首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
AIMS/HYPOTHESIS: Genome-wide association studies have recently identified novel type 2 diabetes susceptibility gene regions. We assessed the effects of six of these regions on insulin secretion as determined by a hyperglycaemic clamp. METHODS: Variants of the HHEX/IDE, CDKAL1, SLC30A8, IGF2BP2 and CDKN2A/CDKN2B genes were genotyped in a cohort of 146 participants with NGT and 126 with IGT from the Netherlands and Germany, who all underwent a hyperglycaemic clamp at 10 mmol/l glucose. RESULTS: Variants of CDKAL1 and IGF2BP2 were associated with reductions in first-phase insulin secretion (34% and 28%, respectively). The disposition index was also significantly reduced. For gene regions near HHEX/IDE, SLC30A8 and CDKN2A/CDKN2B we did not find significant associations with first-phase insulin secretion (7-18% difference between genotypes; all p > 0.3). None of the variants showed a significant effect on second-phase insulin secretion in our cohorts (2-8% difference between genotypes, all p > 0.3). Furthermore, the gene variants were not associated with the insulin sensitivity index. CONCLUSIONS: Variants of CDKAL1 and IGF2BP2 attenuate the first phase of glucose-stimulated insulin secretion but show no effect on the second phase of insulin secretion. Our results, based on hyperglycaemic clamps, provide further insight into the pathogenic mechanism behind the association of these gene variants with type 2 diabetes.  相似文献   

2.
Aims/hypothesis Variation within six novel genetic loci has been reported to confer risk of type 2 diabetes and may be associated with beta cell dysfunction. We investigated whether these polymorphisms are also associated with impaired proinsulin to insulin conversion. Methods We genotyped 1,065 German participants for single nucleotide polymorphisms rs7903146 in TCF7L2, rs7754840 in CDKAL1, rs7923837 and rs1111875 in HHEX, rs13266634 in SLC30A8, rs10811661 in CDKN2A/B and rs4402960 in IGF2BP2. All participants underwent an OGTT. Insulin, proinsulin and C-peptide concentrations were measured at 0, 30, 60, 90 and 120 min during the OGTT. Insulin secretion was estimated from C-peptide or insulin levels during the OGTT using validated indices. We used the ratio proinsulin/insulin during the OGTT as indicator of proinsulin conversion. Results In our cohort, we confirmed the significant association of variants in TCF7L2, CDKAL1 and HHEX with reduced insulin secretion during the OGTT (p < 0.05 for all). Variation in SLC30A8, CDKN2A/B and IGF2BP2 was not associated with insulin secretion. The risk alleles of the variants in TCF7L2, CDKAL1 and SLC30A8 reduced proinsulin to insulin conversion (p < 0.05 for all), whereas the risk alleles in HHEX, CDKN2A/B and IGF2BP2 were not associated with reduced proinsulin to insulin conversion (p > 0.6). Conclusions/interpretation Diabetes-associated variants in TCF7L2 and CDKAL1 impair insulin secretion and conversion of proinsulin to insulin. However, both aspects of beta cell function are not necessarily linked, as impaired insulin secretion is specifically present in variants of HHEX and impaired proinsulin conversion is specifically present in a variant of SLC30A8. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

3.
Aims/hypothesis  Novel type 2 diabetes-susceptibility loci have been identified with evidence that individually they mediate the increased diabetes risk through altered pancreatic beta cell function. The aim of this study was to test the cumulative effects of diabetes-risk alleles on measures of beta cell function in non-diabetic individuals. Methods  A total of 1,211 non-diabetic individuals underwent metabolic assessment including an OGTT, from which measures of beta cell function were derived. Individuals were genotyped at each of the risk loci and then classified according to the total number of risk alleles that they carried. Initial analysis focused on CDKAL1, HHEX/IDE and TCF7L2 loci, which were individually associated with a decrease in beta cell function in our cohort. Risk alleles for CDKN2A/B, SLC30A8, IGF2BP2 and KCNJ11 loci were subsequently included into the analysis. Results  The diabetes-risk alleles for CDKAL1, HHEX/IDE and TCF7L2 showed an additive model of association with measures of beta cell function. Beta cell glucose sensitivity was decreased by 39% in those individuals with five or more risk alleles compared with those individuals with no risk alleles (geometric mean [SEM]: 84 [1.07] vs 137 [1.11] pmol min−1 m−2 (mmol/l)−1, p = 1.51 × 10−6). The same was seen for the 30 min insulin response (p = 4.17 × 10−7). The relationship remained after adding in the other four susceptibility loci (30 min insulin response and beta cell glucose sensitivity, p < 0.001 and p = 0.003, respectively). Conclusions/interpretation  This study shows how individual type 2 diabetes-risk alleles combine in an additive manner to impact upon pancreatic beta cell function in non-diabetic individuals. Electronic supplementary material  The online version of this article (doi:) contains a list of the members of the RISC Consortium, which is available to authorised users.  相似文献   

