首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypertrophy is one mechanism of pancreatic beta-cell growth and is seen as an important compensatory response to insulin resistance. We hypothesized that the induction of protective genes contributes to the survival of enlarged (hypertrophied) beta-cells. Here, we evaluated changes in stress gene expression that accompany beta-cell hypertrophy in islets from hyperglycemic rats 4 weeks after partial pancreatectomy (Px). A variety of protective genes were upregulated, with markedly increased expression of the antioxidant genes heme oxygenase-1 and glutathione peroxidase and the antiapoptotic gene A20. Cu/Zn-superoxide dismutase (SOD) and Mn-SOD were modestly induced, and Bcl-2 was modestly reduced; however, several other stress genes (catalase, heat shock protein 70, and p53) were unaltered. The increases in mRNA levels corresponded to the degree of hyperglycemia and were reversed in Px rats by 2-week treatment with phlorizin (treatment that normalized hyperglycemia), strongly suggesting the specificity of hyperglycemia in eliciting the response. Hyperglycemia in Px rats also led to activation of nuclear factor-kappaB in islets. The profound change in beta-cell phenotype of hyperglycemic Px rats resulted in a reduced sensitivity to the beta-cell toxin streptozotocin. Sensitivity to the toxin was restored, along with the beta-cell phenotype, in islets from phlorizin-treated Px rats. Furthermore, beta-cells of Px rats were not vulnerable to apoptosis when further challenged in vivo with dexamethasone, which increases insulin resistance. In conclusion, beta-cell adaptation to chronic hyperglycemia and, hence, increased insulin demand is accompanied by the induction of protective stress genes that may contribute to the survival of hypertrophied beta-cells.  相似文献   

2.
3.
Maturity-onset diabetes of the young type 3 (MODY3) is characterized by impaired insulin secretion. Heterozygous mutations in the gene encoding hepatocyte nuclear factor (HNF)-1alpha are the cause of MODY3. Transgenic mice overexpressing dominant-negative HNF-1alpha mutant in pancreatic beta-cells and HNF-1alpha knockout mice are animal models of MODY3. These mice exhibit defective glucose-stimulated insulin secretion and have reduced beta-cell mass and beta-cell proliferation rate. Here we examined the effect of HNF-1alpha on beta-cell proliferation by overexpressing a human naturally occurring dominant- negative mutation P291fsinsC in INS-1 cells under the control of doxycycline-induction system. INS-1 cells overexpressing P291fsinsC showed apparent growth impairment. The proliferation rate estimated by [(3)H]thymidine incorporation was significantly reduced in P291fsinsC-expressing INS-1 cells compared with noninduced or wild-type HNF-1alpha-overexpressing INS-1 cells. Growth inhibition occurred at the transition from G1 to S cell cycle phase, with reduced expression of cyclin E and upregulation of p27. cDNA array analysis revealed that the expression levels of IGF-1, a major growth factor for beta-cells, and macrophage migration inhibitory factor (MIF), a cytokine expressed in pancreatic beta-cells, were reduced in P291fsinsC-HNF-1alpha-expressing INS-1 cells. Although MIF seemed to have proliferative function, blockade of MIF action by anti-MIF antibody stimulated INS-1 cell proliferation, excluding its direct role in the growth impairment. However, addition of IGF-1 to P291fsinsC-expressing INS-1 cells rescued the growth inhibition. Our data suggest that HNF-1alpha is critical for modulating pancreatic beta-cell growth by regulating IGF-1 expression. IGF-1 might be a potential therapeutic target for the treatment of MODY3.  相似文献   

4.
5.
To determine whether glucocorticoids are involved in pancreas development, glucocorticoid treatment of rat pancreatic buds in vitro was combined with the analysis of transgenic mice lacking the glucocorticoid receptor (GR) in specific pancreatic cells. In vitro treatment of embryonic pancreata with dexamethasone, a glucocorticoid agonist, induced a decrease of insulin-expressing cell numbers and a doubling of acinar cell area, indicating that glucocorticoids favored acinar differentiation; in line with this, expression of Pdx-1, Pax-6, and Nkx6.1 was downregulated, whereas the mRNA levels of Ptf1-p48 and Hes-1 were increased. The selective inactivation of the GR gene in insulin-expressing beta-cells in mice (using a RIP-Cre transgene) had no measurable consequences on beta- or alpha-cell mass, whereas the absence of GR in the expression domain of Pdx-1 (Pdx-Cre transgene) led to a twofold increased beta-cell mass, with increased islet numbers and size but normal alpha-cell mass in adults. These results demonstrate that glucocorticoids play an important role in pancreatic beta-cell lineage, acting before hormone gene expression onset and possibly also modulating the balance between endocrine and exocrine cell differentiation.  相似文献   

