首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Response differences by different strains of mice towards house dust mites (Dermatophagoides farinae) or diesel exhaust particles (DEP) were investigated. Mouse strains BALB/c, ICR and C3H/He received 1 micro g of D. farinae or 1 microg of D. farinae + 50 microg of DEP intratracheally four times at 2-week intervals. Dermatophagoides farinae treatment caused the recruitment of eosinophils and lymphocytes. The order of magnitude of the eosinophilic airway inflammation was BALB/c < ICR < C3H/He mice. The protein levels of eotaxin and IL-5 in lung tissues correlated with the manifestations of eosinophilic airway inflammation by D. farinae administration. Diesel exhaust particles aggravated the manifestation of the eosinophilic inflammation through goblet cell proliferation in the airway and enhanced the local expression of eotaxin and IL-5 in all three strains of mice. The levels of eotaxin and IL-5 in lung tissues corresponded to the pathological changes caused by D. farinae + DEP. The increasing order of production levels of antigen-specific IgG1 by D. farinae or D. farinae + DEP was BALB/c < ICR < C3H/He mice. The significant adjuvant effect of DEP on IgG1 production was observed in the C3H/He mice (P < 0.05). These results suggest that the murine strain differences in the production of eosinophilic airway inflammation by D. farinae + DEP are related to differences in local expression of IL-5 and eotaxin. The enhancing effects of DEP may be mediated by a cytokine increase in the local expression. Antigen-specific IgG1 may be an important immunoglobulin in the pathogenesis of allergic asthma enhanced by DEP.  相似文献   

2.
Exposure to diesel exhaust particles (DEP) during the sensitization process has been shown to increase antigen-specific IgE production and aggravate allergic airway inflammation in human and animal models. In this study, we evaluated the effect of short-term DEP exposure on ovalbumin (OVA)-mediated responses using a post-sensitization model. Brown Norway rats were first exposed to filtered air or DEP (20.6 +/- 2.7 mg/m3) for 4 h/day for five consecutive days. One day after the final air or DEP exposure (day 1), rats were sensitized with aerosolized OVA (40.5 +/- 6.3 mg/m3), and then again on days 8 and 15, challenged with OVA on day 29, and sacrificed on days 9 or 30, 24 h after the second OVA exposure or the final OVA challenge, respectively. Control animals received aerosolized saline instead of OVA. DEP were shown to elicit an adjuvant effect on the production of antigen-specific IgE and IgG on day 30. At both time points, no significant airway inflammatory responses and lung injury were found for DEP exposure alone. However, the OVA-induced inflammatory cell infiltration, acellular lactate dehydrogenase activity and albumin content in bronchoalveolar lavage (BAL) fluid, and numbers of T cells and their CD4+ and CD8+ subsets in lung-draining lymph nodes were markedly reduced by DEP on day 30 compared with the air-plus-OVA exposure group. The OVA-induced nitric oxide (NO) in the BAL fluid and production of NO, interleukin (IL)-10, and IL-12 by alveolar macrophages (AM) were also significantly lowered by DEP on day 30 as well as day 9. DEP or OVA alone decreased intracellular glutathione (GSH) in AM and lymphocytes on days 9 and 30. The combined DEP and OVA exposure resulted in further depletion of GSH in both cell types. These results show that short-term DEP exposure prior to sensitization had a delayed effect on enhancement of the sensitization in terms of allergen-specific IgE and IgG production, but caused an attenuation of the allergen-induced airway inflammatory responses.  相似文献   

3.
The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/Wv) and normal mice (W/W+). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W+ than in W/Wv. A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/Wv, but not in W/W+. DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/Wv. The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/Wv by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W+.  相似文献   