4.
Recent genomewide association studies have successfully identified several genotypes susceptible to type 2 diabetes mellitus (T2DM). However, only a few studies have investigated whether these variations confer a risk of the future development of T2DM. We conducted a longitudinal genetic epidemiological study to clarify the prognostic significance of the T2DM-associated variants. The sample population consisted of 2037 middle-aged to elderly community residents. Personal health records were obtained from a clinical database administered by the local government. Genotype risk score was calculated by the following variants, namely, KCNQ1, TCF7L2, CDKAL1, HHEX, IGF2BP2, CDKN2AB, SLC30A8, KCNJ11, PPARG, and GCKR. Susceptibility of these variants in Japanese has been confirmed by association analysis. Among the 1824 subjects who did not have T2DM at baseline, 95 cases of T2DM were newly diagnosed during the 9.4-year follow-up period. Mean genotype risk score in these subjects was significantly higher than that in the subjects who remained nondiabetic (9.5 ± 1.8 vs 9.1 ± 2.0, P = .042). Although the initial mean body mass index (24.7 ± 3.2 vs 23.0 ± 2.8, P < .001) and initial glucose (106 ± 18 vs 90 ± 13, P < .001) were also significantly higher in those subjects who developed T2DM, the genotype risk score remained an independent determinant of the development of T2DM even after adjustment for these parameters and possible confounding factors. Per-allele odds ratio for the development of T2DM was 1.12 (95% confidence interval, 1.00-1.25; P = .049). Type 2 diabetes mellitus-susceptible genetic variants identified by a cross-sectional genomewide association study were significantly associated with the future development of T2DM in a general population sample.  相似文献   

5.
Aims/hypothesis  Early environmental factors and genetic variants have been reported to be involved in the pathogenesis of type 2 diabetes. The aim of this study was to investigate whether there is an interaction between birthweight and common variants in the TCF7L2, HHEX, PPARG, KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B and JAZF1 genes in the risk of developing type 2 diabetes. Methods  A total of 2,003 participants from the Helsinki Birth Cohort Study, 311 of whom were diagnosed with type 2 diabetes by an OGTT, were genotyped for the specified variants. Indices for insulin sensitivity and secretion were calculated. Results  Low birthweight was associated with type 2 diabetes (p = 0.008) and impaired insulin secretion (p = 0.04). Of the tested variants, the risk variant in HHEX showed a trend towards a low birthweight (p = 0.09) and the risk variant in the CDKN2A/2B locus was associated with high birthweight (p = 0.01). The TCF7L2 risk allele was associated with increased risk of type 2 diabetes. Pooling across all nine genes, each risk allele increased the risk of type 2 diabetes by 11%. Risk variants in the HHEX, CDKN2A/2B and JAZF1 genes interacted with birthweight, so that the risk of type 2 diabetes was highest in those with lower birthweight (p ≤ 0.05). The interaction was also present in the pooled data. Conclusions/interpretation  Low birthweight might affect the strength of the association of some common variants (HHEX, CDKN2A/2B and JAZF1) with type 2 diabetes. These findings need to be replicated in independent cohorts. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. An erratum to this article can be found at  相似文献   

