首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteoporosis occurs when there is an imbalance between resorption and formation of bone, with resorption predominating. Inhibitors of cathepsin K may rebalance this condition. This is the first efficacy study of a new cathepsin K inhibitor, ONO‐5334. The objective of the study was to investigate the efficacy and safety of ONO‐5334 in postmenopausal osteoporosis. This was a 12‐month, randomized, double‐blind, placebo‐ and active‐controlled parallel‐group study conducted in 13 centers in 6 European countries. Subjects included 285 postmenopausal women aged 55 to 75 years with osteoporosis. Subjects were randomized into one of five treatment arms: placebo; 50 mg twice daily, 100 mg once daily, or 300 mg once daily of ONO‐5334; or alendronate 70 mg once weekly. Lumbar spine, total hip, and femoral neck BMD values were obtained along with biochemical markers of bone turnover and standard safety assessments. All ONO‐5334 doses and alendronate showed a significant increase in BMD for lumbar spine, total hip (except 100 mg once daily), and femoral neck BMD. There was little or no suppression of ONO‐5334 on bone‐formation markers compared with alendronate, although the suppressive effects on bone‐resorption markers were similar. There were no clinically relevant safety concerns. With a significant increase in BMD, ONO‐5334 also demonstrated a new mode of action as a potential agent for treating osteoporosis. Further clinical studies are warranted to investigate long‐term efficacy as well as safety of ONO‐5334. © 2011 American Society for Bone and Mineral Research.  相似文献   

2.
Cathepsin K inhibitors, such as ONO‐5334, are being developed for the treatment of postmenopausal osteoporosis. However, their relative effects on bone resorption and formation, and how quickly the effects resolve after treatment cessation, are uncertain. The aim of this study was to examine the efficacy and safety of 24‐month treatment with ONO‐5334 and to assess the effect of treatment cessation over 2 months. We studied 197 postmenopausal women with osteoporosis or osteopenia with one fragility fracture. Patients were randomized to ONO‐5334 50 mg twice daily, 100 mg or 300 mg once daily, alendronate 70 mg once weekly (positive control), or placebo for 24 months. After 24 months, all ONO‐5334 doses were associated with increased bone mineral density (BMD) for lumbar spine, total hip, and femoral neck (p < 0.001). ONO‐5334 300 mg significantly suppressed the bone‐resorption markers urinary (u) NTX and serum and uCTX‐I throughout 24 months of treatment and to a similar extent as alendronate; other resorption marker levels remained similar to placebo (fDPD for ONO‐5334 300 mg qd) or were increased (ICTP, TRAP5b, all ONO‐5334 doses). Levels of B‐ALP and PINP were suppressed in all groups (including placebo) for approximately 6 months but then increased for ONO‐5334 to close to baseline levels by 12 to 24 months. On treatment cessation, there were increases above baseline in uCTX‐I, uNTX, and TRAP5b, and decreases in ICTP and fDPD. There were no clinically relevant safety concerns. Cathepsin K inhibition with ONO‐5334 resulted in decreases in most resorption markers over 2 years but did not decrease most bone formation markers. This was associated with an increase in BMD; the effect on biochemical markers was rapidly reversible on treatment cessation. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

