obtained by VPS. PG60 coating presented no open porosity, making it dense and potentially intrinsically stronger. Cell adhesion and proliferation on PG60 was similar to those of the smoothest one (Ti/SA) and adhesion on ultrahigh roughness was lower than the medium- and high-roughness coatings, whereas cell proliferation on PG60 was lower than TI60. The HA coating determined significant increases in cell proliferation at medium and high roughness levels when compared to the relative Ti coating, but not compared to the ultrahigh one; all HA-coated surfaces showed a decrease in alkaline phosphatase activity and collagen I production. Surface morphology and the HA coating strongly affected cell behavior. However, ultrahigh values of roughness are not correctly seen by cells, and the presence of HA has no improving effects.  相似文献   

14.
Biomimetically deposited octacalcium phosphate (OCP) and carbonate apatite (BCA) as well as electrolytically deposited carbonate apatite (ECA) were considered as promising alternatives to conventional plasma spraying hydroxyapatite. This study compared their physicochemical characteristics and cell attachment behavior. The physicochemical characteristics included scanning electron microscopy observation, X-ray diffraction analysis, Fourier transform infrared spectroscopy analysis, surface roughness, coating thickness, dissolution test and scratch test. Cell attachment tests included morphology observation with stereomicroscopy and scanning electron microscopy as well as cell number count with DNA content assay. The OCP coating had 100% crystallinity and was about 40 microm thick, composed of large plate-like crystals of 30 microm, with the lowest surface roughness (R(a)=2.33 microm). The BCA coating had 60% crystallinity and was approximately 30 microm in thickness, composed of small crystals of 1-2 microm in size, with the highest surface roughness (R(a)=4.83 microm). The ECA coating had intermediate characteristics, with 78% crystallinity, 45 microm thickness, crystals of 5-6 microm and an average roughness of 3.87 microm. All coatings could be seen by eyes dissolving quickly and completely into acidic simulated body fluid (simulated physiological solutions-SPS, pH 3.0) but slowly and incompletely into neutral SPS (pH 7.3). It was suggested that the main factor determining coating dissolution in acidic SPS was the solubility isotherm, while some other factors including crystallinity and crystal size joined to determine coating dissolution in neutral SPS. In regard to adhesive strength, results of scratch test showed the critical load at the first crack of coating (L(c1)) was tightly related to crystal size as well as their arrangement, while the critical load at the total delamination of coating (L(c2)) was also related to the coating thickness. The ECA coating had the highest values. Owing to higher dissolution rate and globular appearance, BCA coating demonstrated the best goat bone marrow stromal cells attachment at 1 day or 3 days, followed by OCP and ECA coating.  相似文献   

15.
Previous studies have compared the adhesion of [3H]thymidine-labeled Streptococcus sanguis to saliva-coated hydroxyapatite (SHA) and buffer-coated hydroxyapatite (HA) beads. Although the hypotonic buffer used in these assays was adjusted to simulate saliva, it does not necessarily provide the optimal parameters for the quantitative estimate of adhesion under in vitro conditions. Optimization is necessary to provide the maximum sensitivity of the assay for detecting the effects of various salivas as well as for quantitating the effect of environmental growth conditions on the adhesion of S. sanguis to SHA and HA. A major distinction between the adhesion of S. sanguis to SHA and HA was observed when the bacterial concentration was varied. At high cell concentrations, the number of cells adhering to SHA was twice the number adhering to HA. Such differences were not detected at low cell concentrations. The optimal pH for the adsorption to both SHA and HA was 6. Changes in the ionic strength or addition of mono- or divalent cations found in saliva had little effect on adhesion to HA. In contrast, high concentrations of monovalent cations inhibited adhesion to SHA. Anions such as carbonate, chloride, and sulfate did not have specific effects on adhesion, whereas acetate inhibited adhesion to both SHA and HA. Fluoride inhibited adhesion to both SHA and HA, suggesting an interaction between fluoride and hydroxyapatite. These results indicated that 2 mM phosphate buffer at a pH of 6 containing 5 mM KCl and 1 mM CaCl2 was the optimal buffer for studying the in vitro adhesion of S. sanguis to SHA.  相似文献   

16.
The success of hydroxyapatite (HA)-coated Ti-6Al-4V implants relies on the long-term stability of HA coatings. In this study, the mechanical stability of plasma-sprayed HA coatings on Ti-6Al-4V implants under four-point cyclic bending was systematically investigated in both air and simulated body fluid (SBF) environments at room temperature. To have a clear view of the microscale damage evolution, the surface morphology change of HA coatings during cyclic loading was carefully examined by scanning electron microscopy at the same locations on the coating surfaces after four-point bending for 4, 6.5, 8.5, and 10 million cycles. Also, possible changes of other characteristics such as thickness, weight, crystallinity, and residual stress of HA coatings were measured as a function of loading cycles. Up to 10 million cycles of bending in air and SBF, we found no significant microcracking or coating spalling on the surface of coatings, and no significant changes in thickness, weight, crystallinity, or residual stress of the plasma-sprayed HA coatings. The experiment results indicate that thickness and crystallinity had no effects on the stability of the HA coatings. HA coating resistance to the cyclic four-point bending might result from the stress shielding effects of preexisting microcracks in the coatings.  相似文献   