6.
Aims/hypothesis  New genetic variants associated with susceptibility to type 2 diabetes mellitus have been discovered in recent genome-wide association (GWA) studies. The aim of the present study was to examine the association between these diabetogenic variants and gestational diabetes mellitus (GDM). Methods  The study included 869 Korean women with GDM and 345 female and 287 male Korean non-diabetic controls. We genotyped the single nucleotide polymorphisms (SNPs) rs7756992 and rs7754840 in CDKAL1; rs564398, rs1333040, rs10757278 and rs10811661 in the CDKN2A−CDKN2B region; rs8050136 in FTO; rs1111875, rs5015480 and rs7923837 in HHEX; rs4402960 in IGF2BP2; and rs13266634 in SLC30A8. In addition, rs7903146 and rs12255372 in TCF7L2; rs5215 and rs5219 in KCNJ11; and rs3856806 and rs1801282 in PPARG were genotyped. The genotype frequencies in the GDM patients were compared with those in the non-diabetic controls. Results  Compared with controls (men and women combined), GDM was associated with rs7756992 and rs7754840 (OR 1.55, 95% CI 1.34–1.79, p = 4.17 × 10−9) in CDKAL1; rs10811661 (OR 1.49, 95% CI 1.29–1.72, p = 1.05 × 10−7) in the CDKN2A−CDKN2B region; rs1111875 (OR 1.27, 95% CI 1.09–1.49, p = 0.003), rs5015480, and rs7923837 in HHEX; rs4402960 (OR 1.18, 95% CI 1.01–1.38, p = 0.03) in IGF2BP2; rs13266634 (OR 1.24, 95% CI 1.07–1.43, p = 0.005) in SLC30A8; and rs7903146 (OR 1.58, 95% CI 1.03–2.43, p = 0.038) in TCF7L2. The risk alleles of the SNPs rs7756992 and rs7754840 in CDKAL1; rs10811661 in the CDKN2A–CDKN2B region; and rs1111875, rs5015480 and rs7923837 in HHEX were associated with significant decreases in the insulin AUC during a 100 g OGTT performed at the time of diagnosis of GDM. Conclusions/interpretation  Some of the type 2 diabetes-associated genetic variants that were discovered in the recent GWA studies are also associated with GDM in Koreans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. Y. M. Cho and T. H. Kim contributed equally to this study.  相似文献   

7.
8.
BACKGROUND: In Europeans and populations of European origin, several groups have recently identified novel type 2 diabetes susceptibility genes, including FTO, SLC30A8, HHEX, CDKAL1, CDKN2B, and IGF2BP2, none of which were in the list of functional candidates. OBJECTIVE AND DESIGN: The aim of this study was to replicate in a Japanese population previously identified associations of single nucleotide polymorphisms (SNPs) within 10 candidate loci with type 2 diabetes using a relatively large sample size: 1921 subjects with type 2 diabetes and 1622 normal controls. RESULTS: A total of 15 SNPs were genotyped. Eight SNPs in five loci were found to be associated with type 2 diabetes: rs3802177 [odds ratio (OR) = 1.16 (95% confidence interval (CI) 1.05-1.27); P = 4.5 x 10(-3)] in SLC30A8; rs1111875 [OR = 1.27 (95% CI 1.14-1.40); P = 1.4 x 10(-5)] and rs7923837 [OR = 1.27 (95% CI 1.13-1.43); P = 1.0 x 10(-4)] in HHEX; rs10811661 [OR = 1.27 (95% CI 1.15-1.40); P = 1.9 x 10(-6)] in CDKN2B; rs4402960 [OR = 1.23 (95% CI 1.11-1.36); P = 8.1 x 10(-5)] and rs1470579 [OR = 1.18 (95% CI 1.07-1.31); P = 8.3 x 10(-4)] in IGF2BP2; and rs7754840 [OR = 1.28 (95% CI 1.17-1.41); P = 4.5 x 10(-7)] and rs7756992 [OR = 1.27 (95% CI 1.15-1.40); P = 9.8 x 10(-7)] in CDKAL1. The first and second strongest associations were found at variants in CDKAL1 and CDKN2B, both of which are involved in the regenerative capacity of pancreatic beta-cells. CONCLUSION: Some of these variants represent common type 2 diabetes-susceptibility genes in both Japanese and Europeans.  相似文献   

