首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
PURPOSE: To evaluate breathhold gradient- and spin-echo (GRASE) T2-weighted imaging for the detection and characterization of focal liver lesions. MATERIALS AND METHODS: Two GRASE sequences with different echo times (75 and 90 msec, GRASE75 and GRASE90) were compared with respiratory-triggered fast spin-echo (SE) and breathhold fast SE in 64 patients with 103 malignant and 51 benign lesions. Compared with respiratory-triggered and breathhold fast SE, GRASE reduced scan time by 77% to 82% and 21% to 27%, respectively. Two independent readers evaluated image quality and reviewed 504 liver segments on a segment-by-segment basis. Observer performance was evaluated with receiver operating characteristic (ROC) curve analysis. The signal-to-noise ratio (SNR) of liver and spleen, and lesion-to-liver contrast-to-noise ratio (CNR) were also measured. RESULTS: The overall quality of the GRASE images was higher than that of the respiratory-triggered and breathhold fast SE images, although signal inhomogeneities were more frequently observed with GRASE. No significant difference in the values of the area under the ROC curve (Az) for malignant lesion detection was found. The mean SNR and CNR were highest for respiratory-triggered fast SE. CONCLUSION: T2-weighted breathhold GRASE has the potential to provide faster liver imaging.  相似文献   

2.
PURPOSE: To evaluate sensitivity encoding (SENSE) technique in a clinical setting for magnetic resonance (MR) imaging in patients who are suspected of having infarction. MATERIALS AND METHODS: This intraindividual comparative study included 62 patients suspected of having cerebral ischemia. Patients underwent T2-weighted fluid-attenuated inversion-recovery (FLAIR) (n = 62), T2-weighted turbo spin-echo (TSE) (n = 48), and single-shot echo-planar diffusion-weighted imaging (n = 27) with standard sequential and SENSE MR acquisitions with a 1.5-T magnet and phased-array coil. With SENSE, acquisition time was reduced from 1 minute 12 seconds to 35 seconds for FLAIR and from 1 minute 18 seconds to 39 seconds for T2-weighted TSE imaging. For diffusion-weighted imaging, echo train length was shortened (78 vs 71 msec) to reduce susceptibility effects while acquisition time was maintained. Two radiologists scored quality of standard and SENSE images with a five-point scale and assessed presence of artifacts (motion, susceptibility) and lesion conspicuity. To assess statistical significance, Wilcoxon signed rank and chi2 tests were used. RESULTS: Statistical analysis revealed no significant difference in terms of image quality and presence of artifacts between standard and SENSE T2-weighted TSE (image quality, P =.724; presence of artifacts, P =.378) and FLAIR (image quality, P =.127; presence of artifacts, P =.275) images. Image quality at SENSE diffusion-weighted imaging was scored significantly higher compared with that at standard diffusion-weighted imaging (P =.002). Susceptibility artifacts were significantly reduced at SENSE diffusion-weighted imaging when compared with those at standard diffusion-weighted imaging (P <.001). Conspicuity of 84 lesions was rated equivalent with both standard and SENSE protocols. CONCLUSION: SENSE allowed acquisition of T2-weighted TSE and FLAIR images with image quality and lesion conspicuity that did not differ from those of standard acquisition techniques but in only half the acquisition time. Use of SENSE with diffusion-weighted imaging significantly reduces susceptibility artifacts while lesion conspicuity is maintained.  相似文献   

3.
Magnetization-prepared ultrashort-repetition-time (snapshot) gradient-echo imaging is a technique of magnetic resonance (MR) imaging with many potential applications. In the application of this technique to abdominal imaging, the effects on contrast of phase-encoding order, resolution, preparation-phase inversion time, and data-acquisition flip angle were predicted and then demonstrated with images obtained in examinations of 22 patients. In the analysis of 36 liver lesions, snapshot images were compared with corresponding T1-weighted spin-echo images on the basis of signal-to-noise ratio (S/N) of liver and contrast-to-noise ratio (C/N) between liver and lesion. Snapshot MR imaging produced abdominal images with 192 (or 256) x 256 resolution, negligible motion artifact, and C/N 1.29 times (+/- 0.48) higher than that in T1-weighted spin-echo imaging. Acquisition times were 13 seconds or less, short enough for imaging during suspended respiration. Also, use of a phased-array multicoil further improves the S/N in snapshot images without acquisition-time penalty.  相似文献   

