首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wallerian degeneration (WD) remains an important research topic. Many genes are differentially expressed during the process of WD, but the precise mechanisms responsible for these differentiations are not completely understood. In this study, we used microarrays to analyze the expression changes of the distal nerve stump at 0, 1, 4, 7, 14, 21 and 28 days after sciatic nerve injury in rats. The data revealed 6 076 differentially-expressed genes, with 23 types of expression, specifically enriched in genes associated with nerve development and axonogenesis, cytokine biosynthesis, cell differentiation, cytokine/chemokine production, neuron differentiation, cytokinesis, phosphorylation and axon regeneration. Kyoto Encyclopedia of Genes and Genomes pathway analysis gave findings related mainly to the MAPK signaling pathway, the Jak-STAT signaling pathway, the cell cycle, cytokine-cytokine receptor interaction, the p53 signaling pathway and the Wnt signaling pathway. Some key factors were NGF, MAG, CNTF, CTNNA2, p53, JAK2, PLCB1, STAT3, BDNF, PRKC, collagen II, FGF, THBS4, TNC and c-Src, which were further validated by real-time quantitative PCR, Western blot, and immunohistochemistry. Our findings contribute to a better understanding of the functional analysis of differentially-expressed genes in WD and may shed light on the molecular mechanisms of nerve degeneration and regeneration.  相似文献   

2.
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis out-comes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration.  相似文献   

3.
Sensory and motor nerve fibers of peripheral nerves have different anatomies and regeneration functions after injury. To gain a clear understanding of the biological processes behind these differences, we used a labeling technique termed isobaric tags for relative and absolute quantitation to investigate the protein profiles of spinal nerve tissues from Sprague-Dawley rats. In response to Wallerian degeneration, a total of 626 proteins were screened in sensory nerves, of which 368 were upregulated and 258 were downregulated. In addition, 637 proteins were screened in motor nerves, of which 372 were upregulated and 265 were downregulated. All identified proteins were analyzed using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of bioinformatics, and the presence of several key proteins closely related to Wallerian degeneration were tested and verified using quantitative real-time polymerase chain reaction analyses. The differentially expressed proteins only identified in the sensory nerves were mainly relevant to various biological processes that included cell-cell adhesion, carbohydrate metabolic processes and cell adhesion, whereas differentially expressed proteins only identified in the motor nerves were mainly relevant to biological processes associated with the glycolytic process, cell redox homeostasis, and protein folding. In the aspect of the cellular component, the differentially expressed proteins in the sensory and motor nerves were commonly related to extracellular exosomes, the myelin sheath, and focal adhesion. According to the Kyoto Encyclopedia of Genes and Genomes, the differentially expressed proteins identified are primarily related to various types of metabolic pathways. In conclusion, the present study screened differentially expressed proteins to reveal more about the differences and similarities between sensory and motor nerves during Wallerian degeneration. The present findings could provide a reference point for a future investigation into the differences between sensory and motor nerves in Wallerian degeneration and the characteristics of peripheral nerve regeneration. The study was approved by the Ethics Committee of the Chinese PLA General Hospital, China(approval No. 2016-x9-07) in September 2016.  相似文献   

4.
5.
6.
7.
8.
Wallerian degeneration is a complex biological process that occurs after nerve injury,and involves nerve degeneration and regeneration.Schwann cells play a crucial role in the cellular and molecular events of Wallerian degeneration of the peripheral nervous system.However,Wallerian degeneration regulating nerve injury and repair remains largely unknown,especially the early response.We have previously reported some key regulators of Wallerian degeneration after sciatic nerve injury.Baculoviral inhibitor of apoptosis protein repeat-containing protein 3(BIRC3)is an important factor that regulates apoptosis-inhibiting protein.In this study,we established rat models of right sciatic nerve injury.In vitro Schwann cell models were also established and subjected to gene transfection to inhibit and overexpress BIRC3.The data indicated that BIRC3 expression was significantly up-regulated after sciatic nerve injury.Both BIRC3 upregulation and downregulation affected the migration,proliferation and apoptosis of Schwan cells and affected the expression of related factors through activating c-fos and ERK signal pathway.Inhibition of BIRC3 delayed early Wallerian degeneration through inhibiting the apoptosis of Schwann cells after sciatic nerve injury.These findings suggest that BIRC3 plays an important role in peripheral nerve injury repair and regeneration.The study was approved by the Institutional Animal Care and Use Committee of Nantong University,China(approval No.2019-nsfc004)on March 1,2019.  相似文献   