9.
BackgroundWhile several type 2 diabetes mellitus (T2DM) susceptibility loci identified through genome-wide association studies (GWAS) have been replicated in many populations, their association in Arabs has not been reported. For this reason, the present study looked at the contribution of ENNP1 (rs1044498), IGF2BP2 (rs1470579), KCNJ11 (rs5219), MLXIPL (rs7800944), PPARγ (rs1801282), SLC30A8 (rs13266634) and TCF7L2 (rs7903146) SNPs to the risk of T2DM in Lebanese and Tunisian Arabs.MethodsStudy subjects (case/controls) were Lebanese (751/918) and Tunisians (1470/838). Genotyping was carried out by the allelic discrimination method.ResultsIn Lebanese and Tunisians, neither ENNP1 nor MLXIPL was associated with T2DM, whereas TCF7L2 was significantly associated with an increased risk of T2DM in both the Lebanese [P < 0.001; OR (95% CI): 1.38 (1.20–1.59)] and Tunisians [P < 0.001; OR (95% CI): 1.36 (1.18–1.56)]. Differential associations of IGF2BP2, KCNJ11, PPARγ and SLC30A8 with T2DM were noted in the two populations. IGF2BP2 [P = 1.3 × 10?5; OR (95% CI): 1.66 (1.42–1.94)] and PPARγ [P = 0.005; OR (95% CI): 1.41 (1.10–1.80)] were associated with T2DM in the Lebanese, but not Tunisians, while KCNJ11 [P = 8.0 × 10?4; OR (95% CI): 1.27 (1.09–1.47)] and SLC30A8 [P = 1.6 × 10?5; OR (95% CI): 1.37 (1.15–1.62)] were associated with T2DM in the Tunisians, but not Lebanese, after adjusting for gender and body mass index.ConclusionT2DM susceptibility loci SNPs identified through GWAS showed differential associations with T2DM in two Arab populations, thus further confirming the ethnic contributions of these variants to T2DM susceptibility.  相似文献   

10.
Background In the present study, we aimed to validate the type 2 diabetes (T2DM) susceptibility alleles identified in the first genome‐wide association study in the hematopoietically expressed homeobox protein (HHEX) gene region (rs1111875 and rs7923837). Furthermore, we investigated quantitative metabolic risk phenotypes of these two variants for association with three key components of the insulin metabolism: insulin secretion, insulin sensitivity and insulin degradation. Methods Two HHEX polymorphisms were genotyped in 1026 subjects from the German MESYBEPO cohort. Complete OGTT data were available for a subset of 420 with normal glucose tolerance (NGT), 282 with impaired glucose tolerance/impaired fasting glucose (IGT/IFG) and 146 diabetic subjects. Results We validated association of both HHEX polymorphisms with T2DM. In the non‐diabetic subcohort including NGT and IFG/IGT subjects, the risk alleles of rs7923837 and rs1111875 were significantly associated with decreased first and second phases of insulin secretion and lower insulinogenic index after oral glucose loading. In healthy, normal glucose‐tolerant subjects, the same association of HHEX SNP rs1111875 with OGTT‐derived phases of insulin secretion were detectable, however, rs7923837 was only weakly associated with reduced insulinogenic index. For both polymorphisms, no significant correlations with insulin sensitivity were obtained. Reduced insulin clearance was also observed in heterozygous carriers of rs1111875. Conclusions We validated the association of polymorphisms of the HHEX gene with T2DM in the MESYBEPO cohort. Importantly, variations within the HHEX gene conferred the impaired insulin secretion and changes of insulin degradation but no alteration in insulin sensitivity in carriers of risk alleles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Aims/hypothesis  Among the novel type 2 diabetes risk loci identified by genome-wide association studies, TCF7L2, HHEX, SLC30A8 and CDKAL1 appear to affect beta cell function. In the present study we examined the effect of these genes’ risk alleles on the age-dependent decline in insulin secretion. Methods  The SNPs rs7903146 (TCF7L2), rs7754840(CDKAL1), rs7923837 (HHEX) and rs13266634 (SLC30A8) were genotyped in 1,412 non-diabetic patients, who were subsequently grouped according to their number of risk alleles. All participants underwent an OGTT. Insulin secretion was assessed by validated indices and proinsulin conversion by calculating AUCproinsulin/AUCinsulin. Results  The number of risk alleles revealed a Gaussian distribution, with most participants carrying four risk alleles. Stratification into groups with low (LAL, up to three alleles), median (MAL, four alleles) and high (HAL, five to eight alleles) allele load resulted in MAL and HAL participants displaying significantly lower insulin secretion and proinsulin conversion than LAL participants (p ≤ 0.0014 and p = 0.0185, respectively). In the overall cohort, age was negatively associated with insulin secretion and proinsulin conversion (both p < 0.0001). MAL and HAL participants showed a significantly more pronounced decline in insulin secretion with increasing age than LAL participants (p ≤ 0.0325; analysis of covariance), and after stratification for BMI this relationship was maintained in obese, but not non-obese, participants. Proinsulin conversion decreased with increasing age in MAL and HAL, but not LAL, participants (p ≤ 0.0003 vs p = 0.2). Conclusions/interpretation  The risk allele load significantly accelerates the age-dependent decline in beta cell function, and this might be of particular importance in obese people. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users. A. Haupt and H. Staiger contributed equally to this study.  相似文献   