4.
We have previously demonstrated that exposure to diesel exhaust particles (DEP) prior to ovalbumin (OVA) sensitization in rats reduced OVA-induced airway inflammation. In the present study, Brown Norway rats were first sensitized to OVA (42.3 +/- 5.7 mg/m3) for 30 min on days 1, 8, and 15, then exposed to filtered air or DEP (22.7 +/- 2.5 mg/m3) for 4 h/day on days 24-28, and challenged with OVA on day 29. Airway responsiveness was examined on day 30, and animals were sacrificed on day 31. Ovalbumin sensitization and challenge resulted in a significant infiltration of neutrophils, lymphocytes, and eosinophils into the lung, elevated presence of CD4+ and CD8+ T lymphocytes in lung draining lymph nodes, and increased production of serum OVA-specific immunoglobulin (Ig)E and IgG. Diesel exhaust particles pre-exposure augmented OVA-induced production of allergen-specific IgE and IgG and pulmonary inflammation characterized by marked increases in T lymphocytes and infiltration of eosinophils after OVA challenge, whereas DEP alone did not have these effects. Although OVA-sensitized rats showed modest response to methacholine challenge, it was the combined DEP and OVA exposure that produced significant airway hyperresponsiveness in this animal model. The effect of DEP pre-exposure on OVA-induced immune responses correlated with an interactive effect of DEP with OVA on increased production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM) and alveolar type II (ATII) cells, NO levels in bronchoalveolar lavage fluid, the induction of inducible NO synthase expression in AM and ATII cells, and a depletion of total intracellular glutathione (GSH) in AM and lymphocytes. These results show that DEP pre-exposure exacerbates the allergic responses to the subsequent challenge with OVA in OVA-sensitized rats. This DEP effect may be, at least partially, attributed to the elevated generation of ROS in AM and ATII cells, a depletion of GSH in AM and lymphocytes, and an increase in AM and ATII cell production of NO.  相似文献   

5.
Although several studies have demonstrated that airway exposure to diesel exhaust particles (DEP) induces lung inflammation, the signaling pathways involved in the pathogenesis remain unclear. Toll-like receptors (TLRs) are generally accepted to be pathogen recognition receptors in mammalians. In the present study, we investigated the role of TLR-4 in DEP-induced lung inflammation and cytokine expression in the lung in TLR-4 point mutant (C3H/HeJ) mice and corresponding control (C3H/HeN) mice. Both the types of mice were randomized into four experimental groups that received vehicle or DEP (12 mg/kg body weight) by intratracheal instillation (n=8–10 in each group). Cellular profile of bronchoalveolar lavage (BAL) fluid, expressions of cytokines and chemokines in the lung, and circulatory fibrinogen levels were evaluated 24 h after the instillation.DEP challenge revealed a significant increase in the numbers of total cells and neutrophils in the BAL fluid as compared to vehicle challenge, however, the numbers were less in C3H/HeJ mice than in C3H/HeN mice. DEP exposure significantly induced the lung expression of interleukin (IL)-1β, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-1α when compared to vehicle challenge in both genotypes of mice. In the presence of DEP, the level of MIP-1α was significantly lower in C3H/HeJ mice than in C3H/HeN mice, however, the levels of IL-1β, KC, and fibrinogen showed opposite findings. These results suggest that TLR-4 is one of recognition receptors against DEP in the airways.  相似文献   

6.
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been linked with cellular production and release of several types of mediators related to pulmonary inflammation. A key challenge is to identify the specific components, which may be responsible for these effects. The aim of this study was to compare the proinflammatory potential of two DEP‐samples with contrasting contents of polycyclic aromatic hydrocarbons (PAHs) and metals. The DEP‐samples were compared with respect to their ability to induce cytotoxicity, expression and release of proinflammatory mediators (IL‐6, IL‐8), activation of mitogen‐activated protein kinases (MAPKs) and expression of CYP1A1 and heme oxygenase‐1 (HO‐1) in human bronchial epithelial (BEAS‐2B) cells. In addition, dithiothreitol and ascorbic acid assays were performed in order to examine the oxidative potential of the PM samples. The DEP‐sample with the highest PAH and lowest metal content was more potent with respect to cytotoxicity and expression and release of proinflammatory mediators, CYP1A1 and HO‐1 expression and MAPK activation, than the DEP‐sample with lower PAH and higher metal content. The DEP‐sample with the highest PAH and lowest metal content also possessed a greater oxidative potential. The present results indicate that the content of organic components may be determinant for the proinflammatory effects of DEP. The findings underscore the importance of considering the chemical composition of particulate matter‐emissions, when evaluating the potential health impact and implementation of air pollution regulations. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 188–196, 2015.  相似文献   