17.
Effect of vapor-flame treatment on plasma sprayed hydroxyapatite coatings   总被引:4,自引:0,他引:4  
A vapor-flame treatment was developed to modify the crystallinity of the as-sprayed hydroxyapatite (HA) coatings. The effects of the treatment on composition, structure, and properties of HA coatings were investigated. Results showed that the vapor-flame treatment is simple and efficient to adjust the crystallinity of as-sprayed HA coating. Its crystallinities can be raised from 53.5 to 98.7% in 3-7 min. The porosities of coatings increased with an increase in the vapor-flame treating time. The microhardness of coating decreased as a result of this treatment. It may be explained in terms of the extent of microcracks caused by recrystallization of amorphous HA and relaxation of stress of the coating. The porosity, bonding strength, and hardness of HA coatings treated for 7 min were 15.7%, 32.0 MPa (300 microm thickness), and 1.9 GPa, respectively.  相似文献   

18.
Titanium (Ti) surface was coated with hydroxyapatite (HA) films via the sol-gel method. The coating properties, such as crystallinity and surface roughness, were controlled and their effects on the osteoblast-like cell responses were investigated. The film crystallinity was controlled with different heat treatment temperatures (400, 500, and 600 degrees C): Also the surface roughness was changed by using different heating rates (1 and 50 degrees C/min). The obtained sol-gel films had a dense and homogeneous structure with a thickness about 1 mum. The film heat-treated at higher temperature had enhanced crystallinity (600>500>400 degrees C), while retaining similar surface roughness. When heat-treated rapidly (50 degrees C/min), the film became quite rough, with roughness parameters being much higher (4-6 times) than that obtained at a low heating rate (1 degrees C/min). The dissolution rate of the film decreased with increasing crystallinity (400>500>600 degrees C), and the rougher film had slightly higher dissolution rate. The attachment, proliferation, and differentiation behaviors of human osteosarcoma HOS TE85 cells were affected by the properties of the films. On the films with higher crystallinity (heat treated over 500 degrees C), the cells attached and proliferated well and expressed alkaline phosphatase (ALP) and osteocalcin (OC) to a higher degree as compared to the poorly crystallized film (heat treated at 400 degrees C). On the rough film, the cell attachment was enhanced, but the ALP and OC expression levels were similar as compared to the smooth films.  相似文献   

19.
In addition to mechanical and chemical stability, the third design goal of the ideal bone-implant coating is the ability to support osteogenic differentiation of mesenchymal stem cells (MSCs). Plasma-sprayed TiO(2)-based bone-implant coatings exhibit excellent long-term mechanical properties, but their applications in bone implants are limited by their bioinertness. We have successfully produced a TiO(2) nanostructured (grain size <50 nm) based coating charged with 10% wt hydroxyapatite (TiO(2)-HA) sprayed by high-velocity oxy-fuel. On Ti64 substrates, the novel TiO(2)-HA coating bond 153× stronger and has a cohesive strength 4× higher than HA coatings. The HA micro- and nano-sized particles covering the TiO(2)-HA coating surface are chemically bound to the TiO(2) coating matrix, producing chemically stable coatings under high mechanical solicitations. In this study, we elucidated the TiO(2)-HA nanocomposite coating surface chemistry, and in vitro osteoinductive potential by culturing human MSCs (hMSCs) in basal and in osteogenic medium (hMSC-ob). We assessed the following hMSCs and hMSC-ob parameters over a 3-week period: (i) proliferation; (ii) cytoskeleton organization and cell-substrate adhesion; (iii) coating-cellular interaction morphology and growth; and (iv) cellular mineralization. The TiO(2) -HA nanocomposite coatings demonstrated 3× higher hydrophilicity than HA coatings, a TiO(2)-nanostructured surface in addition to the chemically bound HA micron- and nano-sized rod to the surface. hMSCs and hMSC-ob demonstrated increased proliferation and osteoblastic differentiation on the nanostructured TiO(2)-HA coatings, suggesting the TiO(2)-HA coatings nanostructure surface properties induce osteogenic differentiation of hMSC and support hMSC-ob osteogenic potential better than our current golden standard HA coating.  相似文献   

20.
Wang YW  Wu Q  Chen GQ 《Biomaterials》2003,24(25):4621-4629
The mouse fibroblast cell line L929 was inoculated on 3D scaffolds of microbial polyesters, namely polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) to evaluate their in vitro biocompatibility. It was found that both polyhydroxyalkanoates (PHA) subjected to lipase treatment and hyaluronan (HA) coating decreased the contact angle of water to the material surface approximately 30%, meaning an increased hydrophilicity on the PHA surface. At the same time, both the lipase treatment and the HA coating smoothened the PHA surface. After the lipase treatment or HA coating, the ratio of PHA hydrophilic groups including hydroxyl and carboxyl to carbonyl of PHA was approximately 1:1 or 2:1. Cells grown on scaffolds treated with lipase were approximately 4 x 10(5)/ml, twice in number of the control. However, PHA scaffolds coated with HA were observed with a 40% decrease in cell growth compared with that of the control. HA coating reduced the cell attachment and proliferation on PHA although the materials had increased hydrophilicity. In comparison, lipase treatment promoted the cell growth on PHA although the treatment did not lead to better hydrophilicity compared with HA coating. It appeared that an appropriate combination of hydrophilicity and hydrophobicity was important for the biocompatibility of PHBHHx, especially for the growth of L929 cells on the surface of this material. This may have instructive significance for biomaterial selection and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号