4.
Multisection FLASH: method for breath-hold MR imaging of the entire liver.   总被引:3,自引:0,他引:3  
One hundred ten patients with various focal liver lesions were imaged with a multisection fast low-angle shot (FLASH) gradient-echo sequence with an echo time of 4.6 msec. This sequence enabled the acquisition of 19 T1-weighted magnetic resonance (MR) images of the liver within a single 26-second breath hold. Patients were also examined with standard T1- and T2-weighted spin-echo (SE) sequences. The multisection FLASH sequence provided significantly higher (P less than .01) liver-spleen contrast, liver-spleen signal-difference-to-noise ratio (SD/N), liver-tumor contrast, and liver-tumor SD/N than the T1-weighted SE sequence but lower values than the T2-weighted SE sequence. Motion artifacts were reduced with the multisection FLASH sequence compared with both SE sequences (P less than .01). The overall image quality of the multisection FLASH images was similar to that of the T1-weighted SE images and superior to that of T2-weighted SE images. The most important characteristics of the multisection FLASH technique in MR imaging of the liver are the high T1 contrast, the prevention of motion artifacts, and a dramatic reduction in imaging time.  相似文献   

5.
A prospective study was undertaken on 204 consecutive patients comparing low flip angle gradient-echo and T1-weighted spin-echo techniques in the MR evaluation of cervical extradural disease. Four patient groups were studied with varying gradient-echo TEs (6 or 13 msec) and flip angles (10 degrees or 60 degrees). Images were evaluated independently for contrast behavior and anatomy, then directly compared for conspicuity of lesions. The FLASH sequences (especially with a 10 degrees flip angle) produced better conspicuity of disease in half the imaging time. T1-weighted spin-echo sequences were more sensitive to marrow changes and intradural disease. The short TE sequence (6 msec) did not produce any diagnostic advantage over the longer TE sequence (13 msec). A fast and sensitive MR examination for cervical extradural disease combines a sagittal T1-weighted spin-echo acquisition with sagittal and axial FLASH 10 degrees sequences.  相似文献   

6.
PURPOSETo determine the value of the gradient- and spin-echo (GRASE) technique as compared with the fast spin-echo and conventional spin-echo techniques in MR imaging of the brain.METHODSSixty-six patients with ischemic and neoplastic brain lesions were examined with T2-weighted spin-echo, fast spin-echo, and GRASE sequences. Three independent observers evaluated the contrast characteristics of anatomic and pathologic structures and of artifacts. Quantitative image analysis included region-of-interest measurements of anatomic structures and lesions.RESULTSThe contrast of anatomic structures was superior in images obtained with conventional and fast spin-echo techniques as compared with those obtained with the GRASE technique. Extended lesions, such as tumors and territorial infarcts, were identified equally with all techniques. For delineation of small ischemic lesions, GRASE was slightly inferior to fast and conventional spin-echo sequences. Flow artifacts were considerably reduced with fast spin-echo and GRASE sequences. Chemical-shift artifacts were significantly reduced, but ringing artifacts were more pronounced with GRASE.CONCLUSIONFast spin-echo remains the standard technique in MR imaging of the brain. However, GRASE might be useful in special cases, such as with uncooperative patients whose conventional or fast spin-echo images show severe motion artifacts.  相似文献   