12.
We investigated the impact of gender on T2DM association with confirmed susceptibility loci. CDKN2A/2B rs10811661, KCNJ11 rs5219, and TCF7L2 rs7903146 were associated with T2DM in females, while POLI rs488846 was associated with T2DM among males; the association of SLC30A8 rs13266634 and TCF7L2 rs4506565, rs12243326, and rs12255372 with T2DM was gender-independent.  相似文献   

13.

Background

Asians have among the highest incidence of type 2 diabetes (T2DM) in the world, partly due to low β‐cell function, causing them to rapidly develop T2DM when insulin resistant. This study tested the hypothesis that genetic polymorphisms are responsible for the low β‐cell function and that dietary factors interact with the genes to exacerbate their risk of T2DM.

Methods

We selected 10 genetic variants of 5 genes involved in insulin secretion (CDKAL1, KCNQ1, IDE, HHEX, and ABCA1) from the genome‐wide association studies to calculate the genetic risk scores (GRSs) in 8842 Korean adults in the Ansan/Ansung cohort in the Korean Genome Epidemiology Study. The genetic risk score were divided into low, medium, and high groups, and the association between T2DM and the genetic risk score was measured using logistic regression. We also analysed the interaction between the genetic risk score and the nutrition intakes.

Results

The individual genetic variants were positively associated with T2DM even when adjusted for covariates. Individuals with medium and high genetic risk score had higher T2DM risk by 1.68 and 2.17 folds compared to those with the low genetic risk score after adjusting for covariates. The increased risk was mainly associated with lower HOMA‐B, an indicator of insulin secretion capacity, but not HOMA‐IR, an indicator of insulin resistance. Subjects with high carbohydrate intakes and a medium genetic risk score did not have a higher risk of T2DM, and the risk was partially mitigated in the high genetic risk score group.

Conclusion

Seventy‐two percent of the Korean population had either medium or high genetic risk scores for impaired insulin secretion, which approximately doubled their risk of type 2 diabetes, and the risk was exacerbated by consuming a low carbohydrate Western‐style diets.  相似文献   

14.
Gestational diabetes mellitus (GDM) is defined as abnormal glucose tolerance with onset or first recognition during pregnancy. Women with a history of GDM are at long-term risk for developing type 2 diabetes (T2DM), raising the question to what extent GDM and T2DM share a common genetic architecture. Meta-analysis of candidate gene studies and genome-wide association analysis (GWAS) have identified a number of genes which are reproducibly associated with GDM, including TCF7L2, GCK, KCNJ11, KCNQ1, CDKAL1, IGF2BP2, MTNR1B, and IRS1. These genes are also associated with T2DM. Candidate gene and GWAS have also identified genes associated with maternal metabolic traits, most of which are also associated with metabolic traits in the general population. Two genes, BACE2 and HKDC1, are uniquely associated with maternal metabolic traits. These studies suggest that there are similarities and differences between the genetic architecture of GDM and T2DM and metabolic quantitative traits in pregnant and non-pregnant populations.  相似文献   