4.
Intermittent injections of parathyroid hormone have osteoanabolic effects that increase bone mineral density (BMD). Ronacaleret is an orally administered calcium-sensing receptor antagonist that stimulates endogenous parathyroid hormone release from the parathyroid glands. Our objective was to compare the effects of ronacaleret and teriparatide on volumetric BMD (vBMD) measured by quantitative computed tomography (QCT). We conducted a randomized, placebo-controlled, dose-ranging trial at 45 academic centers with 31 sites participating in the substudy. Patients included 569 postmenopausal women with low bone mineral density; vBMD was assessed at the spine and hip in a subset of 314 women. Patients were treated for up to 12 months with open-label teriparatide 20 μg subcutaneously once daily or randomly assigned in a double-blind manner to ronacaleret 100 mg, 200 mg, 300 mg, or 400 mg once daily, alendronate 70 mg once weekly, or matching placebos. Ronacaleret increased spine integral (0.49% to 3.9%) and trabecular (1.8% to 13.3%) vBMD compared with baseline, although the increments were at least twofold lower than that attained with teriparatide (14.8% and 24.4%, respectively) but similar or superior to that attained with alendronate (5.0% and 4.9%, respectively). There were small non-dose-dependent decreases in integral vBMD of the proximal femur with ronacaleret (-0.1 to -0.8%) compared with increases in the teriparatide (3.9%) and alendronate (2.7%) arms. Parathyroid hormone (PTH) elevations with ronacaleret were prolonged relative to that seen historically with teriparatide. Ronacaleret preferentially increased vBMD of trabecular bone that is counterbalanced by small decreases in BMD at cortical sites. The relative preservation of trabecular bone and loss at cortical sites are consistent with the induction of mild hyperparathyroidism with ronacaleret therapy.  相似文献   

5.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

6.
The goal of this study was to determine the effect of vertebral fracture status on trabecular bone mineral density (BMD) measurements obtained in the proximal femur and spine by helical volumetric quantitative computed tomography (vQCT). The study population consisted of 71 Italian women (average age 73 +/- 6) years. This group included 26 subjects with radiographically confirmed atraumatic vertebral fractures and 45 controls. The subjects received helical CT scans of the L1 and L2 vertebral bodies and the hip. The three-dimensional CT images were processed using specialized image analysis algorithms to extract measurements of trabecular, cortical, and integral BMD in the spine and hip. To compare the vQCT results with the most widely used clinical BMD measurement, dual X-ray absorptiometry (DXA) scans of the anteroposterior (AP) spine and proximal femur were also obtained. The difference between the subjects with vertebral fractures and the age-matched controls was computed for each BMD measure. All BMD measurements showed statistically significant differences, which ranged from 7% to 22% between subjects with fractures and controls. Although, given our small sample size, we could not detect statistically significant differences in discriminatory power between BMD techniques, integral BMD of the spine measured by vQCT and DXA tended to show stronger associations with fracture status (0.001 < p < 0.004). Measurements by QCT and DXA at the hip were also associated with vertebral fracture status, although the association of DXA BMD with fracture status was explained largely by differences in body weight between subjects with vertebral fractures and controls.  相似文献   

7.

Summary

Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength.

Introduction

To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength.

Methods

In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated.

Results

Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p?<?0.01) and QCT (5.7%, p?<?0.0001). Between-treatment differences were significant for trabecular spine (p?=?0.0017) [non-parametric test], trabecular trochanter (10.7%, p?<?0.0001), total hip (10.8%, p?<?0.0001), and compressive strength indices at femoral neck (8.6%, p?=?0.0001), and trochanter (14.1%, p?<?0.0001).

Conclusions

Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength.  相似文献   

8.
Pediatric Crohn's Disease (CD) is associated with low trabecular bone mineral density (BMD), cortical area, and muscle mass. Low‐magnitude mechanical stimulation (LMMS) may be anabolic. We conducted a 12‐month randomized double‐blind placebo‐controlled trial of 10 minutes daily exposure to LMMS (30 Hz frequency, 0.3 g peak‐to‐peak acceleration). The primary outcomes were tibia trabecular BMD and cortical area by peripheral quantitative CT (pQCT) and vertebral trabecular BMD by QCT; additional outcomes included dual‐energy X‐ray absorptiometry (DXA) whole body, hip and spine BMD, and leg lean mass. Results were expressed as sex‐specific Z‐scores relative to age. CD participants, ages 8 to 21 years with tibia trabecular BMD <25th percentile for age, were eligible and received daily cholecalciferol (800 IU) and calcium (1000 mg). In total, 138 enrolled (48% male), and 121 (61 active, 60 placebo) completed the 12‐month trial. Median adherence measured with an electronic monitor was 79% and did not differ between arms. By intention‐to‐treat analysis, LMMS had no significant effect on pQCT or DXA outcomes. The mean change in spine QCT trabecular BMD Z‐score was +0.22 in the active arm and –0.02 in the placebo arm (difference in change 0.24 [95% CI 0.04, 0.44]; p = 0.02). Among those with >50% adherence, the effect was 0.38 (95% CI 0.17, 0.58, p < 0.0005). Within the active arm, each 10% greater adherence was associated with a 0.06 (95% CI 0.01, 1.17, p = 0.03) greater increase in spine QCT BMD Z‐score. Treatment response did not vary according to baseline body mass index (BMI) Z‐score, pubertal status, CD severity, or concurrent glucocorticoid or biologic medications. In all participants combined, height, pQCT trabecular BMD, and cortical area and DXA outcomes improved significantly. In conclusion, LMMS was associated with increases in vertebral trabecular BMD by QCT; however, no effects were observed at DXA or pQCT sites. © 2016 American Society for Bone and Mineral Research.  相似文献   