7.
OBJECTIVE: Volumetric interpolated breath-hold examination (VIBE) is a relatively new gradient-echo MR sequence that is capable of shortening acquisition times and is reported to be useful in abdominal and brain imaging. The purpose of this study was to evaluate the feasibility of using VIBE images as a substitute for conventional postcontrast spin-echo T1-weighted images in the assessment of head and neck tumors. SUBJECTS AND METHODS: The subjects were 33 consecutive patients referred for MRI for preoperative assessment of head and neck tumors. After administration of gadodiamide hydrate, images were obtained using postcontrast fat-saturated VIBE sequence for a 35-sec acquisition time and then a postcontrast fat-saturated spin-echo T1-weighted sequence for a 269-sec acquisition time ( approximately 4.5 min). Quantitative comparisons of the two methods were made by calculating signal-to-noise and contrast-to-noise ratios for both methods, and qualitative comparisons were made on the basis of the scoring of three independent reviewers concerning image quality and tumor conspicuity. RESULTS: No significant difference was detected quantitatively between the two sequences. However, in qualitative assessments, the degree of image degradation by artifacts was significantly smaller for VIBE images than for spin-echo T1-weighted images (p = 0.029). CONCLUSION: In preoperative evaluations of head and neck tumors, the postcontrast VIBE sequence is capable of decreasing acquisition time without degrading image quality or tumor conspicuity; thus, it is an acceptable alternative to postcontrast spin-echo T1-weighted imaging.  相似文献   

8.
PURPOSE: To evaluate improvements in image homogeneity in pelvic MR imaging at 3 Tesla (T) using two different dielectric pads. MATERIALS AND METHODS: A total of eight healthy females were scanned using a 3T MR scanner equipped with a body-array coil. Axial and sagittal fast spin-echo T2-weighted images (T2WI) (TR/TE = 3200 msec/94 msec), axial fast spin-echo T1-weighted images (T1WI) (TR/TE = 700 msec/11 msec), and sagittal half-Fourier acquisition single-shot turbo spin-echo (HASTE) images (TR/TE = 3000 msec/100 msec) were performed for pelvic imaging. Sequences were repeated with dielectric pads (consisting of either ultrasound [US] gel or water), and without pads. Three or four regions of interest (ROIs) were placed on fatty tissues and the ratio of minimum to maximum signal intensity (RSI) was calculated as a marker of image homogeneity. RESULTS: RSI was significantly higher on T2WI and T1WI when using dielectric pads than when no pad was used. A similar tendency was observed in RSI on HASTE. No significant difference was found between images with US gel pads and those with water pads. CONCLUSION: Dielectric pads consisting of either US gel or water are effective in improving image homogeneity of the pelvis on 3T MRI.  相似文献   

9.
The purpose of our study was to evaluate the potential value of ferumoxide-enhanced T1-weighted magnetic resonance (MR) imaging for tissue characterization of focal liver lesions when combined with T2-weighted sequences. Images were acquired within 30 minutes after the end of ferumoxide administration, when ferrite particles were not totally cleared from the intravascular compartment. Thirty-eight patients with 47 focal liver lesions underwent T1-weighted gradient-echo (TR/TE 150/4.1 msec) and T2-weighted fast spin-echo (3180-8638/90 msec) MR imaging at 1.5 T before and after intravenous administration of ferumoxides (10 micromol/kg body weight). A qualitative and quantitative analysis was performed. During the early phase after infusion of ferumoxide, blood vessels showed hypersignal intensity on T1-weighted fast low-angle shot (FLASH) images, while liver signal decreased. Hemangiomas showed both homogeneous and inhomogeneous enhancement patterns, and liver metastasis most typically showed ring enhancement. Hypervascular tumors (hepatocellular carcinomas and focal nodular hyperplasias) showed a slight degree of homogeneous enhancement. Quantitatively, the degree of enhancement and lesion-to-liver contrast on ferumoxide-enhanced images were significantly different among these tumors. Our results demonstrate that distinct enhancement patterns obtained on ferumoxide-enhanced T1-weighted MR imaging improve tissue characterization of focal liver lesions when combined with T2-weighted images.  相似文献   

10.
We describe in vivo and in vitro magnetic resonance imaging (MRI) findings of a pheochromocytoma with posthemorrhagic cystic degeneration in a 74-year-old man. The in vivo MR images showed the mass as an area of homogeneous moderate hyperintensity with a central area of intense hyperintensity outlined by a thin hypointense rim on a T2-weighted image. The in vitro MR images showed a hyperintense rim around the central cystic area consistent with hemorrhage on T1-weighted gradient-echo images with short echo times (1.6 and 4.2 msec) and more distinctly revealed the blurring effect due to susceptibility of hemosiderin on those with long echo times (6 and 8 msec). Hemosiderin deposition caused by intraparenchymal hemorrhage in the pheochromocytoma can be appreciated on spoiled gradient-echo images with different echo times, which is ordinarily included in the MRI protocol as phase-shift imaging.  相似文献   