15.
《Diabetes & metabolism》2022,48(4):101323
We tested the hypothesis that common genetic variability of beta-cell genes responsible for monogenic diabetes may affect beta cell function in type 2 diabetes mellitus (T2DM). We studied 794 drug- naïve GAD-negative patients with newly diagnosed T2DM (age: median=59 years; I.Q. range: 52-66; body mass index: 29.3 kg/m2; 26.6-32.9). Beta-cell function was assessed by state-of-art mathematical modeling of glucose/C-peptide curves during a 240’-300’ frequently sampled oral glucose tolerance test, to provide the beta-cell responses to the rate of increase in glucose concentration (derivative control: DC) and to glucose concentration (proportional control: PC). Forty-two single nucleotide polymorphism (SNPs), selected to cover over 90% of common genetic variability, were genotyped in nine monogenic diabetes genes: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, KCNJ11 and ABCC8. Allelic variants of four SNPs (rs1303722 and rs882019 of GCK, rs7310409 of HNF1A and rs5219 of KCNJ11) were significantly associated with DC of beta-cell secretion (all P < 0.036). Allelic variants of four other SNPs (rs2868094 and rs6031544 of HNF4A, and rs1801262 and rs12053195 of NEUROD1) were associated with PC of beta-cell secretion (P < 0.02). In multivariate models, GCK, HNF1A and KCNJ11 SNPs explained 2.5% of the DC variability of beta-cell secretion, whereas HNF4A and NEUROD1 SNPs explained 3.6% of the PC variability of beta-cell secretion. We conclude that common variability of monogenic diabetes genes is significantly associated with an impaired beta-cell function in patients with newly diagnosed T2DM; thereby, these genes might be targeted by specific treatments in T2DM.  相似文献   

16.

Background

Diabetes is associated with an increased risk of cancer. This study aimed to evaluate associations between recently reported type 2 diabetes (T2D) susceptibility genetic variants and cancer risk in a prospective cohort of Chinese patients with T2D.

Methods

Seven single nucleotide polymorphisms (SNP) in IGF2BP2, CDKAL1, SLC30A8, CDKN2A/B, HHEX and TCF7L2, all identified from genome-wide association studies of T2D, were genotyped in 5900 T2D patients [age mean ± SD = 57 ± 13 years, % males = 46] without any known cancer at baseline. Associations between new-onset of cancer and SNPs were tested by Cox proportional hazard models with adjustment of conventional risk factors.

Results

During the mean follow-up period of 8.5 ± 3.3 years, 429 patients (7.3%) developed cancer. Of the T2D-related SNPs, the G-alleles of HHEX rs7923837 (hazard ratio [HR] (95% C.I.) = 1.34 (1.08–1.65); P = 6.7 × 10−3 under dominant model) and TCF7L2 rs290481 (HR (95% C.I.) = 1.16 (1.01–1.33); P = 0.040 under additive model) were positively associated with cancer risk, while the G-allele of CDKAL1 rs7756992 was inversely associated (HR (95% C.I.) = 0.80 (0.65–1.00); P = 0.048 under recessive model). The risk alleles of these significant SNPs exhibited combined effect on increasing cancer risk (per-allele HR (95% C.I.) = 1.25 (1.12–1.39); P = 4.8 × 10−5). The adjusted cancer risk was 2.41 (95% C.I. 1.23–4.69) for patients with four risk alleles comparing to patients without risk allele.

Conclusions

T2D-related variants HHEX rs7923837, TCF7L2 rs290481 and CDKAL1 rs7756992 increased cancer risk in patients with diabetes.