9.
This study compared the effects of ONO-5334, a cathepsin K inhibitor, with those of alendronate on bone mass and strength in ovariectomized rats. Ovariectomy resulted in significant elevation in urinary deoxypyridinoline and plasma C-terminal cross-linking telopeptide of type I collagen (CTX) 8 weeks after surgery. Peripheral quantitative computed tomography analysis showed that total, trabecular, and cortical bone mineral content (BMC) decreased in the proximal tibia, which was paralleled with a significant decline in bone strength. Treatment with ONO-5334 (0.12, 0.6, 3 or 15 mg/kg) once daily for 8 weeks dose-dependently restored the decrease in total BMC and bone mineral density (BMD) in the proximal tibia and suppressed urinary deoxypyridinoline and plasma CTX levels. Alendronate (1 mg/kg, once daily) also fully restored these bone mass parameters. Separate analysis of trabecular and cortical bones, however, showed that ONO-5334 only partially restored trabecular BMD and BMC at 15 mg/kg, whereas alendronate fully restored these parameters. On the other hand, ONO-5334 increased both cortical BMD and BMC with an effect more potent than that of alendronate. Bone geometric analysis indicated that ONO-5334 at 15 mg/kg decreased endosteal circumference without affecting periosteal circumference, resulting in marked increase in cortical thickness. Interestingly, the effects of ONO-5334 on bone strength parameters were more prominent than those of alendronate, although the two test compounds had a similar effect on total BMC. Taken together, our results indicate that ONO-5334 has pharmacological characteristics different from those of alendronate and may offer a unique therapy for patients with osteoporosis.  相似文献   

10.
The intensity of bone remodeling is a critical determinant of the decay of cortical and trabecular microstructure after menopause. Denosumab suppresses remodeling more than alendronate, leading to greater gains in areal bone mineral density (aBMD). These greater gains may reflect differing effects of each drug on bone microarchitecture and strength. In a phase 2 double‐blind pilot study, 247 postmenopausal women were randomized to denosumab (60 mg subcutaneous 6 monthly), alendronate (70 mg oral weekly), or placebo for 12 months. All received daily calcium and vitamin D. Morphologic changes were assessed using high‐resolution peripheral quantitative computed tomography (HR‐pQCT) at the distal radius and distal tibia and QCT at the distal radius. Denosumab decreased serum C‐telopeptide more rapidly and markedly than alendronate. In the placebo arm, total, cortical, and trabecular BMD and cortical thickness decreased (?2.1% to ?0.8%) at the distal radius after 12 months. Alendronate prevented the decline (?0.6% to 2.4%, p = .051 to <.001 versus placebo), whereas denosumab prevented the decline or improved these variables (0.3% to 3.4%, p < .001 versus placebo). Changes in total and cortical BMD were greater with denosumab than with alendronate (p ≤ .024). Similar changes in these parameters were observed at the tibia. The polar moment of inertia also increased more in the denosumab than alendronate or placebo groups (p < .001). Adverse events did not differ by group. These data suggest that structural decay owing to bone remodeling and progression of bone fragility may be prevented more effectively with denosumab. © 2010 American Society for Bone and Mineral Research  相似文献   