11.
PURPOSE: To evaluate superparamagnetic iron oxide (SPIO)-enhanced breathhold T2-weighted GRASE imaging in detection and characterization of focal liver lesions. MATERIALS AND METHODS: In 30 patients (including 20 with cirrhosis) with 39 malignant and 25 benign lesions, gradient- and spin-echo (GRASE) images with two echo times (75 and 90 msec; GRASE75 and GRASE90) were obtained prior to and following administration of SPIO, and compared with respiratory-triggered and breathhold fast spin-echo (RT-FSE and BH-FSE) images. Two readers evaluated image quality and reviewed 240 liver segments for sensitivity and specificity. Signal-to-noise ratio (SNR), and its reduction in liver and spleen after administration of SPIO, and lesion-to-liver contrast-to-noise ratio (CNR) were measured. RESULTS: Compared with RT-FSE and BH-FSE, GRASE reduced scan time by 77% to 82% and 21% to 27%, respectively. The image qualities with BH-FSE and GRASE75 were higher than with BH-FSE and GRASE90. BH-FSE showed higher specificity than RT-FSE and GRASE90, but otherwise there were no significant differences between pulse sequences for sensitivity or specificity. The mean SNR and CNR of the lesions with RT-FSE were significantly higher than with the other methods. SPIO-induced signal reduction of liver SNR was smallest with BH-FSE. CONCLUSION: GRASE is faster and more sensitive to SPIO than FSE, but its sensitivity and specificity were slightly inferior to those of BH-FSE. Image quality is a current limitation.  相似文献   

12.
OBJECTIVE: The aim of this study was to evaluate MR imaging changes of the pancreas in patients with transfusion-dependent beta-thalassemia major. SUBJECTS AND METHODS: Twenty patients with transfusion-dependent beta-thalassemia major were examined using MR imaging at 0.5 T, with spin-echo T1-weighted, fast spin-echo T2-weighted, and gradient-echo T2*-weighted sequences. Image analysis was performed to assess pancreas-to-fat signal intensity ratios for all pulse sequences. Pancreatic exocrine and endocrine function and serum ferritin levels were assessed. Twenty healthy volunteers underwent MR imaging with the same three sequences and served as a control group. RESULTS: The pancreas-to-fat signal intensity ratio was significantly decreased in 17 (85%) of the 20 patients on spin-echo T1-weighted images (p < .05), fast spin-echo T2-weighted images (p < .01), and gradient-echo T2*-weighted images (p < .01) when compared with the 20 volunteers in the control group. The pancreas-to-fat signal intensity ratio was significantly increased in three (15%) of the 20 patients on spin-echo T1-weighted images (p < .01) and fast spin-echo T2-weighted images (p < .05). In addition, in the 20 patients, we found a significant correlation between increased pancreas-to-fat signal intensity ratios and decreased serum trypsin levels (r = -.77, p < .01 for spin-echo T1-weighted sequences; r = -.75, p < .05 for fast spin-echo T2-weighted sequences; and r = -.74, p < .05 for gradient-echo T2*-weighted sequences). Likewise, for the 20 patients, we found a significant correlation between decreased pancreas-to-fat signal intensity ratios and increased serum ferritin levels for gradient-echo T2*-weighted images (r = -.65, p < .01). No correlation was found for the other clinical parameters evaluated. CONCLUSION: MR imaging revealed signal intensity changes in the pancreas of patients with transfusion-dependent beta-thalassemia major. Patients with a major impairment of the exocrine pancreatic function had higher signal intensity of the pancreas because of fatty replacement of the parenchyma.  相似文献   