9.
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration(0–4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt and ERK1/2 pathways. Further studies revealed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.  相似文献   

10.
We screened for genes whose expression is significantly up- or downregulated during Wallerian degeneration in adult rat sciatic nerve with cDNA arrays. Fibroblast growth factor-5 (FGF-5) mRNA seemed to be induced. This was confirmed by northern blotting and in situ hybridization, as well as Western blotting for FGF-5 in axotomized nerve. Axon-Schwann cell interactions decreased the steady-state level of FGF-5 mRNA in regenerating sciatic nerves, and forskolin diminished its expression in cultured Schwann cells. We conclude that denervated Schwann cells synthesize FGF-5, which is a secreted, neuronotrophic member of the FGF family.  相似文献   

11.
12.
Regeneration of the peripheral nervous system after injury depends on a complex sequence of histopathological reactions that comprise a highly reproducible sequence of degenerative reactions, termed Wallerian degeneration. During this period a remodelling of the distal nerve stump prepares a microenvironment that permits successful regrowth of nerve fibers from the proximal nerve fragment. This stereotypical sequence of reactions is reflected by a differential and coordinate expression of genes with specific functions in the process of regeneration. This review will summarize cellular and molecular reactions that contribute to peripheral nerve regeneration including data of a pilot study in which membrane based cDNA array expression technology was applied. We examined the expression of 588 annotated genes in response to a crush lesion of rat sciatic nerves. Approximately 40 % of the genes spotted onto the array filters showed expression significantly above background and 55 of these detected genes represented differential expression profiles after nerve lesion. This approach revealed to be suitable for systematic screening of regeneration associated genes.  相似文献   

13.
Wallerian degeneration occurs after peripheral nerve injury and provides a beneficial microenvironment for nerve regeneration. Our previous study demonstrated that ascorbic acid promotes peripheral nerve regeneration, possibly through promoting Schwann cell proliferation and phagocytosis and enhancing macrophage proliferation, migration, and phagocytosis. Because Schwann cells and macrophages are the main cells involved in Wallerian degeneration, we speculated that ascorbic acid may accelerate this degenerative process. To test this hypothesis, 400 mg/kg ascorbic acid was administered intragastrically immediately after sciatic nerve transection, and 200 mg/kg ascorbic acid was then administered intragastrically every day. In addition, rat sciatic nerve explants were treated with 200 μM ascorbic acid. Ascorbic acid significantly accelerated the degradation of myelin basic protein-positive myelin and neurofilament 200-positive axons in both the transected nerves and nerve explants. Furthermore, ascorbic acid inhibited myelin-associated glycoprotein expression, increased c-Jun expression in Schwann cells, and increased both the number of macrophages and the amount of myelin fragments in the macrophages. These findings suggest that ascorbic acid accelerates Wallerian degeneration by accelerating the degeneration of axons and myelin in the injured nerve, promoting the dedifferentiation of Schwann cells, and enhancing macrophage recruitment and phagocytosis. The study was approved by the Southern Medical University Animal Care and Use Committee(approval No. SMU-L2015081) on October 15, 2015.  相似文献   