11.
The structure of the femoral neck contributes to hip strength, but the relationship of specific structural features of the hip to hip fracture risk is unclear. The objective of this study is to determine the contribution of structural features and volumetric density of both trabecular and cortical bone in the proximal femur to the prediction of hip fracture in older men. Baseline QCT scans of the hip were obtained in 3347 men ≥65 yr of age enrolled in the Osteoporotic Fractures in Men Study (MrOS). All men were followed prospectively for an average of 5.5 yr. Areal BMD (aBMD) by DXA was also assessed. We determined the associations between QCT‐derived measures of femoral neck structure, volumetric bone density, and hip fracture risk. Forty‐two men sustained incident hip fractures during follow‐up: an overall rate of 2.3/1000 person‐years. Multivariable analyses showed that, among the QCT‐derived measures, lower percent cortical volume (hazard ratio [HR] per SD decrease: 3.2; 95% CI: 2.2–4.6), smaller minimal cross‐sectional area (HR: 1.6; 95% CI: 1.2–2.1), and lower trabecular BMD (HR: 1.7; 95% CI: 1.2–2.4) were independently related to increased hip fracture risk. Femoral neck areal BMD was also strongly related to hip fracture risk (HR: 4.1; 95% CI: 2.7–6.4). In multivariable models, percent cortical volume and minimum cross‐sectional area remained significant predictors of hip fracture risk after adjustment for areal BMD, but overall prediction was not improved by adding QCT parameters to DXA. Specific structural features of the proximal femur were related to an increased risk of hip fracture. Whereas overall hip fracture prediction was not improved relative to aBMD, by adding QCT parameters, these results yield useful information concerning the causation of hip fracture, the evaluation of hip fracture risk, and potential targets for therapeutic intervention.  相似文献   

12.
We measured cortical and trabecular bone loss using QCT of the spine and hip in 14 crewmembers making 4- to 6-month flights on the International Space Station. There was no compartment-specific loss of bone in the spine. Cortical bone mineral loss in the hip occurred primarily by endocortical thinning. INTRODUCTION: In an earlier study, areal BMD (aBMD) measurements by DXA showed that cosmonauts making flights of 4- to 12-month duration on the Soviet/Russian MIR spacecraft lost bone at an average rate of 1%/month from the spine and 1.5%/month from the hip. However, because DXA measurements represent the sum of the cortical and trabecular compartments, there is no direct information on how these bone envelopes are affected by spaceflight. MATERIALS AND METHODS: To address this, we performed a study of crewmembers (13 males and 1 female; age range, 40-55 years) on long-duration missions (4-6 months) on the International Space Station (ISS). We used DXA to obtain aBMD of the hip and spine and volumetric QCT (vQCT) to assess integral, cortical, and trabecular volumetric BMD (vBMD) in the hip and spine. In the heel, DXA was used to measure aBMD, and quantitative ultrasound (QUS) was used to measure speed of sound (SOS) and broadband ultrasound attenuation (BUA). RESULTS AND CONCLUSIONS: aBMD was lost at rates of 0.9%/month at the spine (p < 0.001) and 1.4-1.5%/month at the hip (p < 0.001). Spinal integral vBMD was lost at a rate of 0.9%/month (p < 0.001), and trabecular vBMD was lost at 0.7%/month (p < 0.05). In contrast to earlier reports, these changes were generalized across the vertebrae and not focused in the posterior elements. In the hip, integral, cortical, and trabecular vBMD was lost at rates of 1.2-1.5%/month (p < 0.0001), 0.4-0.5%/month (p < 0.01), and 2.2-2.7%/month (p < 0.001), respectively. The cortical bone loss in the hip occurred primarily by cortical thinning. Calcaneal aBMD measurements by DXA showed smaller mean losses (0.4%/month) than hip or spine measurements, with SOS and BUA showing no change. In summary, our results show that ISS crewmembers, on average, experience substantial loss of both trabecular and cortical bone in the hip and somewhat smaller losses in the spine. These results do not support the use of calcaneal aBMD or QUS measurements as surrogate measures to estimate changes in the central skeleton.  相似文献   