6.
Peroxisome proliferator-activated receptor (PPAR)-gamma is expressed in human beta-cells and in the rat beta-cell line INS-1. Previous studies have suggested that PPAR-gamma agonism (e.g., thiazolidinediones) enhances glucose-stimulated insulin secretion (GSIS) from islets or INS-1 cells. We tested the direct effect on insulin release by INS-1e of a PPAR-gamma agonist (Ro4389679-000-001 at 0.2 and 0.4 micromol/l) and a PPAR-gamma antagonist (SR202 at 0.2 and 0.4 mmol/l). Cells were incubated in 11 mmol/l glucose for 96 h and then challenged with 3.3, 7.5, 11.0, and 20.0 mmol/l glucose for 1 h. Under these control conditions, insulin concentrations in the medium rose from 19 +/- 4 ng/ml (mean +/- SE) to 82 +/- 5, 107 +/- 11, and 103 +/- 10 ng/ml (P <0.0001 by ANOVA). Preincubation for 48 h with the PPAR-gamma agonist potentiated GSIS (to 154 +/- 14 and 156 +/- 12 ng/ml at 20 mmol/l glucose, P <0.01). Cell insulin content was not altered by either acute glucose challenge or PPAR-gamma agonist coincubation. Preincubation for 48 h with SR202 at the higher dose caused a 30% inhibition of GSIS, with no change in cell insulin contents. When cells were preincubated with 11 mmol/l glucose plus 1 mmol/l oleate, GSIS was significantly potentiated (by 30%, P <0.0001); adding Ro4389679-000-001 or SR202 to these preincubations reduced GSIS to the respective levels seen in the absence of oleate (P <0.0001 for both effects). In conclusion, INS-1e cells display a PPAR-gamma tone that is symmetrically modulated and competitively stimulated by oleate.  相似文献   

7.
Silencing gene expression by RNA interference (RNAi) can provide insight into gene function but requires efficient delivery of small interfering RNAs (siRNAs) into cells. Introduction of exogenous nucleic acids can be especially difficult in cultured pancreatic islets. This article describes a method for making recombinant adenoviruses that efficiently drive expression of siRNAs in islet beta-cells and a beta-cell-derived cell line. Transduction with a virus expressing an siRNA specific for GLUT2 reduced GLUT2 mRNA and protein levels by 80% in the INS-1-derived beta-cell line, 832/13, and GLUT2 protein levels by >90% in primary rat islets. Another virus expressing an siRNA specific for glucokinase (GK) caused 80% suppression of GK mRNA and 50% suppression of GK protein levels in 832/13 cells. These experiments validate recombinant adenoviral RNAi vectors as a useful tool for suppression of the expression of specific genes in pancreatic islets and beta-cell lines. Advantages of this approach include 1) the high efficiency of adenovirus-mediated gene transfer in insulinoma cell lines and rat islets and 2) the rapidity with which RNAi constructs can be prepared and tested relative to stable-transfection strategies.  相似文献   

8.
To test the hypothesis that c-Myc plays an important role in beta-cell growth and differentiation, we generated transgenic mice overexpressing c-Myc in beta-cells under control of the rat insulin II promoter. F(1) transgenic mice from two founders developed neonatal diabetes (associated with reduced plasma insulin levels) and died of hyperglycemia 3 days after birth. In pancreata of transgenic mice, marked hyperplasia of cells with an altered phenotype and amorphous islet organization was displayed: islet volume was increased threefold versus wild-type littermates. Apoptotic nuclei were increased fourfold in transgenic versus wild-type mice, suggesting an increased turnover of beta-cells. Very few cells immunostained for insulin; pancreatic insulin mRNA and content were markedly reduced. GLUT2 mRNA was decreased, but other beta-cell-associated genes (IAPP [islet amyloid pancreatic polypeptide], PDX-1 [pancreatic and duodenal homeobox-1], and BETA2/NeuroD) were expressed at near-normal levels. Immunostaining for both GLUT2 and Nkx6.1 was mainly cytoplasmic. The defect in beta-cell phenotype in transgenic embryos (embryonic days 17-18) and neonates (days 1-2) was similar and, therefore, was not secondary to overt hyperglycemia. When pancreata were transplanted under the kidney capsules of athymic mice to analyze the long-term effects of c-Myc activation, beta-cell depletion was found, suggesting that, ultimately, apoptosis predominates over proliferation. In conclusion, these studies demonstrate that activation of c-Myc in beta-cells leads to 1) increased proliferation and apoptosis, 2) initial hyperplasia with amorphous islet organization, and 3) selective downregulation of insulin gene expression and the development of overt diabetes.  相似文献   