13.
Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes.   总被引:16,自引:0,他引:16  
PURPOSE: To compare findings on superparamagnetic iron oxide (SPIO)-enhanced magnetic resonance (MR) images of the head and neck with those from resected lymph node specimens and to determine the effect of such imaging on surgical planning in patients with histopathologically proved squamous cell carcinoma of the head and neck. MATERIALS AND METHODS: Thirty patients underwent MR imaging with nonenhanced and SPIO-enhanced (2.6 mg Fe/kg intravenously) T1-weighted (500/15 [repetition time msec/echo time msec]) and T2-weighted (1,900/80) spin-echo and T2-weighted gradient-echo (GRE) (500/15, 15 degrees flip angle) sequences. Signal intensity decrease was measured, and visual analysis was performed. Surgical plans were modified, if necessary, according to MR findings. Histopathologic and MR findings were compared. RESULTS: Histopathologic evaluation of 1,029 lymph nodes revealed 69 were metastatic. MR imaging enabled detection of 59 metastases. Regarding lymph node levels, MR diagnosis was correct in 26 of 27 patients who underwent surgery: Only one metastasis was localized in level II with MR imaging, whereas histopathologic evaluation placed it at level III. Extent of surgery was changed in seven patients. SPIO-enhanced T2-weighted GRE was the best sequence for differentiating between benign and malignant lymph nodes. CONCLUSION: SPIO-enhanced MR imaging has an important effect on planning the extent of surgery. On a patient basis, SPIO-enhanced MR images compared well with resected specimens.  相似文献   

14.
Diffusion-weighted magnetic resonance (MR) images obtained with conventional spin-echo techniques are known to be sensitive to subject motion because of long image acquisition times. To reduce the acquisition time, use of a magnetization-prepared rapid gradient-echo (MP-RAGE) sequence modified for diffusion sensitivity was studied. In this sequence, a preparation phase with a 90°–180°–90° pulse train is used to sensitize the magnetization to diffusion. Centric-ordered phase encoding, short TRs (5.2–6.5 msec), and small flip angles (5°–8°) are necessary to minimize saturation effects from tissues with short relaxation times. Phantom studies with various concentrations of copper sulfate (T1 ranging from 2,459 to 90 msec) were performed to validate that the diffusion-weighted signal obtained with the MP-RAGE sequence was independent of relaxation time. Diffusion-weighted images of water, isopropyl alcohol, and acetone were acquired to confirm the accuracy of measured diffusion coefficients. Brain images of healthy normal volunteers were obtained to demonstrate motion insensitivity and general image quality of the technique. The results indicate that accurate diffusion-weighted images can be obtained with a diffusion-weighted MP-RAGE sequence, with imaging times of about 1 second.  相似文献   

15.
OBJECTIVE: Patients who have a greater distribution of intraabdominal adipose tissue as compared with subcutaneous adipose tissue and an increased ratio of intraabdominal adipose tissue to subcutaneous adipose tissue are at greater risk for developing cardiovascular disease and type 2 diabetes mellitus. In previous MR investigations, researchers have used conventional T1-weighted spin-echo images to determine the ratio of intraabdominal adipose tissue to subcutaneous adipose tissue. However, no investigation, to our knowledge, has been performed to determine the accuracy of using different MR sequences to estimate adipose distribution. The purpose of our investigation was to compare MR imaging and segmentation techniques in calculating the ratio of intraabdominal to subcutaneous adipose tissue using an adiposity phantom. MATERIALS AND METHODS: A phantom was created to simulate the distribution of subcutaneous and intraabdominal fat (with known volumes). Axial MR images were obtained twice through the phantom using a 5-mm slice thickness and zero gap for the following T1-weighted sequences: spin-echo, fast Dixon, and three-dimensional (3D) spoiled gradient-echo. An in-house computer software program was then used to segment the volumes of fat and calculate the volume of intraabdominal adipose tissue and subcutaneous adipose tissue and the ratio of intraabdominal to subcutaneous adipose tissue. Each imaging data set was segmented three times, so six sets of data were yielded for each imaging technique. The percentage predicted of the true volume was calculated for each MR imaging technique for each fat variable. The mean percentages for each variable were then compared using one-factor analysis of variance to determine whether differences exist among the three MR techniques. RESULTS: The three MR imaging techniques had statistically significant different means for the predicted true volume of two variables: volume of subcutaneous adipose tissue (p < 0.001) and volume of intraabdominal adipose tissue (p = 0.0426). Estimates based on fast Dixon images were closest to the true volumes for all the variables. All MR imaging techniques performed similarly in estimating the ratio of intraabdominal adipose tissue to subcutaneous adipose tissue (p = 0.9117). The acquisition time for the 3D spoiled gradient-echo images was 10-22 times faster than for the other sequences. CONCLUSION: Conventional T1-weighted spin-echo MR imaging, the current sequence used in practice for measuring visceral adiposity, may not be the optimal MR sequence for this purpose. We found that the T1-weighted fast Dixon sequence was the most accurate at estimating all fat volumes. The T1-weighted 3D spoiled gradient-echo sequence generated similar ratios of intraabdominal to subcutaneous adipose tissue in a fraction of the acquisition time.  相似文献   