7.
It was previously shown that pulmonary exposure of mice to diesel exhaust particles (DEP) enhances inflammatory conditions induced by allergens or bacterial endotoxin (lipopolysaccharide: LPS) via enhanced local expression of cytokines. However, resolution of the underlying mechanisms, in which DEP exaggerate inflammation, remains uncompleted. Investigation of the actions of DEP on mouse-derived mononuclear cells may provide a clue to the mechanisms, because mononuclear cells produce and release several types of cytokines. The present study elucidated the effects of DEP on mononuclear cell reactions stimulated with LPS in vitro. ICR mouse-derived mononuclear cells, isolated from splenocytes, one of the secondary lymphoid tissues, were co-cultured with LPS (1 microg ml(-1)) and DEP (1, 10 or 100 microg ml(-1)). The protein levels of interferon (IFN)-gamma, interleukin (IL)-2, IL-10, and IL-13 in the culture supernatants were measured 72 h after the co-culture. LPS significantly increased the protein levels of IFN-gamma, IL-2 and IL-10. In the presence of LPS, DEP decreased the protein levels in a concentration-dependent manner with an overall trend, whereas DEP (1, 10 microg ml(-1)) moderately elevated the IL-13 level. These results suggest that DEP suppress cytokine production from mononuclear cells stimulated with LPS and provide a possible hint for DEP facilitation on inflammatory conditions, especially related to Th2 response, in vivo.  相似文献   

8.
Benzo[a]pyrene (BaP) reportedly has mutagenic and adjuvant activities. We aimed to determine the effects of low‐dose BaP administration on allergic airway inflammation and mediastinal lymph node (MLN) cell activation/proliferation in mice. Male C3H/HeJ mice were intratracheally administered ovalbumin (OVA) every 2 weeks and/or BaP (0, 0.05, 1 and 20 pmol per animal per week) once per week for 6 weeks. The cellular profile of bronchoalveolar lavage (BAL) fluid, histological changes, inflammatory cytokines/chemokines in the lungs, OVA‐specific immunoglobulin (Ig) in serum and MLN cell activation/proliferation were examined. BaP administration of 20 pmol with OVA enhanced neutrophil and macrophage accumulation in the lungs. Compared with OVA administration, BaP administration with OVA tended to enhance pulmonary eosinophilia and goblet cell hyperplasia. Furthermore, it increased the levels of interleukin (IL)‐5, IL‐13, IL‐33, monocyte chemoattractant protein‐1 and eotaxin in the lungs, and OVA‐specific IgG1 in serum, although not dose‐dependently. Compared with the vehicle group, IL‐6 and tumor necrosis factor‐alpha levels were higher in the OVA + 1 pmol BaP group and IL‐12 production was higher in the OVA + 20 pmol BaP group. Ex vivo studies showed that co‐exposure to OVA and BaP activated the MHC class II and CD86 expression in MLN cells. Exposure to BaP with OVA increased IL‐4, IL‐5 and interferon gamma levels in culture supernatants of OVA‐re‐stimulated MLN cells. In conclusion, low‐dose BaP can, at least in part, enhance allergic airway inflammation by facilitating Th2 responses and activating MLN cells; a high BaP dose may contribute to activating both Th1 and Th2 responses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Epidemiologically, exposure to particulate air pollution is associated with increases in morbidity and mortality, and diabetics are especially vulnerable to effects of particles. This study was carried out to determine the respiratory effect of diesel exhaust particles (DEP; 0.4 mg/kg) on mice rendered diabetic by the injection of streptozotocin or vehicle (control). Four weeks following induction of diabetes, the animals were intratracheally instilled (i.t.) with DEP (0.4 mg/kg) or saline. 24 h later, the measurement of airway reactivity to methacholine in vivo by a forced oscillation technique showed a significant and dose-dependent increase in airway resistance in non-diabetic mice exposed to DEP versus non-diabetic mice exposed to saline. Similarly, the airway resistance was significantly increased in diabetic mice exposed to DEP versus diabetic mice exposed to saline. Nevertheless, there was no difference in the airway resistance between diabetic and non-diabetic mice after i.t. administration of DEP. Following DEP administration there were neutrophil polymorphs infiltration of pulmonary interalveolar septae and the alveolar spaces with many macrophages containing DEP in both diabetic and non-diabetic mice. Interestingly, apoptotic cells were only found in the examined lung sections from diabetic mice exposed to DEP. Total proteins and albumin concentrations in bronchoalveolar lavage (BAL) fluid, markers for increase of epithelial permeability, were significantly increased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. Superoxide dismutase activity and reduced glutathione concentration in BAL were significantly decreased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. Moreover, tumor necrosis factor α (TNFα) concentrations were significantly increased in diabetic mice exposed to DEP compared to saline-treated diabetic and DEP-treated non diabetic mice. We conclude that, at the dose and time point investigated, DEP equally increased airway resistance and caused infiltration of inflammatory cells in the lung of both diabetic and non-diabetic mice. However, the occurrence of oxidative stress, the presence lung apoptotic cells and the increase of total proteins, albumin and TNFα in BAL fluid were only seen in DEP-exposed diabetic mice suggesting an increased respiratory susceptibility to particulate air pollution.  相似文献   