9.
10.
beta-Cell mass is determined by a dynamic balance of proliferation, neogenesis, and apoptosis. The precise mechanisms underlying compensatory beta-cell mass (BCM) homeostasis are not fully understood. To evaluate the processes that maintain normoglycemia and regulate BCM during pancreatic regeneration, C57BL/6 mice were analyzed for 15 days following 60% partial pancreatectomy (Px). BCM increased in Px mice from 2 days onwards and was approximately 68% of the shams by 15 days, partly due to enhanced beta-cell proliferation. A transient approximately 2.8-fold increase in the prevalence of beta-cell clusters/small islets at 2 days post-Px contributed substantially to BCM augmentation, followed by an increase in the number of larger islets at 15 days. To evaluate the signaling mechanisms that may regulate this compensatory growth, we examined key intermediates of the insulin signaling pathway. We found insulin receptor substrate (IRS)2 and enhanced-activated Akt immunoreactivity in islets and ducts that correlated with increased pancreatic duodenal homeobox (PDX)1 expression. In contrast, forkhead box O1 expression was decreased in islets but increased in ducts, suggesting distinct PDX1 regulatory mechanisms in these tissues. Px animals acutely administered insulin exhibited further enhancement in insulin signaling activity. These data suggest that the IRS2-Akt pathway mediates compensatory beta-cell growth by activating beta-cell proliferation with an increase in the number of beta-cell clusters/small islets.  相似文献   

11.
Transforming growth factor (TGF)-alpha- and epidermal growth factor (EGF)-induced signal transduction was directly compared with that of glucose and insulin-like growth factor-1 (IGF-1) in INS-1 cells. TGF-alpha/EGF transiently (<20 min) induced phosphorylation of extracellular-regulated kinase (Erk)-1/2 (>20-fold), glycogen synthase kinase (GSK)-3 (>10-fold), and protein kinase B (PKB) (Ser(473) and Thr(308)), but did not increase [(3)H]thymidine incorporation. In contrast, phosphorylation of Erk1/2, GSK-3, and PKB in response to glucose and IGF-1 was more prolonged (>24 h) and, though not as robust as TGF-alpha/EGF, did increase beta-cell proliferation. Phosphorylation of p70(S6K) was also increased by IGF-1/glucose, but not by TGF-alpha/EGF, despite upstream PKB activation. It was found that IGF-1 induced phosphatidylinositol 3-kinase (PI3K) association with insulin receptor substrate (IRS)-1 and -2 in a glucose-dependent manner, whereas TGF-alpha/EGF did not. The importance of specific IRS-2-mediated signaling events was emphasized in that adenoviral-mediated overexpression of IRS-2 further increased glucose/IGF-1-induced beta-cell proliferation (more than twofold; P < 0.05) compared with control or adenoviral-mediated IRS-1 overexpressing INS-1 cells. Neither IRS-1 nor IRS-2 overexpression induced a beta-cell proliferative response to TGF-alpha/EGF. Thus, a prolonged activation of Erk1/2 and PI3K signaling pathways is important in committing a beta-cell to a mitogenic event, and it is likely that this sustained activation is instigated by signal transduction occurring specifically through IRS-2.  相似文献   

12.
13.
Kim HI  Cha JY  Kim SY  Kim JW  Roh KJ  Seong JK  Lee NT  Choi KY  Kim KS  Ahn YH 《Diabetes》2002,51(3):676-685
Thiazolidinediones, synthetic ligands of peroxisomal proliferator-activated receptor-gamma (PPAR-gamma), improve peripheral insulin sensitivity and glucose-stimulated insulin secretion in pancreatic beta-cells. To explore the role of PPAR-gamma in glucose sensing of beta-cells, we have dissected the beta-cell-specific glucokinase (betaGK) promoter, which constitutes glucose-sensing apparatus in pancreatic beta-cells, and identified a peroxisomal proliferator response element (PPRE) in the promoter. The betaGK-PPRE is located in the region between +47 and +68 bp. PPAR-gamma/retinoid X receptor-alpha heterodimer binds to the element and activates the betaGK promoter. The betaGK promoter lacking or having mutations in PPRE cannot be activated by PPAR-gamma. PPAR-gamma activates the betaGK promoter in beta-cells as well as non-beta-cells. Furthermore, troglitazone increases endogenous GK expression and its enzyme activity in beta-cell lines. These results indicate that PPAR-gamma can regulate GK expression in beta-cells. Taking these results together with our previous work, we conclude that PPAR-gamma regulates gene expression of glucose-sensing apparatus and thereby improves glucose-sensing ability of beta-cells, contributing to the restoration of beta-cell function in type 2 diabetic subjects by troglitazone.  相似文献   