16.
PURPOSE: To prospectively compare high-spatial-resolution T1-weighted, T2-weighted, and intermediate-weighted spectral fat-saturated magnetic resonance (MR) imaging for the differentiation of tumor from fibrosis and for delineation of rectal wall layers in rectal cancer specimens. MATERIALS AND METHODS: The local ethics committee approved the protocol, and written informed consent was obtained from each patient. Thin-section high-spatial-resolution MR imaging was performed in specimens obtained from 23 patients (16 men, seven women; median age, 64 years; age range, 39-84 years) immediately after resection. Seven patients underwent neoadjuvant treatment. T1-weighted spin-echo, T2-weighted fast spin-echo, and intermediate-weighted spectral fat-saturated MR images were obtained in the transverse plane. Differences in signal intensity between tumor and fibrosis and between tumor and rectal wall layers were evaluated by using visual scoring and measurements of T2 relaxation time. Statistical differences were evaluated by using the Wilcoxon signed rank test and a mixed-model regression analysis. All images were compared with whole-mount histopathologic slices (n = 86). RESULTS: T2-weighted MR images provided the best differentiation between tumor and fibrosis (P < .001). Mean visual signal intensity scores were -1.8 for T2-weighted MR images, -1.4 for intermediate-weighted spectral fat-saturated MR images, and -0.2 for T1-weighted MR images. T2 relaxation times were 97 msec +/- 4.6 for tumor and 70 msec +/- 3.8 for fibrosis (P < .001). Substantial overlap was noted between the tumor and the circular layer of the muscularis propria (97 msec +/- 2.1), and less overlap was noted between the tumor and the longitudinal layer of the muscularis propria (88 msec +/- 1.6). CONCLUSION: T2-weighted MR imaging provides superior delineation of rectal wall layers and better differentiation of tumor from fibrosis in rectal cancer specimens compared with T1-weighted MR imaging and intermediate-weighted spectral fat-saturated MR imaging by using thin-section high-spatial-resolution sequences.  相似文献   

17.
PURPOSEWe developed and evaluated clinically T1-weighted three-dimensional gradient-echo magnetization transfer (MT) sequences for contrast-enhanced MR imaging of the brain.METHODSA short-repetition-time, radio frequency-spoiled, 3-D sequence was developed with a 10-millisecond MT pulse at high MT power and narrow MT pulse-frequency offset, and the enhancing lesion-to-normal white matter background (L/B) and the contrast-to-noise (C/N) ratios on these images were compared with those on T1-weighted spin-echo images and on non-MT 3-D gradient-echo images in a prospective study of 45 patients with 62 enhancing lesions. In the 24 patients who had intracranial metastatic disease, the number of lesions was counted and compared on the three types of images.RESULTSThe MT ratio of normal callosal white matter was 55% on the MT 3-D gradient-echo sequences. The L/B and C/N on the MT 3-D gradient-echo images were more than double those on the 3-D gradient-echo images, and were significantly greater than those on the T1-weighted spin-echo images. In patients with metastatic disease, the MT 3-D gradient-echo images showed significantly more lesions than did the T1-weighted spin-echo or 3-D gradient-echo images.CONCLUSIONMT 3-D gradient-echo MR imaging improves the contrast between enhancing lesion and background white matter over that obtained with conventional T1-weighted 3-D gradient-echo and spin-echo imaging. MT 3-D gradient-echo imaging provides practical sampling, image coverage, and spatial resolution, attributes that may be advantageous over MT T1-weighted spin-echo techniques.  相似文献   