14.
15.
Phospholipase A(2) (PLA(2)) hydrolyzes phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The former can induce myelin breakdown and the latter, via eicosanoids, can stimulate inflammatory responses. Immunohistochemical analysis of secreted (sPLA(2)) and cytosolic (cPLA(2)) forms of the enzyme was assessed in the injured adult rat sciatic and optic nerves. sPLA(2) and cPLA(2) are expressed in the first 2 weeks in the injured sciatic nerve, which correlates with rapid Wallerian degeneration in peripheral nerves. In contrast, both forms of PLA(2) were not expressed in the optic nerve for the first 3 weeks after crush injury, which correlates with slow Wallerian degeneration in the central nervous system (CNS). In addition, PLA(2) is not expressed in the lesioned sciatic nerve of C57BL/Wld(s) mutant mice in which Wallerian degeneration is severely retarded. Blocking cPLA(2) in the transected sciatic nerve of C57BL/6 mice, which have a naturally occurring null mutation for the major from of sPLA(2), resulted in a marked slowing of myelin and axonal degradation and phagocytosis in the distal nerve segment. These results provide direct evidence of an important role for cPLA(2) in Wallerian degeneration.  相似文献   

16.
17.
We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of myelinated motor and sensory fibres. Axotomy-induced Wallerian degeneration appeared as fragmentation of fluorescent signals in individual YFP positive axons with a morphology and timing similar to Wallerian degeneration observed by more traditional methods. In YFP-H transgenic mice co-expressing a high dosage of WldS, a chimeric gene that protects from Wallerian degeneration [Nat Neurosci. 4 (2001) 1199], axonal fragmentation in distal tibial nerves after sciatic nerve axotomy was approximately 10 times delayed. Considerable retardations of Wallerian degeneration using the same transgenic expression system were also observed in cultures of nerve explants, enabling in vitro real-time imaging of axonal fragmentation. Remarkably, single YFP-labelled axons could be traced in peripheral nerves for unusually long distances of up to 2.9 cm exploiting confocal fluorescence imaging. Altogether transgenic YFP-H mice prove to be a valuable tool to study mechanisms of Wallerian degeneration in vivo and in vitro.  相似文献   

18.
We carried out a partial ligation of the sciatic nerve in rats to induce nerve injury and neuropathic hyperalgesia. We showed that nitrotyrosine, a marker of peroxynitrite activity, was formed after partial nerve injury. Double-labelling immunohistochemistry showed that nitrotyrosine-immunoreactive cells were mainly macrophages and Schwann cells. Daily treatment with uric acid, a scavenger of peroxynitrite, decreased nitrotyrosine formation in the injured sciatic nerve, and produced concomitant alleviation of thermal hyperalgesia and Wallerian degeneration. These results provide the first evidence that peroxynitrite is formed after partial nerve injury, and contributes to the initiation of thermal hyperalgesia and Wallerian degeneration. We hypothesize that uric acid alleviates hyperalgesia and Wallerian degeneration by inhibiting oxidative damage caused by peroxynitrite and possibly also by decreasing the production of other inflammatory mediators such as prostaglandins.  相似文献   

19.
20.
Glioma is a highly invasive, rapidly spreading form of brain cancer, while its etiology is largely unknown. A few recently reported studies have been developed using gene expression microarrays of glioma to identify differentially expressed genes from several to hundreds. This study was designed to analyze vast amounts of glioma-related microarray data and screen the key genes and pathways related to the development and progression of glioma. We used gene set enrichment analysis (GSEA) and meta-analysis of seven included studies after standardized microarray preprocessing, which increased concordance between these gene datasets. After GSEA, there were 14 mixing pathways including 13 up- and 1 down-regulated pathways. Based on the meta-analysis, 268 significant genes were screened out (P?<?0.05); there were 249 genes identified by Kyoto Encyclopedia of Genes and Genomes (KEGG), and 27 KEGG pathways closely related to the set of the imported genes were identified. At last, six consistent pathways and key genes in these pathways related to glioma were obtained with combined GSEA and meta-analysis. The gene pathways that we identified could provide insight concerning the development of glioma. Further studies are needed to determine the biological function for the positive genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号