14.
15.
M J Orland  M A Permutt 《Diabetes》1991,40(2):181-189
These studies compared measurements of in vivo insulin secretion, insulin stores, and insulin synthesis. Rats were studied at 24 wk of age, either 1 or 20 wk after a sham operation (Sham) or 50% pancreatectomy (Px), reducing beta-cell number. By 20 wk after surgery, an adaptation to pancreatectomy was apparent from results of serial glucose tolerance tests, done in a preliminary protocol. Some of the rats also received dexamethasone (ShamDex and PxDex, respectively), imposing insulin resistance. Insulin secretion was assessed with the acute insulin response to arginine under basal (AIRbas) and maximum glucose-potentiated (AIRmax) states. Pancreatic insulin was measured, and insulin synthesis was estimated by measurement of proinsulin mRNA. At 1 wk after surgery, there was no difference among Sham and Px rats in AIRbas, but in the Px rats, expected reductions of AIRmax, pancreatic insulin, and proinsulin mRNA were found. ShamDex rats had a markedly augmented AIRbas and increased AIRmax and proinsulin mRNA. However, pancreatic insulin was reduced both in ShamDex and PxDex rats. At 20 wk after surgery, the predicted adaptation to Px was substantiated by AIRmax and proinsulin mRNA in Px rats not different from those in Sham rats, but pancreatic insulin in the Px rats remained low. AIRbas and proinsulin mRNA were augmented in ShamDex and PxDex rats, but pancreatic insulin was again reduced, and in PxDex rats, low AIRmax and fed hyperglycemia were seen. Linear correlations of AIRbas and AIRmax with proinsulin mRNA were observed over a roughly fourfold range of secretion and synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
Chronic exposure to elevated levels of free fatty acids (FFAs) impairs pancreatic beta-cell function and contributes to the decline of insulin secretion in type 2 diabetes. Previously, we reported that FFAs caused increased nitric oxide (NO) production, which damaged mitochondrial DNA (mtDNA) and ultimately led to apoptosis in INS-1 cells. To firmly establish the link between FFA-generated mtDNA damage and apoptosis, we stably transfected INS-1 cells with an expression vector containing the gene for the DNA repair enzyme human 8-oxoguanine DNA glycosylase/apurinic lyase (hOGG1) downstream of the mitochondrial targeting sequence (MTS) from manganese superoxide dismutase. Successful integration of MTS-OGG1 into the INS-1 cellular genome was confirmed by Southern blot analysis. Western blots and enzyme activity assays revealed that hOGG1 was targeted to mitochondria and the recombinant enzyme was active. MTS-OGG1 cells showed a significant decrease in FFA-induced mtDNA damage compared with vector-only transfectants. Additionally, hOGG1 overexpression in mitochondria decreased FFA-induced inhibition of ATP production and protected INS-1 cells from apoptosis. These results indicate that mtDNA damage plays a pivotal role in FFA-induced beta-cell dysfunction and apoptosis. Therefore, targeting DNA repair enzymes into beta-cell mitochondria could be a potential therapeutic strategy for preventing or delaying the onset of type 2 diabetes symptoms.  相似文献   

20.
We have applied cell-attached capacitance measurements to investigate whether synaptic-like microvesicles (SLMVs) undergo regulated exocytosis in insulinoma and primary pancreatic beta-cells. SLMV and large dense-core vesicle (LDCV) exocytosis was increased 1.6- and 2.4-fold upon stimulation with 10 mmol/l glucose in INS-1 cells. Exocytosis of both types of vesicles was coupled to Ca(2+) entry through l-type channels. Thirty percent of SLMV exocytosis in INS-1 and rat beta-cells was associated with transient capacitance increases consistent with kiss-and-run. Elevation of intracellular cAMP (5 micromol/l forskolin) increased SLMV exocytosis 1.6-fold and lengthened the duration of kiss-and-run events in rat beta-cells. Experiments using isolated inside-out patches of INS-1 cells revealed that the readily releasable pool (RRP) of SLMVs preferentially undergoes kiss-and-run exocytosis (67%), is proportionally larger than the LDCV RRP, and is depleted more quickly upon Ca(2+) stimulation. We conclude that SLMVs undergo glucose-regulated exocytosis and are capable of high turnover. Following kiss-and-run exocytosis, the SLMV RRP may be reloaded with gamma-aminobutyric acid and undergo several cycles of exo- and endocytosis. Our observations support a role for beta-cell SLMVs in a synaptic-like function of rapid intra-islet signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号