10.
11.
Diesel exhaust particles (DEP) have been shown to alter pulmonary immune responses to bacterial infection. Exposure of rats to 100 mg/m(3) DEP for 4 h was found to aggravate Listeria monocytogenes(Listeria) infection at 3 days postinfection, but the bacteria were largely cleared at 7 days postinfection due to the development of a strong T cell-mediated immunity. In the present study, we examined the effects of repeated DEP exposure at lower doses on pulmonary responses to bacterial infection. Brown Norway rats were exposed to DEP by inhalation at 20.62 +/- 1.31 mg/m 3 for 4 h/day for 5 days, followed by intratracheal inoculation with 100,000 Listeria at 2 h after the last DEP exposure. DEP-exposed rats showed a significant increase in lung bacterial load at both 3 and 7 days postinfection. The repeated DEP exposure was shown to suppress both the innate, orchestrated by alveolar macrophages (AM), and T cell-mediated responses to Listeria. DEP inhibited AM production of interleukin- (IL-) 1beta, tumor necrosis factor- (TNF-) alpha, and IL-12 but enhanced Listeria-induced AM production of IL-10, which has been shown to prolong the survival of intracellular pathogens such as Listeria. DEP exposure also suppressed the development of bacteria-specific lymphocytes from lung-draining lymph nodes, as indicated by the decreased numbers of T lymphocytes and their CD4(+) and CD8(+) subsets. Furthermore, the DEP exposure markedly inhibited the Listeria-induced lymphocyte secretion of IL-2 at day 7, IL-10 at days 3 and 7, and interferon- (IFN-) gamma at days 3 to 10 postinfection when compared to air-exposed controls. These results show a sustained pattern of downregulation of T cell-mediated immune responses by repeated low-dose DEP exposure, which is different from the results of a single high-dose exposure where the acute effect of DEP aggravated bacteria infection but triggered a strong T cell-mediated immunity.  相似文献   