18.
PURPOSE: To determine if hypointense lesions clearly outline on T2-weighted fast spin-echo (SE) magnetic resonance (MR) images obtained during coagulative interstitial laser-induced thermotherapy (LITT) of a prostate with benign hyperplasia. MATERIALS AND METHODS: In six patients with benign prostatic hyperplasia (BPH), 12 LITT treatments were followed online with repetitive axial T2-weighted fast SE imaging (repetition time, 3,700 msec; echo time, 138 msec; acquisition time, 19 seconds). Development, time course, correlation with interstitial tissue temperature, and diameters of hypointense lesions around the laser diffusor tip were investigated. Lesion diameters on T2-weighted images acquired during LITT were compared with diameters of final lesions on T2-weighted images and unperfused lesions on enhanced T1-weighted SE images obtained at the end of therapy. RESULTS: Hypointense lesions developed within 20-40 seconds of LITT. Average correlation coefficients between interstitial temperature development and signal intensity development were 0.92 during LITT and 0.90 after LITT. Regression slopes were significantly steeper during LITT (0.67% signal intensity change per degree Celsius) than after LITT (0.47% per degree Celsius; P = .038). Lesions remained visible after LITT for all procedures. Average maximum diameters of lesions were 1-3 mm larger during LITT than after LITT (P = .0006-.019). CONCLUSION: Repetitive T2-weighted fast SE MR imaging during interstitial coagulative LITT of BPH demonstrates the development of permanent hypointense prostate lesions. However, posttherapeutic lesion diameters tend to be overestimated during LITT.  相似文献   

19.
ECG-gated spin-echo imaging (ECG-SE) can reduce physiological motion artifacts. However, ECG-SE does not provide strong T1-weighted images because repetition time (TR) depends on heart rate (HR). We investigated the usefulness of low flip angle spin-echo imaging (LFSE) in obtaining more T1-dependent contrast with ECG gating. in computer simulation, the predicted image contrast and signal-to-noise ratio (SNR) obtained for each flip angle (0-180 degrees) and each TR (300 msec-1200 msec) were compared with those obtained by conventional T1-weighted spin-echo imaging (CSE: TR = 500 msec, TE = 20 msec). In clinical evaluation, tissue contrast [contrast index (CI): (SI of lesion-SI of muscle)2*100/SI of muscle] obtained by CSE and LFSE were compared in 17 patients. At a TR of 1,000 msec, T1-dependent contrast increased with decreasing flip angle and that at 38 degrees was identical to that with T1-weighted spin-echo. SNR increased with the flip angle until 100 degrees, and that at 53 degrees was identical to that with T1-weighted spin-echo. CI on LFSE (74.0 +/- 52.0) was significantly higher than CI on CSE (40.9 +/- 35.9). ECG-gated LFSE imaging provides better T1-dependent contrast than conventional ECG-SE. This method was especially useful for Gd-DTPA enhanced MR imaging.  相似文献   

20.
In this prospective study, axial and sagittal magnetic resonance (MR) images were obtained with T2-weighted conventional spin-echo (CSE) and fast spin-echo (FSE) sequences in 34 consecutive female patients who underwent clinical pelvic MR examination at 1.5 T. The MR images from each patient were compared side by side, blindly and independently, by two radiologists experienced in MR imaging who used a standardized score sheet for anatomic and pathologic findings. The FSE sequences were rated superior significantly more often than the CSE sequences in most categories of findings (P less than .05), including overall image quality and reduction of motion artifact. The examination time for the FSE sequences was 1 minute 46 seconds versus an examination time of 9 minutes 14 seconds for the CSE sequences. (Both CSE and FSE sequences provided 18 sections.) It is concluded that the FSE sequence provides T2-weighted anatomic and pathologic information superior to that provided by the CSE sequence and requires substantially less imaging time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号