Impact

Our findings provide novel insights into the pathogenesis of cancer in diabetes.  相似文献   

17.
The KCNJ11 and ABCC8 genes encode the components of the pancreatic ATP-sensitive potassium (KATP) channel, which regulates insulin secretion by β-cells and hence could be involved in the pathogenesis of type 2 diabetes (T2D). The KCNJ11 E23K and ABCC8 exon 31 variants have been studied in 127 Russian T2D patients and 117 controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach. The KCNJ11 E23 variant and the ABCC8 exon 31 allele A were associated with higher risk of T2D [Odds ratio (OR) of 1.53 (= 0.023) and 2.41 (= 1.95 × 10−5)], respectively. Diabetic carriers of the ABCC8 G/G variant had reduced 2 h glucose compared to A/A + A/G (= 0.031). The G/G genotype of ABCC8 was also significantly associated with increased both fasting and 2 h serum insulin in diabetic and non-diabetic patients. A HOMA-β value characterizing the β-cell homeostasis was higher in the non-diabetic carriers homozygous for G/G (98.0 ± 46.9) then for other genotypes (HOMA-β = 85.6 ± 45.5 for A/A + A/G, = 0.0015). The KCNJ11 E23K and ABCC8 exon 31 variants contribute to susceptibility to T2D diabetes, glucose intolerance and altered insulin secretion in a Russian population.  相似文献   

18.
We investigated whether single nucleotide polymorphisms in genes related to glucose metabolism correlate with insulin secretion in type 1 diabetes patients. A cohort of 49 type 1 diabetes patients underwent serial mixed meal tolerance tests to assess insulin secretion. Patients were genotyped for SNPs related to glucose metabolism: CDKAL1 rs7754840, G6PC2 rs560887, HHEX rs1111875, KCNJ11 rs5215. Recently diagnosed patients (<100 days) homozygous for the G allele of G6PC2 had higher area under the curve C-peptide on mixed meal tolerance tests compared to non-homozygous patients (344.8 ± 203.2 vs. 167.9 ± 131.5, p = 0.04). Other SNPs did not correlate with insulin secretion in the new onset period. In a longitudinal survival analysis, homozygosity for the minor allele (A) in G6PC2 predicted more rapid loss of insulin secretion over time. A SNP in the beta cell gene G6PC2 may correlate with preserved insulin secretion in type 1 diabetes.  相似文献   

19.

Aim

Recent genome-wide association scans (GWAS) and replication studies have expanded the list of validated type 2 diabetes (T2DM) susceptibility loci. We replicated T2DM association of 19 SNPs from 15 candidate loci in Lebanese Arabs.

Methods

Case–control association study, comprising 995 T2DM patients and 1076 control participants. We genotyped by the allelic discrimination method 19 SNPs in/near ADAM30, NOTCH2, THADA, TMEFF2, COL8A1, ADAMTS9-AS2, WFS1, JAZF1, SLC30A8, KCNQ1, LOC387761, ALX4, TSPAN8, FTO, and HNF1.

Results

Allele frequencies of the tested SNPs were comparable with those of Caucasians. COL8A1 rs792837 (P = 2.9 × 10−9), KCNQ1 rs2237892 (P = 1.8 × 10−18) and rs2237895 (P = 0.002), ALX4 rs729287 (Pc = 7.5 × 10−5), and HNF1 rs4430796 (P = 0.003) were significantly associated with T2DM, with similar effect sizes to those of Europeans. While FTO rs8050136 and rs17817449, ADAMTS9 rs4607103, and WFS1 rs10010131 were initially associated with T2DM, this was lost upon multiple testing correction. The remaining variants were not associated with T2DM, possibly resulting from insufficient power to detect smaller allele effects.

Conclusion

In addition to previous findings on the association of IGF2BP2, CDKAL1, TCF7L2 variants with T2DM among Lebanese, here we extend these by validating the association of five additional loci with T2DM in Lebanese Arabs.  相似文献   

20.

Aims/hypothesis  

Individuals carrying type 2 diabetes risk alleles in TCF7L2 display decreased beta cell levels of T cell factor 7 like-2 (TCF7L2) immunoreactivity, and impaired insulin secretion and beta cell sensitivity to glucagon-like peptide 1 (GLP-1). Here, we sought to determine whether selective deletion of Tcf7l2 in mouse pancreas impairs insulin release and glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号