12.
Nanosized fraction of particulate air pollution has been reported to translocate from the airways into the bloodstream and act on different organs. However, the direct effect of these translocated particles is not well understood. In this study, we determined the time-course (6h, 18 h, 48 h and 168 h) effects of the systemic administration of 0.02 mg/kg diesel exhaust particles (DEP) on systolic blood pressure (SBP), systemic inflammation, oxidative status, and morphological alterations in lungs, heart, liver and kidneys in Wistar rats. SBP was significantly decreased at 6 h (P < 0.05) but no significant effects have been observed at later time points. The leukocyte numbers were increased at 6 h (P < 0.05) and 18 h (P < 0.05). However, the platelet numbers were significantly decreased (P < 0.05) 6 h following the systemic administration of DEP. The IL-6 concentrations in plasma was increased at 6 h (P < 0.05) and 18 h (P < 0.05). Similarly, superoxide dismutase activity was significantly increased at 6 (P = 0.01) and 18 h (P < 0.05) following DEP exposure. The direct addition of DEP (0.1–1 μg/ml) to untreated rat blood significantly induced in vitro platelet aggregation in a dose-dependent fashion. The activation of intravascular coagulation was confirmed by a dose-dependent shortening of activated partial thromboplastin time and the prothrombin time following in vitro exposure to DEP (0.25–1 μg/ml). Histological analysis revealed the presence of DEP in the lungs, heart, liver and kidneys. However, the morphological changes were only observed in the lungs, where the presence of infiltration of inflammatory cells was observed as early as 6 h, increased at 18 h, and decreased in intensity at 48 h and at 168 h. We conclude that the direct systemic administration of DEP caused acute effect on SBP (6 h) and systemic inflammation and oxidative stress mainly at 6 h and 18 h. Despite the presence of DEP in lungs, heart, liver and kidneys, the histopathological changes were only seen in the lung which suggests that, at the dose and time-points investigated, DEP cause inflammation and have a predilection for pulmonary tissue.  相似文献   

13.
14.
《Inhalation toxicology》2013,25(7):409-418
Abstract

Context: Mice are commonly used in studies investigating the effects of diesel exhaust exposure on respiratory health. A plethora of studies in this field has resulted in a range of exposure protocols, from inhalation of diesel exhaust, to the administration (via various routes) of diesel exhaust particles in solution.

Objective: In this study, we compared the physiological consequences of short-term exposure to diesel exhaust via inhalation to those due to exposure to the same diesel exhaust particles suspended in solution and delivered intranasally.

Materials and methods: Adult BALB/c mice were exposed to diesel exhaust via inhalation for 2 hours per day for 8 days. A representative, simultaneous sample of particles was collected and a second group of mice then exposed to them suspended in saline. A low and a high-dose were studied, with these matched based on respiratory parameters. Six and twenty-four hours after the last exposure we measured bronchoalveolar inflammation, lung volume, lung function and the amount of elemental carbon in alveolar macrophages.

Results: Exposure via either route elicited pulmonary inflammation and changes in lung function. We identified significant differences in response between the two routes of exposure, with mice exposed via inhalation generally displaying more realistic dose-response relationships. Mice exposed via intranasal instillation responded more variably, with little influence of dose.

Conclusions: Our results suggest that selection of the route of exposure is of critical importance in studies such as this. Further, inhalation exposure, while more methodologically difficult, resulted in responses more akin to those seen in humans.  相似文献   