13.
To gain insight into the clinical effect of teriparatide and alendronate on the hip, we performed non-linear finite element analysis of quantitative computed tomography (QCT) scans from 48 women who had participated in a randomized, double-blind clinical trial comparing the effects of 18-month treatment of teriparatide 20 μg/d or alendronate 10 mg/d. The QCT scans, obtained at baseline, 6, and 18 months, were analyzed for volumetric bone mineral density (BMD) of trabecular bone, the peripheral bone (defined as all the cortical bone plus any endosteal trabecular bone within 3 mm of the periosteal surface), and the integral bone (both trabecular and peripheral), and for overall femoral strength in response to a simulated sideways fall. At 18 months, we found in the women treated with teriparatide that trabecular volumetric BMD increased versus baseline (+ 4.6%, p < 0.001), peripheral volumetric BMD decreased (− 1.1%, p < 0.05), integral volumetric BMD (+ 1.0%, p = 0.38) and femoral strength (+ 5.4%, p = 0.06) did not change significantly, but the ratio of strength to integral volumetric BMD ratio increased (+ 4.0%, p = 0.04). An increase in the ratio of strength to integral volumetric BMD indicates that overall femoral strength, compared to baseline, increased more than did integral density. For the women treated with alendronate, there were small (< 1.0%) but non-significant changes compared to baseline in all these parameters. The only significant between-treatment difference was in the change in trabecular volumetric BMD (p < 0.005); related, we also found that, for a given change in peripheral volumetric BMD, femoral strength increased more for teriparatide than for alendronate (p = 0.02). We conclude that, despite different compartmental volumetric BMD responses for these two treatments, we could not detect any overall difference in change in femoral strength between the two treatments, although femoral strength increased more than integral volumetric BMD after treatment with teriparatide.  相似文献   

14.
We examined the effects of ONO-5334, a cathepsin K inhibitor, on bone markers, BMD, strength and histomorphometry in ovariectomized (OVX) cynomolgus monkeys. ONO-5334 (1.2, 6 and 30 mg/kg/day, p.o.), alendronate (0.05 mg/kg/2 weeks, i.v.), or vehicle was administered to OVX monkeys (all groups N = 20) for 16 months. A concurrent Sham group (N = 20) was also treated with vehicle for 16 months. OVX significantly increased bone resorption and formation markers and decreased BMD in lumbar vertebra, femoral neck, proximal tibia and distal radius. Alendronate suppressed these parameters to a level similar to that in the Sham-operated monkeys. ONO-5334 at doses 6 and 30 mg/kg decreased bone resorption markers to a level roughly half of that in the Sham group, while keeping bone formation markers level above that in the Sham monkeys. Changes in DXA BMD confirmed that ONO-5334 at doses 6 and 30 mg/kg increased BMD to a level greater than that in the Sham group in all examined sites. In the proximal tibia, in vivo pQCT analysis showed that ONO-5334 at doses 6 and 30 mg/kg suppressed trabecular BMD loss to the sham level. However, ONO-5334 increased cortical BMD, cortical area and cortical thickness to a level greater than that in the Sham group, suggesting that ONO-5334 improves both cortical BMD and cortical geometry. Histomorphometric analysis revealed that ONO-5334 suppressed bone formation rate (BFR) at osteonal site in the midshaft femur but did not influence OVX-induced increase in BFR at either the periosteal or endocortical surfaces. Unlike alendronate, ONO-5334 increased osteoclasts surface (Oc.S/BS) and serum tartrate-resistant acid phosphatise 5b (TRAP5b) activity, highlighting the difference in the mode of action between these two drugs. Our results suggest that ONO-5334 has therapeutic potential not only in vertebral bones, but also in non-vertebral bones.  相似文献   