15.
Diesel exhaust particles (DEP) are known to induce adverse biological responses such as inflammation of the airway. However, the relationship between the chemical characteristics of organic compounds adsorbed on DEP and their biological effects is not yet fully understood. In this study, the dichloromethane-soluble fraction (DMSF) from DEP was fractionated into its n-hexane-soluble fraction (n-HSF) and n-hexane-insoluble fraction (n-HISF). Using these DEP fractions, we designed the present studies to elucidate (1) chemical characteristics, (2) biological characteristics, and (3) the relationship between the chemical and the biological characteristics of these DEP fractions. Dithiothreitol (DTT) assay, Fourier transform-infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) were used to characterize their chemical properties. Heme oxygenase-1 (HO-1) protein expression, viability of rat alveolar type II epithelial cell line (SV40T2), and inflammatory cell infiltration into the peritoneal cavity of BALB/c mice were evaluated as markers of oxidative stress, cytotoxicity, and inflammatory response, respectively. The oxidative ability of the DEP fractions was n-HISF > DMSF > n-HSF. IR, 1H-NMR, and GC-MS spectra showed that n-HISF was mainly composed of compounds having many functional groups related to oxygenation, such as hydroxyl and carbonyl groups. The relative strength of HO-1 protein expression, cytotoxicity, and inflammatory responses was also n-HISF > DMSF > n-HSF. All of the n-HISF-induced biological activities were decreased by reduction with N-acetyl-L-cysteine (NAC). These results suggest that n-HISF has high oxidative ability and many functional groups related to oxygenation and that this ability strongly contributes to the induction of oxidative stress, cytotoxicity, and inflammatory response.  相似文献   

16.
Diesel exhaust particles (DEP) have been shown to suppress alveolar macrophage (AM)-mediated pulmonary immune responses to Listeria monocytogenes in vivo. In this study, effects of DEP-derived reactive oxygen species (ROS) and heme oxygenase (HO)-1 on AM-mediated immune responses to L. monocytogenes were investigated. Brown Norway rats were intratracheally inoculated with 100,000 L. monocytogenes, and AM were isolated at 7 days post-infection. Exposure to DEP or their organic extract (eDEP), but not the washed DEP (wDEP) or carbon black, increased intracellular ROS and HO-1 expression in AM. Induction of ROS and HO-1 by eDEP was partially reversed by alpha-naphthoflavone, a cytochrome P450 1A1 inhibitor, and totally blocked by N-acetylcysteine. In addition, exposure to eDEP, but not wDEP, inhibited lipopolysacchride-stimulated secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-12 (IL-12), but augmented production of IL-10 by AM. Kinetic studies showed that modulation of cytokines by eDEP was preceded by ROS and HO-1 induction. Furthermore, pretreatment of AM with superoxide dismutase (SOD) or zinc protoporphrin IX (Znpp), which attenuated eDEP-induced HO-1 expression/activity, substantially inhibited eDEP effect on IL-10. Finally, direct stimulation with pyrogallol (PYR), a superoxide donor, upregulated HO-1 and IL-10 but decreased secretion of IL-12 in L. monocytogenes-infected AM. These results show that DEP, through eDEP-mediated ROS, induce HO-1 expression and IL-10 production and at the same time inhibit AM production of TNF-alpha and IL-12 to dampen the host immune responses. The results also suggest that HO-1 may play an important role in regulating production of IL-10 by DEP-exposed and L. monocytogenes-infected AM.  相似文献   

17.
BACKGROUND AND PURPOSE: Acute exposure to particulate air pollution has been linked to acute cardiopulmonary events, but the underlying mechanisms are uncertain. EXPERIMENTAL APPROACH We investigated the acute (at 4 and 18 h) effects of diesel exhaust particles (DEP) on cardiopulmonary parameters in mice and the protective effect of thymoquinone, a constituent of Nigella sativa. Mice were given, intratracheally, either saline (control) or DEP (30 μg·per mouse). KEY RESULTS At 18 h (but not 4 h) after giving DEP, there was lung inflammation and loss of lung function. At both 4 and 18 h, DEP caused systemic inflammation characterized by leucocytosis, increased IL-6 concentrations and reduced systolic blood pressure (SBP). Superoxide dismutase (SOD) activity was decreased only at 18 h. DEP reduced platelet numbers and aggravated in vivo thrombosis in pial arterioles. In vitro, addition of DEP (0.1-1 μg·mL(-1)) to untreated blood-induced platelet aggregation. Pretreatment of mice with thymoquinone prevented DEP-induced decrease of SBP and leucocytosis, increased IL-6 concentration and decreased plasma SOD activity. Thymoquinone also prevented the decrease in platelet numbers and the prothrombotic events but not platelet aggregation in vitro. CONCLUSIONS AND IMPLICATIONS: At 4 h after DEP exposure, the cardiovascular changes did not appear to result from pulmonary inflammation but possibly from the entry of DEP and/or their associated components into blood. However, at 18 h, DEP induced significant changes in pulmonary and cardiovascular functions along with lung inflammation. Pretreatment with thymoquinone prevented DEP-induced cardiovascular changes.  相似文献   

18.
The role of the L-arginine-nitric oxide (NO) pathway in bronchial asthma that is characterized by eosinophilic airway inflammation has not yet been established. We investigated the effects of three different agents on eosinophilic airway inflammation induced by the intratracheal instillation of diesel exhaust particles (DEP) in mice: L-Arginine, the substrate for NO synthases; L-N(G)-nitro-L-arginine methyl ester (L-NAME), a relatively selective inhibitor of constitutive NO synthase; and aminoguanidine, a relatively selective inhibitor of inducible NO synthase. The mice received drinking water with or without added drug for a continuous period of 9 weeks plus 4 days. Lung histology showed that airway inflammation with goblet cell proliferation induced by DEP was aggravated by the administration of L-arginine or L-NAME, whereas it was reduced by aminoguanidine. The numbers of neutrophils around the airways in animals that received plain drinking water, L-arginine, L-NAME, and aminoguanidine were 0.98+/-0.26, 3.66+/-0.81, 1.64+/-0.31, and 0.12+/-0.04 (number/mm basement membrane), respectively. The numbers of eosinophils around the airways were 0.37+/-0.08, 16.1+/-6.47, 11.1+/-3.59, and 0.21+/-0.11, respectively. The numbers of goblet cells in the bronchial epithelium were 1.67+/-0.80, 16.5+/-7.33, 19.0+/-3.40, and 0.86+/-0.41, respectively. The cellular profiles of the bronchoalveolar lavage fluid also showed that airway inflammation induced by DEP was aggravated by the administration of L-arginine or L-NAME, whereas it was reduced by aminoguanidine. These results suggest that NO produced from inducible NO synthase may have a detrimental effect on the DEP-induced airway inflammation. A relatively selective inhibition of inducible NO synthase by aminoguanidine may have therapeutic value in the inhalant injury. NO derived from constitutive NO synthase may afford protection against the airway inflammation induced by DEP.  相似文献   

19.
Diesel exhaust particles (DEPs), comprised mainly of particles less than 2.5 μm (PM 2.5) in aerodynamic diameter, have been assumed to enhance the response of asthma to allergen inhalation. Although eosinophilic infiltration is remarkable in the event of bronchial asthma induced by DEPs, the precise mechanisms leading to eosinophilia are unknown. To examine the effect of DEPs on eosinophils, we measured the cytokine products and activity of nuclear factor-kappa B (NF-κB) after addition of the proteasomal inhibitor MG132 in HL-60 clone 15 cells differentiated into eosinophils. We measured eotaxin-induced chemotaxis of cells and their activity of p38 mitogen-activated protein (MAP) kinase was analysed. Interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1) were increased markedly in DEPs-treated cells. The active form of NF-κB in cells treated with DEPs was increased, and this effect was significantly decreased by the administration of MG132. Cell migration in the presence of DEPs was significantly greater, and inhibited by adding N-acetyl l-cysteine. P38 MAP kinase activity was highly influenced by DEPs-treatment. DEPs induce MCP-1 and IL-8 production by up-regulating NF-κB activity, which is inhibited in the presence of an inhibitor of proteasomal degradation. DEP also promotes eotaxin-induced chemotaxis in a p38-dependent manner.  相似文献   

20.
《Inhalation toxicology》2013,25(12):724-735
Context: Inhalation of ambient fine particulate matter (PM2.5) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM2.5 in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM2.5-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases.

Objective: This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice.

Materials and methods: We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels.

Results: The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice.

Discussion and conclusion: This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号