15.
Romosozumab, a monoclonal antibody that binds sclerostin, has a dual effect on bone by increasing bone formation and reducing bone resorption, and thus has favorable effects in both aspects of bone volume regulation. In a phase 2 study, romosozumab increased areal BMD at the lumbar spine and total hip as measured by DXA compared with placebo, alendronate, and teriparatide in postmenopausal women with low bone mass. In additional analyses from this international, randomized study, we now describe the effect of romosozumab on lumbar spine and hip volumetric BMD (vBMD) and BMC at month 12 as assessed by QCT in the subset of participants receiving placebo, s.c. teriparatide (20 µg once daily), and s.c. romosozumab (210 mg once monthly). QCT measurements were performed at the lumbar spine (mean of L1 and L2 entire vertebral bodies, excluding posterior processes) and hip. One year of treatment with romosozumab significantly increased integral vBMD and BMC at the lumbar spine and total hip from baseline, and compared with placebo and teriparatide (all p < 0.05). Trabecular vertebral vBMD improved significantly and similarly from baseline (p < 0.05) with both romosozumab (18.3%) and teriparatide (20.1%), whereas cortical vertebral vBMD gains were larger with romosozumab compared with teriparatide (13.7% versus 5.7%, p < 0.0001). Trabecular hip vBMD gains were significantly larger with romosozumab than with teriparatide (10.8% versus 4.2%, p = 0.01), but were similar for cortical vBMD (1.1% versus –0.9%, p = 0.12). Cortical BMC gains were larger with romosozumab compared with teriparatide at both the spine (23.3% versus 10.9%, p < 0.0001) and hip (3.4% versus 0.0%, p = 0.03). These improvements are expected to result in strength gains and support the continued clinical investigation of romosozumab as a potential therapy to rapidly reduce fracture risk in ongoing phase 3 studies. © 2016 American Society for Bone and Mineral Research.  相似文献   

16.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

17.
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214 ) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

18.
Major alterations in body composition, such as with obesity and weight loss, have complex effects on the measurement of bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA). The effects of altered body fat on quantitative computed tomography (QCT) measurements are unknown. We scanned a spine phantom by DXA and QCT before and after surrounding with sequential fat layers (up to 12 kg). In addition, we measured lumbar spine and proximal femur BMD by DXA and trabecular spine BMD by QCT in 13 adult volunteers before and after a simulated 7.5 kg increase in body fat. With the spine phantom, DXA BMD increased linearly with sequential fat layering at the normal (p < 0.01) and osteopenic (p < 0.01) levels, but QCT BMD did not change significantly. In humans, fat layering significantly reduced DXA spine BMD values (mean ± SD: ?2.2 ± 3.7%, p = 0.05) and increased the variability of measurements. In contrast, fat layering increased QCT spine BMD in humans (mean ± SD: 1.5 ± 2.5%, p = 0.05). Fat layering did not change mean DXA BMD of the femoral neck or total hip in humans significantly, but measurements became less precise. Associations between baseline and fat‐simulation scans were stronger for QCT of the spine (r2 = 0.97) than for DXA of the spine (r2 = 0.87), total hip (r2 = 0.80), or femoral neck (r2 = 0.75). Bland‐Altman plots revealed that fat‐associated errors were greater for DXA spine and hip BMD than for QCT trabecular spine BMD. Fat layering introduces error and decreases the reproducibility of DXA spine and hip BMD measurements in human volunteers. Although overlying fat also affects QCT BMD measurements, the error is smaller and more uniform than with DXA BMD. Caution must be used when interpreting BMD changes in humans whose body composition is changing. © 2012 American Society for Bone and Mineral Research  相似文献   

19.
In assessing osteoporotic fractures of the proximal femur, the main objective of this in vivo case‐control study was to evaluate the performance of quantitative computed tomography (QCT) and a dedicated 3D image analysis tool [Medical Image Analysis Framework—Femur option (MIAF‐Femur)] in differentiating hip fracture and non–hip fracture subjects. One‐hundred and seven women were recruited in the study, 47 women (mean age 81.6 years) with low‐energy hip fractures and 60 female non–hip fracture control subjects (mean age 73.4 years). Bone mineral density (BMD) and geometric variables of cortical and trabecular bone in the femoral head and neck, trochanteric, and intertrochanteric regions and proximal shaft were assessed using QCT and MIAF‐Femur. Areal BMD (aBMD) was assessed using dual‐energy X‐ray absorptiometry (DXA) in 96 (37 hip fracture and 59 non–hip fracture subjects) of the 107 patients. Logistic regressions were computed to extract the best discriminates of hip fracture, and area under the receiver characteristic operating curve (AUC) was calculated. Three logistic models that discriminated the occurrence of hip fracture with QCT variables were obtained (AUC = 0.84). All three models combined one densitometric variable—a trabecular BMD (measured in the femoral head or in the trochanteric region)—and one geometric variable—a cortical thickness value (measured in the femoral neck or proximal shaft). The best discriminant using DXA variables was obtained with total femur aBMD (AUC = 0.80, p = .003). Results highlight a synergistic contribution of trabecular and cortical components in hip fracture risk and the utility of assessing QCT BMD of the femoral head for improved understanding and possible insights into prevention of hip fractures. © 2011 American Society for Bone and Mineral Research.  相似文献   

20.
To determine the effects of continuation versus discontinuation of alendronate on BMD and markers of bone turnover, we conducted an extension trial in which 1099 older women who received alendronate in the FIT were re-randomized to alendronate or placebo. Compared with women who stopped alendronate, those continuing alendronate for 3 years maintained a higher BMD and greater reduction of bone turnover, showing benefit of continued treatment. However, among women who discontinued alendronate and took placebo in the extension, BMD remained higher, and reduction in bone turnover was greater than values at FIT baseline, showing persistence of alendronate's effects on bone. INTRODUCTION: Prior trials including the Fracture Intervention Trial (FIT) have found that therapy with alendronate increases BMD and decreases fracture risk for up to 4 years in postmenopausal women with low BMD. However, it is uncertain whether further therapy with alendronate results in preservation or further gains in BMD and if skeletal effects of alendronate continue after treatment is stopped. MATERIALS AND METHODS: We conducted a follow-up placebo-controlled extension trial to FIT (FIT long-term extension [FLEX]) in which 1099 women 60-86 years of age who were assigned to alendronate in FIT with an average duration of use of 5 years were re-randomized for an additional 5 years to alendronate or placebo. The results of a preplanned interim analysis at 3 years are reported herein. Participants were re-randomized to alendronate 10 mg/day (30%), alendronate 5 mg/day (30%), or placebo (40%). All participants were encouraged to take a calcium (500 mg/day) and vitamin D (250 IU/day) supplement. The primary outcome was change in total hip BMD. Secondary endpoints included change in lumbar spine BMD and change in markers of bone turnover (bone-specific alkaline phosphatase and urinary type I collagen cross-linked N-telopeptide). RESULTS: Among the women who had prior alendronate therapy in FIT, further therapy with alendronate (5 and 10 mg groups combined) for 3 years compared with placebo maintained BMD at the hip (2.0% difference; 95% CI, 1.6-2.5%) and further increased BMD at the spine (2.5% difference; 95% CI, 1.9-3. 1%). Markers of bone turnover increased among women discontinuing alendronate, whereas they remained stable in women continuing alendronate. Cumulative increases in BMD at the hip and spine and reductions in bone turnover from 8.6 years earlier at FIT baseline were greater for women continuing alendronate compared with those discontinuing alendronate. However, among women discontinuing alendronate and taking placebo in the extension, BMD remained higher and reduction in bone turnover was greater than values at FIT baseline. CONCLUSIONS: Compared with women who stopped alendronate after an average of 5 years, those continuing alendronate maintained a higher BMD and greater reduction of bone turnover, showing benefit of continued alendronate treatment on BMD and bone turnover. On discontinuation of alendronate therapy, rates of change in BMD at the hip and spine resumed at the background rate, but discontinuation did not result in either accelerated bone loss or a marked increase in bone turnover, showing persistence of alendronate's effects on bone. Data on the effect of continuation versus discontinuation on fracture risk are needed before making definitive recommendations regarding the optimal length of alendronate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号